T.J. Head

Remarks on a problem in primary abelian groups

<http://www.numdam.org/item?id=BSMF_1963__91__109_0>
1. All groups considered in this note are assumed to be p-primary abelian groups. If A is a subgroup of G then \overline{A} will denote the closure of A in the usual topology of G ([2], page 114). The closure of a subgroup is a subgroup, but the closure of a pure subgroup need not be pure. It is a consequence of lemma 20 of [3] that if G is a closed p-group (for definition see [2], page 114) then the closure of each pure subgroup of G is pure.

Problem. — If G is a primary abelian group without elements of infinite height in which the closure of each pure subgroup is pure does it follow that G is a closed p-group?

We do not know the answer to this question, but we can give an affirmative answer in the case of direct sums of cyclic groups:

Theorem. — If G is a direct sum of cyclic p-groups and the closure of each pure subgroup of G is pure in G then G is a bounded p-group.

An outline of the proof of this theorem is given in paragraph 3 below.

2. **The relation of the problem to minimal pure embeddings.** — Following B. Charles [1], when a subgroup S of a group G is contained in a pure subgroup P of G which has the property that no proper pure subgroup of P contains S we say that P is *minimal pure containing* S.
When such a P exists we say that S has a minimal pure embedding in G. We will denote the subgroup of elements of infinite height in a group G by G'.

In the proofs below we use the following two observations:

If A is a subgroup of G then \overline{A} is that subgroup of G containing A for which $\overline{A}/A = (G/A)'$. If a subgroup S of a group G is contained in G' and if P is minimal pure containing S then P is divisible.

The latter observation follows from the fact that if P were not divisible P would contain a finite cyclic direct summand $\langle x \rangle$ and if $P = \langle x \rangle \oplus C$ then S would be contained in C where C, being a direct summand of P, would be pure in G.

For a subgroup S of G we denote by S' the subgroup of G containing S for which S'/S is the maximal divisible subgroup of G/S.

Proposition. — Let P be a pure subgroup of a primary abelian group G. Let H be a subgroup of G for which $P \subset H \subset \overline{P}$. Then H has a minimal pure embedding in G if and only if $H \subset P'$.

Proof. — Suppose P_1 is minimal pure containing H. Then P_1/P is divisible. Then $P_1 \subset P'$ and $H \subset P'$. Conversely, if $H \subset P'$ then H/P is contained in the maximal divisible subgroup of G/P. Then there exists a subgroup P_1 of G containing P such that P_1/P is minimal divisible containing H/P in G/P. Then P_1 is minimal pure containing H in G.

It has been suggested ([1], page 224) that if G is a primary abelian group without elements of infinite height and S is a subgroup of G which is the union of an ascending chain of discrete subgroups of G then S has a minimal pure embedding in G. The proposition and theorem above are sufficient to show that this is not true even if the discrete subgroups are finite:

Let G be a countable unbounded direct sum of cyclic p-groups. Let P be a pure subgroup of G for which \overline{P} is not pure. \overline{P} is the union of an ascending chain of finite (hence discrete) subgroups of G. Since P' is pure, $\overline{P} \neq P'$. Consequently \overline{P} is not contained in any subgroup of G which is minimal pure containing P.

This same example is a counter-example to part 2 of theorem 6 of [1] because P is a pure subgroup of G which is dense in \overline{P} and yet \overline{P} has no minimal pure embedding in G. Along this line we have:
COROLLARY. — For a primary abelian group G the following two conditions are equivalent:

1. Each subgroup H of G that contains a subgroup P which is pure in G and dense in H (relative to the topology of G) has a minimal pure embedding in G.

2. For each pure subgroup P of G, \overline{P} is pure in G.

Proof. — Assume (1) and let P be pure in G. Then \overline{P} has a minimal pure embedding in G. By the proposition $P = P'$ and \overline{P} is pure in G.

Assume (2) and let H be a subgroup of G which contains a subgroup P which is pure in G and dense in H. We have $P \subset H \subset \overline{P}$. Since \overline{P} is pure in G it follows from the proposition that $\overline{P} = P'$. The proposition then gives the conclusion that H has a minimal pure embedding in G.

3. Outline of the proof of the theorem stated in paragraph 1. —

It is sufficient to show that if $G = \sum \limits_{n=1}^{\infty} Z(p^{i(n)})$ where $i(n)$ is a strictly increasing sequence of positive integers, $i(1) \geq 2$, and $Z(p^{i(n)})$ is a cyclic group of order $p^{i(n)}$ then G contains a pure subgroup P for which \overline{P} is not pure. For each positive integer n let $g(n)$ be a generator of $Z(p^{i(n)})$. Then it may be verified that the following sequence of elements of G is a linearly independent set and that the subgroup, P, generated by this set is pure in G:

$$s(n) = g(2n - 1) + p^{(2n - 1)} g(2n) + p^{(2n + 1)} g(2n + 1),$$

$$1 \leq n < \infty.$$ Let

$$x = p^{(i(1) - 1)} g(1).$$

Then $x \in \overline{P}$ since modulo P we have:

$$x = p^{(i(1) - 1)} g(1) = -p^{(i(3) - 1)} g(3) = \ldots = (-1)^n p^{(i(2n + 1) - 1)} g(2n + 1) = \ldots.$$ Let y be any element of G for which $p^{(i(1) - 1)} y = x$. There is an integer N such that the component of y in $Z(p^{(i(N)})$ is different from 0 and the component of y in $Z(p^{(i(n)})$ is 0 for each $n > N$. By proceeding from the fact the component of y in $Z(p^{(i(1)})$ is the unique component of y which is not annihilated by $p^{(i(1) - 1)}$, it can be verified that the neighborhood $y + p^{v+2} G$ of y is disjoint from P. Then $y \notin \overline{P}$ and the equation $p^{(i(1) - 1)} z = x$, which has the solution $z = g(1)$ in G, is not solvable for z in \overline{P}. Thus \overline{P} is not pure in G.
REFERENCES.

(Manuscrit reçu le 16 septembre 1962.)

Thomas J. Head,
Iowa State University,
Ames, Iowa (États-Unis).