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CONFORMALLY RIEMANNIAN STRUCTURES, I ;

F. RRICKELL A N D R. S. CLARK
(Southampton).

Introduction. — We define a conformally Riemannian structure on a
differentiable ( 1 ) manifold M of dimension n to be a differentiable subor-
dinate structure of the tangent bundle to M whose group G consists of the
non-zero scalar multiples of the orthogonal n x n matrices. The method of
equivalence of E. CARTAN [I], as described by S. CHERN [3], associates with
a given conformal structure a certain principal fibre bundle on which a set
of linear differential forms is denned globally. We obtain such a bundle
and set of forms explicitly and show their relation to the normal conformal
connection of E. CARTAN | 2].

The first paragraph contains an exposition of conformal connections in
tlie light of C. EHRESMANN'S general theory of Carlan connections [h'\. In
the second paragraph we show how this leads to the normal conformal con-
nection on a manifold admitting a conformally Riemannian structure. The
third paragraph summarises the method of Cartan-Chern and we apply this,
in the fourth paragraph, to the special case of a conformally Riemannian
structure. In the fifth paragraph we show how these ideas are related.

1. Conformal Cartan connections. — We first collect together tlie
information we require on conformal space and on Cartan connections.

Conformal space of dimension n is denned to be the homogeneous space
A/A', where K is the linear group on 724-2 variables { E o , £n • • • •> £^+i i
leaving invariant the quadratic form

N^ Y^ -r •-^ Er+Eo^+i

( 1 ) The word din'crentiable will always mean differentiable of class C '
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and K ' is the subgroup of K leaving invariant the point [ i, o, . . . , o j .
Explicitly, K ' consists of matrices of the form

P P c 1
] o A Aq\
[_ o o a J

where A is an orthogonal n x n matrix and the remaining elements satisfy
the relations
(1. i) ab -— i, ap + 7j :-= o, 2 ac -4- 7/q —- o

?/ denoting the transpose of q.
The linear group of isotropy L'^ of the conformal space at { i , o, . . ., o j is

isomorpllic with the group G of non-zero scalar multiples of the orthogonal
// x n matrices. We identify L'^ wi th G in such a way that the canonical
homomorphism 9 of K ' onto L'^ is

P /' c 1 .| o A Aq | -^ aA.
|_ o o a J

The Lie algebra J ^ K i s isomorphic wi th the Lie algebra of the (n -+- a) x (n 4- 9.)
matrices of the type

r-^ -^ o].) ^ ^
L o — ^ p-J

where the n x n matrix i^ is skew-symmetric. A representation of the sub-
algebra f°K' is obtained by imposing the condition oj == o. The translation
operations on these Lie algebras are obtained by matrix multiplication.

G. EHRESMANN [^] has given necessary and sufficient conditions for the
existence of a Cartan connection on M of type K / K ' ' , that is, a conformed
Cartan connection. These are :

( i ) that the tangent bundle of M should admit a subordinate structure
with group L'^ ;

( i i) that there should exist a principal fibre bundle S€' = H ' {M, K ' ) wi th
which the homomorphism c? associates the subordinate structure.

Since K' is a subgroup of AT, ^€ defines canonically a principal bundle
;(C ̂ H(M, K). A conformal Cartan connection on Mis a connection on dl7,
in the usual sense, such that no horizontal directions on // are tangent to tlie
subspace H ' ' .

We shall construct ^C from a cocycle Aa[3, whit values in K\ defined on an

open covering { Uy.} of M. Then H ' is the quotient of the sum ^ , Uy, x k '
a

by the equivalence relation

(my,, 74) ^ (^?, ^3) if ?7z^=z m^, k'y. == ( k'y^ my,) k^.
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A Cartan connection can then be obtained from local r-forms Fa with values
in ^K defined on 6a, provided that on Uy,C\ U^ they satisfy the relation.

( 1 - 2 ) rp=:(^3)-- ' i raA-^4-^a^

and possess the further property iboitT^m^JC'K' if and only if the tangent
vector m of Uy, is zero.

Denote by h' the projection IV —> M and by h ' * the dual mapping on the
differential forms in M. From the local product representation, we have
functions k'y, with values in A' on ( / / / ) ' Uy,. The connection form F is
denned locally in /// by

( 1 . 3 ) r^: (74:)-' ; (A'Ta) ^a+ ̂ a ?

and this extends uniquely to //.

2. The normal conformal connection. — Suppose now7 that a con for-
mally Riemannian structure is given on M^ so that the tangent bundle of M
admits a given subordinate structure wi th group G. We shall construct a
particular Curtail connection on .^called the normal conformal connection.

The first condition of EHRESMANN is satisfied since tlie linear isotropic
group L',, is isomorphic to G. We have to construct a bundle S€'==. H ' (M, K ' )
which gives rise to the above subordinate structure, using the homomorphism
^ ' . K ' - > G .

We are given a covering of Mby open sets, 6a, each admitting a coordi-
nate system Xy,^=. \ x^^ ..., x^ \ and a function Xy^ wdth values in the general
linear group GL{n^ 7?), such thai on Uy,C\U^ the function

gy,^A\M^X^

where M^= ̂ ^/^^c^ has values in G. If dx^ is the natural coframe on
Uy,. then the coframe

^a^-I'a^a

is adapted to the ^-structure, since on Uy,r\U^ :

^y,-= Xy, dXy, Z-Z X^ M^ dx^ = g^ f^ .

From this adapted coframe, we define a local Riemannian metric ^a^a
on 6a.

To construct a cocycle on M which will define a bundle c^, we remark
that any matrix of G can be expressed uniquely as aA^ where A is an ortho-
gonal n x n matrix and the real number a is positive. If we split up the
functions ^ap i" this way

( 2 - 1 ) ^a3==^a3Aa8,
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the following cocycle relations are satisfied

a^=: a^a^, A^== A^A^.

We use these functions to define

r^a.3 /?a,3 ^3 '|
^ a ,3 == 0 y4 a.3 ^4 a.3 ̂ 3 ,

L ° ° ^a3 J

where ^a3 is defined by the relation

(2 .2 ) <?a^==(^(logaa|3)

and the remaining components are determined by the relations (l.i). These
new functions k'y,^ on Uy,C\U^ have values in K' and it can be shown that
they satisfy the cocycle relations, consequently they define a bundle
^ -=-- H ' (M^ K ' ) . Since the cocycle g^ is the image of the cocycle Aa3
under the homomorphism cp, this bundle 3€' satisfies EHRESMANN'S second
condition. In fact, A'ap has values in the subgroup K" of K' defined by ^> o.
We denote by S€" == H " ( M , K " ) the principal bundle with group K" defined
by the cocycle Aap. It is a sub-bundle of Q€'.

We are now ready to construct on Uy, the local i-form I\ with values in
X°A Which will define the Cartan connection. We shall take this to be

[ o — ^a 0 1

Fa^ GJa ^a ^a p
o — f^a ^ -I

wliere the i-forms i^a alld ^pa ^^ still to be determined. W^e have, of
course, to verifiy that the choices for these remaining components are sucli
that Fa satisfies the relation (1.2); the further condition on Fa is satisfied
already since the forms (Oa are linearly independent. CARTAN determines ^2a
and ^pa ln terms of the local Riemannian metric cSadOa on Uy, by imposing
certain conditions on tlie curvature of the Gartan connection and this wil l be
done by imposing conditions on the local curvature form

. / ra+raAFa

consistent with relation (1 .2) .
Tills local curvature form has values in X^A and so it lias components

-^ -Ac o 1
^ ^a ^a

_ 0 -T^ B^\

where the values of the 2-form Cy, are skew-symmetric. The first condition
T^ r= o is consistent with (1 .2 ) ; since

Ta^^a+^aA ̂
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it implies that 12^ is the connection form of the local Riemannian metric
(calculated relative to the coframe c^a). It "ow follows thai on Uy.r\ U^ :

Consequently if
C^~——g<^y.Cy,gy.^.

^————^•A/^A^

tlie second condition C)/^ == o is consistent with (1.2) and, if ^^3, it can
be shown to determine the form ^ uniquely. Thus a Cartan connection
has been determined from the conformal structure of M\ it is the normal
con formal connection of E. CARTAN.

We shall need to calculate ^pa explictly and we suppose that ^y.==- ̂ ih^i-
Since

Cy.=By.- G O a A ^a— ^a A ^a,

where Ry. == d^ly.-^-Hy. A ^a is the curvature form of the local Riemannian
metric then, if

7?a=^/^A^

it follows that

^/,==7?^/,-^- ^ik^fh— ^ I h ^ / k - ^ - Qjh^lk— 0 / k ^ i / , -

The condition 6')/«==o tlien shows that. for /z^3,

, i 'i ^ . „ ) //^y^ ———— . —————- o^— /^ . c^a
• n — 2 i1 2 (n — i) )

where 7?/^== 7? .̂ and /? === /?/A o^. Consequently <7a is the Weyl conformal
curvature form for the local Puemannian metric.

Finally, we obtain a local formula for the connection form T on H " ' . From
the local product structure of //'/ we have functions k'y. with values in K" on
( ^ l " ) ~ Y U y , and we put

[^a Py. Cy, ~\

( -2.3) //a- o Ay. A^ ,
0 0 Oa J

where A y, is orthogonal and

<^a > 0, ^a by. —^ I , ay.py. + ^a ̂  0, 9. ̂ a ^a 4- ?a ̂ a ̂  0.

Since

r^a 5a-4a ^a~|

(A'a)- '=- 0 3'a ^a h
|_ 0 0 ^aj
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the formula (1.3) applied to //// shows that

r-;j. -^ on
r= c^ 12 ^ h

1.. 0 — ^ ^ J

where the global forms are defined locally by

c.3=-^a(/^a),
^a

<^a

(2.4) l'==-^-^

^ == 4a { (h"^l^A^dA^} - ,)^+ ̂

4^ = ̂ /a+ .Qya- ^</a+ ̂ a(/^a) - (?a ̂ ) </a + ^ (?a^a) <.).

3. The method of equivalence of E. Cartan and S. Chern. — In this
paragraph we shall suppose that G is any closed subgroup of the lineal-
group and that the tangent bundle of a manifold M admits a subordinate
structure with group G. In the nomenclature of S. CHERN, M admits a
(9-structure. In [3], CIIERN gives a procedure for constructing a sequence
of fibre bundles and differential forms for a ^-structure. We give a short
account of his work.

From the definition of a subordinate structure, there exists an open
covering of M by coordinate neighbourhoods U^ on wliich are defined
functions Xy,, with values in the linear group, such that on U^C\UQ the
functions

^=^M^AY

have values in G. The coframe

&3a==^a<^a

on Uy, is adapted to the ^-structure, since on U^r\U^,

^a==^a^3.

The first fibre bundle in the sequence is the principal bundle d3 == B{M, G)
associated with the reduced structure and it is defined by the cocycle ̂ 3.
As usual, we shall denote by b the projection B -^ M and by // the dual
mapping on the forms in M. Lei ̂  denote the local functions with values
in G on V^-^b-^U^ defined by the local product structure, so that
on FaU Fg,

^a==(^a8)^3.



CONFORMALLY RIEMANNIAN STRUCTURES I. 21

Using the local i-forms c^a on Uy., we construct on B a global i-form 0
with values in B". It is denned on Vy, by

( 3 t l ) O^-a1^^),

and its exterior derivative is given on Vy, by

d^=^b\d^)-8-^ dg^ A O .

We can express ̂  b^clw^) as -1 C1/^1 /\ 0^" and so, if we put

IIa==^a1 <^a+£a,

where £a == 4'A^ ls a ^form on ^a with values in the Lie algebra ^ G whose
coefficients are to be determined, the above formula for 6/0 becomes

(3 .2) jo + II, A 0 = \ (4-A - 4/. + C1,^ ̂  A O'.

We impose as many linear relations with constant coefficients between the

quantities - (s^ — s^y, 4- C1/^) as possible. These quantities are then deter-

mined uniquely. This implies that if the coefficients of the form 'n /\ 0
satisfy the same linear relations, where Y) is any i-form ri1^11 with values
in ^6r, then T] /\ 0 = o. The relations may, or may not, determine the
coefficients £^. If they do and if the coefficients of -n /\ 0 satisfy the same
relations, then -^ =-: o.

Thus on Vy. we liave the formula

JO -4- IIa A 0 = 'o

and on V^
JO + lip A ̂ =^

where the coefficients of Ta and Tp are detennined by the imposed linear
relations. Since on Vy,C\V^^

T a - T 3 = ( r i a - n p ) A O ,
the coefficients of the form (lla— lip) A ^ also satisfy these linear relations.
But the form IIy,— ITrj has values in SG and, since

( 3 - 3 ) 8~^ dg^—gf dg^=gfb\g^dg^)g^

it is linear in O^. Consequently

(iia-ng) A 0 = 0
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and we have a global 2-formT on B defined on Pa byT:=:Ta- It the imposed
relations determine the coefficients £^, then na==ll3 and we have a global
i-form II on B denned on Vy, by II:— IIa.

But in the general case,

na-Hs^A^A. (^l, . . . , d,)

where A^ are a basis for tlie c/i-dimensional vector space of i-forms on 7^,
with values in ^ 6r, \vhich satisfy the equation T} /\ 0 =-=. o and whose compo-
nents are linear in 0^ with constant coefficients. The functions Aa3
on Viy,r\ V^ form a cocycle on B with values in tlie additive group R11 and so
they define a principal bundle

^—-B^B, R^).

Denote by bi the projection B^—^B and by ^a the local functions with values
in R^ on V^ — (^ t )-1 l a . Since on V^ n V^

A a — .̂3-~: ^'* ^a^;

we have global i-forms O 1 , II1 on B1 defined by

O ' ^ ^ ' ^ O ,
n'r-^^na—/.^^1*.^).

We now use the same procedure to construct a decomposition for ^/O'
and dIV and thus obtain further local forms ' / y , on Vy.. Defining a third
bundle

W—B^B1, jR'^},

we then construct global forms O2 , II2, r / 2 on B'1. And so on. If the new
forms are defined globally at any stage, the process terminates. The final
bundle space B' then carries a structure whose group is the identity. This
solves the problem of local equivalence in the sense now to be explained.

Suppose that M' is a second manifold carrying a ^'-structure and denote
quantities arising from M'\ corresponding to those already defined for M ^
by an accent. The two ^-structures on M and M' are locally equivalent at
points m and m' if there exists a local difTeomorphism of some neighbour-
hood Uy, of m onto a neighbourhood U'y,r of in' sucli tliat

(r,4,)*:—^G)a

where * denotes tlie dual mapping defined by tlie difleomorphism and ,̂  is
some difTeren liable function on Uy, with values in G. Two sucli difTeomor-
phisms are said to give the same local equivalence of the structures at //?,
//// if they coincide in some neighbourhood of in. It follows from the work
of E. CARTAN [1] that the local equivalences for the G-structures on Af, M'
can be obtained from the local equivalences for the identity-structures on B ' ,
B ' ' ' . C A R T A N gives a finite algorithm for f inding tlie latter.
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h. Application of the method of Cartan-Chern to conformal structure.
— We now return to our original notation and suppose that G is the group
of non-zero scalar multiples of the orthogonal n x n matrices. Its Lie
algebra .€ G is isomorphic with the algebra of n x n matrices A such that

A-{-A==.oI,

where p is any scalar.
We first construct the bundle c^==£(M^ G) and the form 0 on B as in

the preceeding paragraph. We can then find local forms 11̂  on Vy, in many
ways so that the equation (3 .2) becomes

^0 + Ha A 9 == o.

In order to make a definite choice, we put

(^.l) na=^a1 ̂ a+^^a^a

where, as in paragraph 2, 12^ is the connection form of the local Riemannian
metric <^a^a o" ^a- Ha is then the corresponding local connection form
on Fa.

Suppose that -n r—^Q^ is any local i-form w^th values in £G and such
that 72 f\ 0 -==. o. Then

•4/. + < - ̂  7'^ ^ " <j ̂  °-

These equations show that

Y^ = \ «• + r^ - ̂  - r,{, 4- ̂  + r,4 )

== ^/^—A^A+A7^, /

and so it follows that

rj==9?:-/0+(5;Q)/.

Thus any such form is determined by a function A with values in J K " . In
particular, 11^— lip will be determined by functions ^a? o11 ^a^ ^p?

( ^ . 2 ) na-np=o'5:a.3-^asO+C^o)^.
We do^ not "calculate these functions explicitly at present. They form a
cocycle on B and this defines a principal bundle ̂ = B1 (7?, /?").

On B1 we define global forms 91, II1 w^iere

i O'^^O
( n '^^^na-O^a+^aS'-C^aO1)^.
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A calculation of their exterior derivatives gives

( ./G^-n'Ae',
( CW== d^ A ^H- 0- A ̂ a- (^a A O1)/- II'A n'+ © + ©,

where 0 involves mixed products of components from IT and O1 and Q
involves products of components of O 1 . Following the general method
we put '

%a==^a+^a+%a,

where ̂  and ̂  are i-forms on ^ with values in R'^ which are linear in the
components of ^ and IT respectively. We can show that ̂  and y, are
uniquely determined by requiring that

dn^y^ A o'+ o' A ̂ ~ (^ A ̂ )f- rr A n' + 0,
where the form (p = ^ ̂ .O^A 0^ satisfies the relations

^jia == o.

Explicitly, we find tha t

%a^^ l*(^a(^^a))=(?a01)?.a+^(^^OS

%a == — fl' Aa

and that ^ == ̂  (^ (^6a)^a). The local forms ^ and Q, which arise
from the Riemannian metric on U^ have been defined in paragraph 2.

From the general theory of paragraph 3, the local forms ̂  define a global
form %' on 7?1 and hence <P is also defined globally. The forms 0 ' , IT, y1

contain /z + ̂ (^- i) +i+^ linearly independent components and so

they define an identity-structure on B1. This structure, as explained in
paragraph 3, solves the problem of local equivalence.

5. The relation between the two theories. - Starting from a given
conformally Riemannian structure on M, we constructed, in paragraph 2
global forms c,), ^ .Q and ^ on //// which defined a normal confo.mal
connection. In paragraph ^, we carried out the Chern process for the
conformal structure and obtained global forms 0' , n1 and ̂  on £1. We shall
set up a difTeomorphism mapping IF onto ^ and then find the relation
between these two sets of forms.

We must first calculate the functions ^3 on V^ n T^ explicitly.
From (^.2), we have * . r j

( ° - 1 ) trace (na—Il3):=/J^O.
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Since the values of i^a are skew-symmetric matrices, it follows from (^ . i ) ,
( 3 . 3 ) and (2 . i ) that

trace (IL- lip) = trace (^a1 ̂ a-^1 ̂ p)
== trace b'(^d^)
-—trace ^*(<^( logons)/ 4- ^a3 dAyo,)
=:/^(^(log^)).

Then using (2.9.) and (3 . i ) , we find that

trace ( I Ia—Hs) == nb^q^^) == n(b'q^)g^.

Comparing this result with (5. i), it follows that

( 0 - 2 ) ^-—^(^aS),

We recall from paragraph 2 that the bundle -31" is defined by means of the

cocycle /x-ap on M. Consequently I I " is the quotient of the sum V Uy, x K"
by the equivalence relation

(77?a, A a ) ̂  (m^, Aj}) if m^= m^, k"y. = k'^k"^.

In paragraph ^ w-e defined d3 by means of the cocycle g-^ on M and d31 by
means of the cocycle ^a;3 on B. Combining these definitions and using (5.2),

it follows that B1 is the quotient of the sum ^Uy,xGxR11 by the equiva-

lence relation

(^a, §^ Aa ) ̂  (^3, ̂ 3, ̂ )

11 ^a^ ^8, ^-a^^ap^^ ^a= ^?+^^ap. The functions /a^ ̂ 3 and 7ap
are all to be evaluated at m^= 7713.

We now set up a local diffeomorphism of Uy, x K" onto V\ x G x /?".

(^a, ^a)->(f^, a^A^ ^a)

where ^a, -4a and </a are obtained from the decomposition (2.3) for any
element Aa of A". It can be shown that these local diffeomorphisms
commute with the above equivalence relations and so they define a global
diffeomorphism of IP onto £1. Denoting the dual mapping on the forms
in B1 by ^, it follows that

( *^a^-^a,

^(^a)--^a^

( ^ (^^Ca) = A'* Co tor any form ^ on U^.
BLLL. SOC. MATH. — T. 90, FASC. 1.
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Using the definitions of the forms O 1 , II1, %1 on B^ from paragraph ^ and tlie
definitions of the forms GJ, ^, 12, ^ on //// from paragraph 2, it is then easy to
see that

*0'=co, *n'r=^+^/, -k7^=^'
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