JOHN M. IRWIN
ELBERT A. WALKER
On isotype subgroups of abelian groups

<http://www.numdam.org/item?id=BSMF_1961__89__451_0>
ON ISOTYPE SUBGROUPS OF ABELIAN GROUPS ;

BY

J. M. IRWIN and E. A. WALKER.

In his book *Abelian groups*, L. Fuchs asks the following question. Let G be a p-group and H be a subgroup without elements of infinite height. Under what conditions can H be embedded in a pure subgroup of the same power and again without elements of infinite height? (See [2], p. 96.) This question has been answered by Charles [1] and Irwin [3]. Irwin's solution was effected by showing that any subgroup maximal with respect to disjointness from the subgroup of elements of infinite height is pure. For p-groups, the subgroups of element of infinite height is $p^{\alpha}G$. Now for any Abelian group G, any prime p, and any ordinal α, one may define $p^{\alpha}G$, and this suggests the following problem. Is any subgroup of G maximal with respect to disjointness from $p^{\alpha}G$ pure in G? Or, more generally, does any such subgroup H of G have the property that $H \cap p^{\beta}G = p^{\beta}H$ for all ordinals β? That is to say, is p-H-isotype in G? We will show that indeed any such H is p-isotype, and we will give a partial solution to the problem of determining whether any two such H's are isomorphic. The foregoing considerations will lead to the solution of a more general version of the above mentioned problem of L. Fuchs.

All groups considered in this paper will be Abelian.

Definition 1. — Let G be a group and p be a prime. Define $p^0G = G$. If $p^\beta G$ is defined for all ordinals $\beta < \alpha$, then define $p^\alpha G = \bigcap_{\beta < \alpha} p^\beta G$ when α is a limit ordinal. If $\alpha = \delta + 1$ for some ordinal δ, let $p^\alpha G = p(p^\delta G)$.

Thus we have defined $p^\alpha G$ for all ordinals α, and clearly the $p^\alpha G$'s form a chain of fully invariant subgroups of G.
DEFINITION 2. — Let p be a prime and $g \in G$. The p-height $H_p(g)$ of g is the ordinal α such that $g \in p^\alpha G$ and $g \notin p^{\alpha+1} G$. If no such ordinal α exists, then $H_p(g) = \infty$, where the symbol ∞ is considered larger than any ordinal. Let α be an ordinal or ∞. Then a subgroup H of G is p^{α}-pure in G if and only if $H \cap p^\beta G = p^\beta H$ for all ordinals $\beta \leq \alpha$; H is α-pure in G if and only if H is p^{α}-pure in G for all primes p. A subgroup H is p-isotype in G if and only if H is p^{α}-pure in G. The subgroup H is isotype in G if and only if H is p-isotype in G for all primes p.

It follows easily from the definitions that the properties of being isotype, α-pure, or p^{α}-pure are transitive. Moreover, the union of an ascending chain of subgroups with one of these properties is a subgroup with that property.

It is easy to see that there are groups in which not every pure subgroup is isotype. In fact, there exist reduced p-groups G such that $|p^\beta G| = \aleph_0$ and $|\beta| \geq 2^{\aleph_0}$. (See [2], p. 131, Theorem 38.2 for the existence of such a G.)

Embed $p^\beta G$ in a pure subgroup K of G with $|K| = \aleph_0$. Clearly K is not isotype since $\forall \alpha \in K \neq 0$ and $K \cap p^\beta G = p^\beta G \neq 0$.

We now state and prove a few facts which will be useful in what follows, and which illustrate the relation between the above definitions and the ordinary notions of purity and height.

Lemma 1. — For a positive integer n, let $n = \prod_{i=1}^r p_i^{n_i}$ be its prime decomposition. Then for any group G, $nG = \bigcap_{i=1}^r p_i^{n_i}G$.

Proof. — Let $T = \bigcap_{i=1}^r p_i^{n_i}G$. Clearly $nG \subseteq T$. Now let $g \in T$. For $n_i = n/p_i^{n_i}$, there exist integers a_i with $\sum a_i n_i = 1$. But $g \in T$ yields $g = p_i^{n_i}g_i$, $i = 1, \ldots, r$. Hence

$$g = \sum a_i n_i g = \sum a_i n_i p_i^{n_i} g_i = \sum a_i n g_i = n \sum a_i g_i \in nG.$$

Hence $nG = T$, and the proof is complete.

Corollary 1. — A subgroup H of a group G is pure in G if and only if H is ω-pure.

Proof. — Suppose H is pure in G. In particular, $H \cap p^m G = p^m H$ for each prime p and non-negative integer m. Now

$$H \cap p^\omega G = H \cap \left(\bigcap_{k<\omega} p^k G \right) = \bigcap_{k<\omega} (H \cap p^k G) = \bigcap_{k<\omega} p^k H = p^\omega H.$$
Hence H is ω-pure. Next suppose H is ω-pure, and n is a positive integer. Then

$$H \cap nG = H \cap \left(\prod p_i^{n_i} \right) G = H \cap \left(\bigcap p_i^{n_i} G \right) = \bigcap (H \cap p_i^{n_i} G) = \bigcap p_i^{n_i} H = nH$$

by Lemma 1.

The following definition is standard.

Definition 3. The subgroup $G^1 = \bigcap_{n<\omega} nG$ is the *subgroup of elements of infinite height* in G.

We are now in a position to prove the following useful

Corollary 2. Let P be the set of all primes. Then $G^1 = \bigcap p^\infty G$.

Proof. Set $T = \bigcap_{p \in P} p^\infty G$. Then from $p^\infty G = \bigcap_{n} p^n G$ for each $p \in P$,

it follows that $p^\infty G \supset \bigcap_{n} nG$ for each $p \in P$, and hence $T \supset G^1$. Now for each n we have $nG = \bigcap_{p \in P} p^\infty G \supset T$. Hence $G^1 \supset T$, whence $G^1 = T$.

This corollary shows that the subgroup G^1 of elements of infinite height in G is the set of elements of infinite p-height for each prime p. The following theorem and corollary are generalizations of Kaplansky's Lemma 7 ([5], p. 20)

Theorem 1. Let H be a subgroup of a p-group G, and let α be a limit ordinal or ∞. Then H is p^α-pure in G if and only if whenever $\beta < \alpha$, $h \in H[p]$, and the p-height of h in G is $\geq \beta$, then the p-height of h in H is $\geq \beta$.

Proof. If H is p^α-pure, then clearly the elements in $H[p]$ have the desired property. To prove the converse, it must be established that $H \cap p^\delta G \supset p^\beta H$ for all $\delta \leq \alpha$. Obviously $H \cap p^\delta G \supset p^\beta H$. Let $P(\alpha)$ be the statement: For $\beta < \alpha$, the elements in H of exponent $\leq n$ have p-height $\geq \beta$ in H if they have p-height $\geq \beta$ in G. We will prove $P(\alpha)$ is true for all α by induction and consequently have that $H \cap p^\delta G \subseteq p^\beta H$ for all $\delta < \alpha$. Now $P(1)$ is true by hypothesis. Assume $P(\alpha)$ holds, and let $h \in H$ with $o(h) = p^{n+1}$, and suppose the p-height of h is $\geq \beta$ in G. Then ph has exponent n and p-height $\geq \beta + 1$ in G. Since $\beta + 1 < \alpha$, our induction hypothesis yields $ph = p^{n+1}h_\beta \in p^\beta H$. Hence $(h-h_\beta) \in H[p]$ has p-height $\geq \beta$ in G, and so p-height $\geq \beta$ in H. Therefore $H \cap p^\delta G \subseteq p^\beta H$ for all $\delta < \alpha$ and since α is a limit ordinal, this holds for all $\delta \leq \alpha$. Thus H is p^α-pure in G.
COROLLARY 3. — Let H be a subgroup of a p-group G. Then H is isotype in G if and only if the elements in $H[p]$ have the same p-height in H as in G.

PROOF. — Since G is a p-group, we have $qH = H$ for all $q \neq p$, and hence H is q-isotype for all $q \neq p$. To get H p-isotype, let x be ∞ in Theorem 1.

We proceed now to our main results and begin with the following definition:

DEFINITION 4. — Let K and L be subgroups of G. Then H is L-high in K if and only if H is a subgroup of K maximal with respect to the property that $H \cap L = 0$. A high subgroup H of G is a subgroup maximal with respect to the property $H \cap G^1 = 0$. (See [3].)

The principal result of this paper is the following theorem:

THEOREM 2. — Let G be a group, let p be a prime, let α be an ordinal, let K be a subgroup of p^G, and let H be K-high in G. Then H is $p^{\alpha+1}$-pure in G, and $p^\beta H$ is K-high in $p^\beta G$ for all ordinals $\beta \leq \alpha$.

PROOF. — To show that H is $p^{\alpha+1}$-pure in G we need to establish that $H \cap p^\beta G = p^\beta H$ for all $\beta \leq \alpha + 1$. We induct on β, and if $\beta = 0$, the equality is trivial. Now suppose $0 < \beta \leq \alpha + 1$, and suppose the equality holds for all ordinals less than β. If β is a limit ordinal, then

$$H \cap p^\beta G = H \cap \left(\bigcap_{\delta < \beta} p^\delta G \right) = \bigcap_{\delta < \beta} (H \cap p^\delta G) = \bigcap_{\delta < \beta} p^\delta H = p^\beta H.$$

Next suppose β is not a limit ordinal. Then there is an ordinal δ such that $\beta = \delta + 1$. Then

$$p^\beta H \subseteq H \cap p^\beta G = H \cap p(p^\delta G).$$

Let $h = pg_\delta$ with $h \in H$ and $g_\delta \in p^\delta G$. If $g_\delta \in H$, then

$$g_\delta \in H \cap p^\delta G = p^\delta H,$$

and

$$h = pg_\delta \in p(p^\delta H) = p^\beta H.$$

So suppose $g_\delta \notin H$. Since H is K-high in G and $K \notin p^G$, we have

$$h_1 + ng_\delta = k \neq 0,$$

where $h_1 \in H$, $k \in K$, and n an integer. Clearly $(n, p) = 1$, and $k \in p^G$. Since $\delta \leq \alpha$, we have $h_1 \in p^\delta G$. The induction hypothesis yields $h_1 \in p^\delta H$. Now

$$ph_1 + npg_\delta = ph_1 + nh = pk = 0.$$

Therefore

$$nh = -ph_1 \in p(p^\delta H) = p^\beta H.$$
Also \(ph \in p^3 H \) since \(h \in p^3 G \subseteq p^3 G \), consequently \(h \in p^3 H \). There exist integers \(a \) and \(b \) such that \(an + bp = 1 \). Thus

\[anh + bph = h \in p^3 H. \]

Hence \(H \cap p^3 G = p^3 H \) and \(H \) is \(p^{x+1} \)-pure in \(G \) as stated.

It remains to show that \(p^3 H \) is \(K \)-high in \(p^3 G \) for \(\beta \leq \alpha \). Suppose this is not the case. Then there exists \(g_{\beta} \in p^3 G, g_{\beta} \in p^3 H \) such that the subgroup generated by \(p^3 H \) and \(g_{\beta} \) is disjoint from \(K \). If \(g_{\beta} \in H \), then since \(H \) is \(p^{x+1} \)-pure in \(G \) and \(\beta \leq \alpha \), \(g_{\beta} \in p^3 H \) contrary to the choice of \(g_{\beta} \). Hence \(g_{\beta} \in H \). Since \(H \) is \(K \)-high in \(G \), we have \(h + ng_{\beta} = k \neq 0 \), where \(h \in H \) and \(k \in K \subseteq p^3 G \). From \(\beta \leq \alpha \) we have that \(h \in p^3 G \), and hence \(h \in p^3 H \) by \(p^{x+1} \)-purity of \(H \) in \(G \). But this together with the equation \(h + ng_{\beta} = k \neq 0 \) contradicts the fact that the subgroup generated by \(p^3 H \) and \(g_{\beta} \) is disjoint from \(K \). This concludes the proof.

As an easy consequence of Theorem 2 we obtain a generalization of Irwin's result mentioned above.

Corollary 4. Let \(K \) be any subgroup of \(G \) and \(H \) be \(K \)-high in \(G \). Then \(H \) is \((\omega + 1)\)-pure (and hence pure) in \(G \). In particular, if \(H \) is high in \(G \), then \(H \) is pure in \(G \).

Proof. Since \(K \subseteq p^\omega G \) for each prime \(p \), \(H \) is \(p^{\omega+1} \)-pure for each \(p \). Hence \(H \) is \((\omega + 1)\)-pure.

Another result along these lines is

Corollary 5. Let \(H \) be \(p^{x} G \)-high in \(G \). Then \(H \) is \(p \)-isotype in \(G \), and \(p^3 H \) is \(p^{x} G \)-high in \(p^3 G \) for all \(\beta \).

Proof. Since \(H \) is \(p^{x} G \)-high in \(G \), then \(H \cap p^\beta G = p^\beta H = 0 \) for all \(\beta \geq \alpha \), and Theorem 2 yields \(H \) is \(p \)-isotype. For ordinals \(\beta \geq \alpha \), the only \(p^{x} G \)-high subgroup in \(p^\beta G \) is \(0 \) and \(p^\beta H = 0 \) for such \(\beta \). By Theorem 2, \(p^3 H \) is \(p^{x} G \)-high in \(p^3 G \) for all \(\beta \).

Lemma 3. For any group \(G \) and any ordinals \(\alpha \) and \(\beta \), \(p^{x}(p^\beta G) = p^{\beta + x} G \).

Proof. Induct on \(x \). The assertion is true for \(x = 0 \). Now assume \(x > 0 \) and that the assertion is true for all ordinals \(\delta < x \). Suppose \(x \) is a limit ordinal. Then

\[
p^{x}(p^\beta G) = \bigcap_{\delta < x} p^{x}(p^\delta G) = \bigcap_{\beta \leq \lambda < \beta + 2} (p^\lambda G) = \bigcap_{\lambda < \beta + 2} (p^\lambda G) = p^{\beta + x} G
\]
since \(\beta + \alpha \) is a limit ordinal. Suppose \(\alpha = \delta + 1 \). Then
\[
p^\beta(p^\delta G) = p(p^\delta(p^\beta G)) = p(p^\delta G) = p(p^\beta + \delta + 1) G = p^\delta(\beta + 1) G = p^{\delta + \alpha} G.
\]

As a simple application of Lemma 3 we have

Corollary 6. — Let \(H \) be \(p^\alpha G \)-high in \(G \). Then \(p^\beta H \) is \(p \)-isotype in \(p^\beta G \) for all \(\beta \).

Proof. — By Corollary 3, \(p^\beta H \) is \(p^\alpha G \)-high in \(p^\beta G \) for all \(\beta \). If \(\alpha \leq \beta \), then \(p^\beta H = 0 \) and hence is isotype. If \(\beta < \alpha \), then \(\alpha = \beta + \delta \) for some \(\delta \). By Lemma 3 we have that \(p^\beta H \) is \(p^\alpha G = p^{\beta + \delta} G = p^\delta(p^\beta G) \)-high in \(p^\beta G \), and Corollary 3 completes the proof.

Making certain provisions about \(\delta \), we are able to say when \(p^\alpha G \)-high subgroups are \(q \)-isotype for any prime \(q \). In this connection we have

Theorem 3. — Let \(H \) be \(p^\alpha G \)-high in \(G \), and suppose \(p^\alpha G \) has no elements of order \(q \), where \(q \) is a prime. Then \(H \) is \(q \)-isotype in \(G \).

Proof. — If \(q = p \), the assertion follows from Corollary 3. Now assume \(q \neq p \). We show that \(H \cap q^\beta G = q^\beta H \) for all ordinals \(\beta \). For this purpose it suffices to verify that \(H \cap q^\beta G \subseteq q^\beta H \). For \(\beta = 0 \) this is trivial. Let \(\beta > 0 \), and suppose the inequality holds for all ordinals \(\beta < \beta \). If \(\beta \) is a limit ordinal, then
\[
H \cap q^\beta G = H \cap \left(\bigcap_{\beta < \gamma} (q^\gamma G) \right) = \bigcap_{\beta < \gamma} (H \cap q^\gamma G) = \bigcap_{\beta < \gamma} (q^\beta H) = q^\beta H.
\]

Next suppose \(\beta = \delta + 1 \). Let \(h \in H \cap q^\beta G = H \cap q(q^\delta G) \). Then \(h = qg_2 \), where \(g_2 \in q^\delta G \). By the induction hypothesis, if \(g_2 \in H \), then \(g_2 \in q^\delta H \) and \(h = qg_2 \in q(q^\delta H) = q^\beta H \). Now assume \(g_2 \notin H \). Then since \(H \) is \(p^\alpha G \)-high in \(G \), we have \(h_1 + ng_2 = g_2 \neq 0 \), where \(h_1 \in H \), \(g_2 \in p^\alpha G \), and \(n \) is an integer. Thus \(qh_1 + ng_2 = qh_1 + nh = qg_2 \in H \). Therefore \(qg_2 = 0 \), and since \(p^\alpha G \) has no elements of order \(q \), \(g_2 = 0 \). This contradiction establishes the theorem.

The following two corollaries follow immediately from Theorem 3.

Corollary 7. — Let \(H \) be \(p^\alpha G \)-high in \(G \), and suppose \(p^\alpha G \) is torsion-free. Then \(H \) is isotype in \(G \), and in particular \(H \) is pure in \(G \).

Corollary 8. — Let \(H \) be \(p^\alpha G \)-high in \(G \), and suppose \(p^\alpha G \) is a \(p \)-group. Then \(H \) is isotype in \(G \). In particular, \(H \) is pure in \(G \).

If \(G \) is a \(p \)-group, then the subgroup \(G^1 \) of elements of infinite height in \(G \) is \(p^\infty G \). Thus Corollary 8 implies that a high subgroup \(H \) of a \(p \)-group is isotype, and consequently pure. The answer to Fuchs' question is readily obtained from the purity of \(H \). (See [3].) However, we proceed now to derive more general results.
THEOREM 4. — Let A be a subgroup of G, and let S be a non-void set of primes. For each $p \in S$, let α_p be an ordinal. Suppose that for each $a \in A$, $a \neq 0$, there exists $p \in S$ such that $H_p(a) < \alpha_p$. Then A is contained in a subgroup H of G such that H is p^{α_p+1}-pure in G for each $p \in S$, and for each $h \in H$, $h \neq 0$, there exists $p \in S$ such that $H_p(h) < \alpha_p$.

Proof. — Since $A \cap \left(\bigcap_{p \in S} p^{\alpha_p+1} G \right) = o$, A is contained in a $\bigcap_{p \in S} p^{\alpha_p+1} G$-high subgroup H of G. Now the proof follows immediately from Theorem 2.

The following result generalizes a theorem of Erdélyi ([2], p. 81).

Corollary 9. — Let H be a subgroup of G, let p be a prime, and let α be an ordinal. Suppose that for each nonzero $h \in H_p$, $H_p(h) < \alpha$. Then H is contained in a p-isotype subgroup A of G such that for each nonzero $a \in A$, $H_p(a) < \alpha$.

Proof. — This proof is analogous to the proof of Theorem 4, using Corollary 5.

Corollary 10. — Let G be a p-group, and let A be a subgroup of G such that A has no nonzero elements of infinite height. Then A is contained in an isotype subgroup H of G such that H has no nonzero elements of infinite height.

Proof. — The proof is similar to the proof of Corollary 9, using Corollary 8.

Corollary 11. — Let A be a subgroup of G with no elements of infinite height; i.e., $A \cap G^1 = o$. Then A is contained in a pure subgroup K of G such that K has no elements of infinite height and such that $|K| \leq S_o |A|$.

Proof. — The subgroup A is contained in a high subgroup H of G, and H is pure in G by Corollary 4. Now A can be embedded in a pure subgroup K of H such that $|K| \leq S_o |A|$. (See [2], p. 78.) Clearly K has no elements of infinite height and is pure in G.

We will now discuss the question of how isomorphic the $p^\alpha G$-high subgroups are. In particular we will show that if G is a countable p-group, then any two $p^\alpha G$-high subgroups of G are isomorphic. When any two such subgroups of an arbitrary group G are isomorphic is not known. However, we will state and prove an interesting theorem concerning the relationship of the Ulm invariants of these subgroups to those of G when G is a p-group.

Lemma 4. — Let L be a subgroup of a group G with H and K both L-high subgroups of G. Then

$$((H \oplus L)/L) [p] = ((K \oplus L)/L) [p]$$

for each prime p.

PROOF. — For \(h \in H \) we have that \(o(h + L) = p \) if and only if \(o(h) = p \).

If \(h \in (H \cap K) [p] \), then \(h + L \) is in \((K \oplus L)/L) [p] \). Suppose \(h \in H[p] \setminus K \cap H \).

Then there exists \(k \in K, x \in L \) with \(h - k = x \), whence \(o(k) = p \). Thus

\[
h + L = k + L \in ((K \oplus L)/L) [p];
\]

and since \(h \) was arbitrary, we have by symmetry that

\[
((H \oplus L)/L) [p] = ((K \oplus L)/L) [p]
\]
as stated.

Lemmas.

Lemma 5. — Let \(H \) and \(K \) be \(p^3G \)-high in a reduced \(p \)-group \(G \).

Then \(|H| = |K| \).

Proof. — If \(p^3G = 0, H = K \). When \(\beta \) is finite, then \(H \cong K \). (See [2], p. 99 and 104). When \(\beta \) is infinite and \(p^3G \neq 0 \), embed \(G \) in a divisible hull \(E \) of \(G \). (A divisible hull of \(G \) is a minimal divisible group containing \(G \).) Then \(r(H) = r(E/D) = r(K) \), where \(D \) is a divisible hull of \(p^3G \) in \(E \). That \(|H| = |K| \) follows now from easy set theoretic considerations.

Lemma 6. — Let \(H \) be \(p^3G \)-high in \(G \). Then for each ordinal \(\alpha \) we have

\[
(p^3H \oplus p^3G)/p^3G = p^2((H \oplus p^3G)/p^3G).
\]

Proof. — If \(\alpha \geq \beta \), then both sides are zero. We prove the assertion for \(\alpha < \beta \) by induction on \(\alpha \). So assume the equation holds for all ordinals \(\delta < \alpha \). (If \(\alpha = o \), then the equality is trivial.) If \(\alpha = \delta + 1 \), then

\[
(p^3H \oplus p^3G)/p^3G = (p(p^3H \oplus p^3G)/p^3G)
\]

\[
= p((p^3H \oplus p^3G)/p^3G)
\]

\[
= p(p^2((H \oplus p^3G)/p^3G)) = p^2((H \oplus p^3G)/p^3G).
\]

Now assume \(\alpha \) is a limit ordinal. Set

\[
L = \left(\cap_{\delta < \alpha} p^3H \right) \oplus p^3G \quad \text{and} \quad R = \cup_{\delta < \alpha} p^\delta ((H \oplus p^3G)/p^3G).
\]

Since \(\alpha \) is limit ordinal it suffices to prove \(L = R \). Clearly \(L \subseteq R \). Now let \(h + p^3G \in R \). Then there exists \(h_3 \in p^3H \) such that \(h + p^3G = h_3 + p^3G \) for each \(\delta < \alpha \). This means that for each \(\delta < \alpha \) we have \(h = h_3 + g_3 \) for some \(g_3 \in p^3G \). Thus since \(\alpha < \beta \) and \(H \) is isotype, we have \(h \in p^3H \) for each \(\delta < \alpha \). Hence \(h \in \bigcup_{\delta < \alpha} p^3H \), and \(h + p^3G \in L \). This concludes the proof.
Corollary 12. — Let H and K be p^3G-high in G. Then for each ordinal α we have

$$(p^2((H \oplus p^3G)/p^3G)[p] = (p^2((K \oplus p^3G)/p^3G))[p].$$

Proof. — This follows from Lemma 6, the fact that p^2H and p^2K are p^3G-high in p^2G, and Lemma 4.

Theorem 5. — Let H and K be p^3G-high in a p-group G. Then H and K have the same Ulm invariants (as defined by Kaplansky in [5]). Moreover for all $\alpha < \beta$, the α-th Ulm invariant of H is the same as the α-th Ulm invariant of G.

Proof. — First observe that $H \cong (H \oplus p^3G)/p^3G = \bar{H}$, and similarly $K \cong \bar{K}$. We will show that \bar{H} and \bar{K} have the same Ulm invariants. From Corollary 12 we have for each ordinal α that

$$(p^2((H \oplus p^3G)/p^3G))[p] = (p^2((K \oplus p^3G)/p^3G))[p]$$

so that

$$((p^2\bar{H})[p]/(p^{2+1}\bar{H})[p] = ((p^2\bar{K})[p]/(p^{2+1}\bar{K})[p].$$

This shows that H and K have the same Ulm invariants. To prove the second part of the theorem notice that for $\alpha < \beta$ we have

$$(p^2G)[p]/(p^{2+1}G)[p] \cong (p^2H)[p] \oplus (p^2G)[p]/(p^{2+1}H)[p] \oplus (p^2G)))[p]

\cong (p^2H)[p]/(p^{2+1}H)[p].$$

The equality follows from Corollary 3 and the fact that $\alpha < \beta$. The isomorphism is the natural one.

As an easy application of Theorem 5 we have

Theorem 6. Let H and K be p^3G-high in G, and let G be a p-group. If H is countable, then $H \cong K$. Moreover if H and K are both direct sums of countable groups, then $H \cong K$.

Proof. — Clearly H and K are reduced. For the first part, $|H| = |K| = \aleph_0$ by Lemma 5. Hence by Theorem 5 and Ulm's theorem, $H \cong K$. If H and K are both direct sums of countable groups, we have by a theorem of Kolettis (see [6]) that $H \cong K$.

We conclude with a corollary to Theorem 5.

Theorem 7. — Let G be a group of type β. (G is a p-group.) Then for each ordinal $\alpha \leq \beta$, there exists an isotype subgroup H of G such that the first α Ulm invariants of G coincide with the Ulm invariants of H.

Proof. — Let H be p^xG-high in G and apply Theorem 5.
BIBLIOGRAPHY.

(Manuscrit reçu le 10 mai 1961.)

J. M. IRWIN,
New Mexico State University,
University Park, N. M. (États-Unis);

E. A. WALKER,
New Mexico State University,
University Park, N. M. (États-Unis).