James Glimm

Two cartesian products which are euclidean spaces

<http://www.numdam.org/item?id=BSMF_1960__88__131_0>
TWO CARTESIAN PRODUCTS WHICH ARE EUCLIDEAN SPACES

by

JAMES GLIMM

(Princeton) (1).

Whitehead has given an example of a three-dimensional manifold \(W \) which is not (homeomorphic to) \(E^3 \), Euclidean 3-space [3]. We prove the following theorem about \(W \), the first statement of which is due to A. Shapiro.

Theorem. — If \(W \) is the manifold described below then \(W \times E^1 \) is homeomorphic to \(E^4 \). Also \(W \times W \) is homeomorphic to \(E^3 \times W \) (which is homeomorphic to \(E^6 \)).

That \(W \) is not homeomorphic to \(E^3 \) was proved in [1], [2]. In [1] it is shown that no cube in \(W \) contains \(W_0 \) (defined below), which implies \(W \) is not \(E^3 \). The homeomorphism \(W \times E^1 \approx E^4 \) can be used to show the existence of a two element (and so compact) group of homeomorphisms of \(E^3 \) onto itself whose fixed point set is \(W \). The problem of showing that \(W \times W \) is homeomorphic to \(E^6 \) was suggested to the author by L. Zippin.

Let \(W_0, W_1, R_o, R_1 \) be solid tori with \(W_0 \) simply self-linked in the interior of \(W_1 \) (see fig. 1) and \(R_0 \) trivially imbedded in the interior of \(R_1 \). Let \(I_0 \) and \(I_1 \) be closed bounded intervals of \(E^1 \) with \(I_0 \) contained in the interior of \(I_1 \). Let \(w \) (resp. \(r \)) be a 3-cell in the interior of \(W_0 \) (resp. \(R_0 \)), let \(e \) (resp. \(f, g \)) be a homeomorphism of \(E^3 \) (resp. \(E^3, E^1 \)) onto itself with \(e(W_0) = W_1 \) (resp. \(f(R_0) = R_1, g(I_0) = I_1 \)) and \(e \mid w \) (resp. \(f \mid r \)) the identity. Let

\[
W_n = e^n(W_0), \quad R_n = f^n(R_0), \quad I_n = g^n(I_0).
\]

Let \(W = \bigcup_{n=1}^{\infty} W_n \), we suppose that

\[
E^2 = \bigcup_{n=1}^{\infty} R_n, \quad E^3 = \bigcup_{n=1}^{\infty} I_n.
\]

(1) Fellow of the National Science Foundation (U. S. A.).
Let $S = \{ h | A : A \subseteq E^3, h \text{ is a homeomorphism of } E^3 \text{ onto itself which is the identity outside a compact set } \}$; we further suppose $e \in S$, $f | R_\lambda \in S$ and $\lambda'(R_\lambda) = W_0$ for some λ' in S.

Proof. We prove both statements simultaneously. Let V_n denote I_n (resp. W_n), V denote E^3 (resp. W). For each positive integer n, we construct a homeomorphism $h_n : W_n \times V_n \rightarrow R_n \times V_n$ with the properties

1. $h_n(W_{n-1} \times V_{n-1}) = R_{n-1} \times V_{n-1}$;
2. $h_n | W_{n-2} \times V_{n-2} = h_{n-1} | W_{n-2} \times V_{n-2}$ ($n \geq 2$).

Suppose we have constructed all the h_n's. Then we define

$$\Phi : W \times V \rightarrow E^3 \times V$$

as follows. If $(x, y) \in W \times V$, then for some n, $(x, y) \in W_n \times V_n$. Let $\Phi(x, y) = h_{n+1}(x, y)$. By (2) we see that Φ is well-defined, by (1) we see that Φ is onto. Since h_n is a homeomorphism, Φ is also.

Suppose the following lemma is true. Using the lemma, we will construct the h_n.

Lemma. If we are given a homeomorphism $\beta' : w \times V_0 \rightarrow R_0 \times V_0$ (into), and if β' has the form $\lambda' | w \times I$ where λ' is a homeomorphism in S of W_0 onto R_0, then there is a homeomorphic extension β of β',

$$\beta : W_1 \times V_1 \rightarrow R_1 \times V_1, \quad \beta(W_0 \times V_0) = R_0 \times V_0,$$
and \(\beta \mid \text{Bdry}(W_1 \times V_1) = \lambda \times I \) for \(\lambda \) some homeomorphism in \(S \) of \(W_1 \) onto \(R_1 \).

Let \(\lambda' \) be a homeomorphism in \(S \) mapping \(W_0 \) onto \(R_0 \). Let \(h_1 = \beta \), the extension of \(\beta' = (\lambda' \mid w) \times I \) given by the lemma. We suppose inductively that for \(n \) a positive integer greater or equal to 2, \(h_{n-1} \) has been constructed, and \(h_{n-1} \mid \text{Bdry}(W_{n-1} \times V_{n-1}) = \gamma \times I \), for \(\gamma \) some homeomorphism in \(S \) of \(W_{n-1} \) onto \(R_{n-1} \). We note that \(h_1 \) has this property. Observe that \((\gamma^{-1} \times I) h_{n-1} \) is a homeomorphism of \(W_{n-1} \times V_{n-1} \) onto itself leaving the boundary pointwise fixed. Let \(h \) be the extension of this map to \(W_n \times V_n \) which is the identity on \(W_n \times V_n \)-Interior \((W_{n-1} \times V_{n-1})\). Let \(r' \) be a 3-cell with Interior \(R_{n-1} \supset r' \supset R_{n-2} \). Let \(w' = \gamma^{-1}(r') \). Let \(k : W_n \rightarrow W_n \) be a homeomorphism in \(S \), \(k \mid (W_n\text{-Interior } W_{n-1}) = \text{identity}, k(w') \subset w \). Let \(\bar{\beta} \) be the extension of \(\gamma k^{-1} \times I \mid w \times V_{n-1} \) to a homeomorphism of \(W_n \times V_n \) onto \(R_n \times V_n \) as given by the lemma. Let \(h_n = \bar{\beta}(k \times I) h \). We check that \(h_n \) satisfies (1) and (2),

\[
h_n(W_{n-1} \times V_{n-1}) = \bar{\beta}(W_{n-1} \times V_{n-1}) = R_{n-1} \times V_{n-1}.
\]

If \(z \in W_{n-2} \times V_{n-2} \), then \((k \times I) h(z) \in w \times V_{n-1} \) and

\[
h_n(z) = \bar{\beta}(k \times I) h(z) = (\gamma^{-1} \times I)(k \times I)(\gamma^{-1} \times I) h_{n-1}(z) = h_{n-1}(z)
\]
as asserted. Also

\[
h_n \mid \text{Bdry}(W_n \times V_n) = \bar{\beta}(k \times I) h \mid \text{Bdry}(W_n \times V_n)
\]

\[
= \lambda k \times I \mid \text{Bdry}(W_n \times V_n),
\]

where the last equality arises from the form of \(\bar{\beta} \) on \(\text{Bdry}(W_n \times V_n) \) and the fact that \((k \times I)(\text{Bdry}(W_n \times V_n)) = \text{Bdry}(W_n \times V_n) \). Thus \(h_n \) satisfies the induction hypothesis and all the \(h_n \) can be defined, if we prove the lemma.

Proof of Lemma. — Given \(\beta' = \lambda' \mid w \times I : w \times V_0 \rightarrow R_0 \times V_0 \), we can extend \(\lambda' \mid w \) to a homeomorphism in \(S \lambda \) of \(W_1 \) onto \(R_1 \). In fact let \(j \) be a homeomorphism in \(S \lambda \) of \(R_0 \) onto itself which maps \(R_0 \) onto \(R_0 \) and \(\lambda'(w) \) into \(R \). Let

\[
\lambda = j^{-1} f j \lambda' e^{-1}.
\]

Then \(\lambda \) is a homeomorphism in \(S \lambda \) of \(W_1 \) onto \(R_1 \) and \(\lambda \mid w = j^{-1} f j \lambda' \mid w = \lambda'(w) \mid w \) so \(\lambda \) is the desired extension of \(\lambda' \mid w \). It is now sufficient to construct a homeomorphism \(h \) of \(W_1 \times V_1 \) onto itself which leaves \(w \times V_1 \) pointwise fixed with \(h \mid \text{Bdry}(W_1 \times V_1) = \mu \times I \) for some \(\mu \) in \(S \lambda \) which maps \(W_1 \) onto \(W_1 \), and with \(h(W_0 \times V_0) = \lambda^{-1}(R_0) \times V_0 \). In fact \((\lambda \times I) h = \beta \) is a homeomorphism of \(W_1 \times V_1 \) onto \(R_1 \times V_1 \), \(\beta \) extends \(\beta' \), and

\[
\beta(W_0 \times V_0) = \lambda \lambda^{-1}(R_0) \times V_0 = R_0 \times V_0,
\]

\[
\beta \mid \text{Bdry}(W_1 \times V_1) = \lambda \mu \times I \mid \text{Bdry}(W_1 \times V_1).
\]
The homeomorphism h will be given as the product of four homeomorphisms A, Σ, Δ and P of $W_1 \times V_1$ onto itself. A, Σ and Δ will each leave $\text{Bdry } (W_1 \times V_1) \cup (w \times V_0)$ pointwise fixed. A will lift the dark portion of W_0, Σ will slide this lifted part away from the link, and Δ will drop the image under ΣA of the dark part of W_0 back into its original plane. We suppose W_1 is $D \times C$ where D is the square $\{ (u, v) : 0 \leq u, v \leq 20 \}$ and C is the circle $\{ \theta : 0 \leq \theta < 2\pi \}$. We suppose that

$$W_0 \subset \{ (u, v) : 0 \leq u, v \leq 10 \} \times C, \quad w \subset D \times [0 : 6 \leq \theta < 2\pi],$$

the link in $W_0 \subset D \times [0 : .5 \leq \theta < 1]$. Let $\alpha, \beta, \gamma, \delta$ be functions on C, let $\alpha, \beta, \gamma, \delta$ be functions on $[0, 20]$, defined as follows. Let

$$\alpha([0, 2]) = 1, \quad \alpha([4, 2\pi]) = 0, \quad \beta(0) = 0,$$

$$\beta([1.5, 1.4]) = 1, \quad \beta([0, 2\pi]) = 0,$$

$$\gamma([0, 1]) = 0, \quad \gamma([2, 2\pi]) = 1, \quad \delta([0, 1]) = 0,$$

$$\delta([1.5, 3]) = 1, \quad \delta([5, 2\pi]) = 0,$$

and let $\alpha, \beta, \gamma, \delta$ be linear on intervals for which they are not defined above. Let

$$\alpha(0) = 0, \quad a([9, 10]) = 1, \quad a(20) = 0,$$

$$b([0, 10]) = 0, \quad b([11, 12]) = 1, \quad b(20) = 0,$$

$$c(0) = 0, \quad c([9, 12]) = 1, \quad c(20) = 0,$$

and let $\alpha, \beta, \gamma, \delta$ be linear on intervals for which they are not defined above. Let ε be a continuous map of W_1 into $[0, 1]$ such that $\varepsilon(u, v, \theta) = \alpha(\theta)$ for (u, v, θ) in the dark part of W_0, $\varepsilon = 0$ on the rest of W_0 and on Bdry W_1. If $(u, v), (x, y) \in D$, $\theta, \psi \in C$, let

$$\Lambda(u, \theta, x, y, \psi) = (u, v, \theta, x, y + 2\varepsilon(u, v, \theta) a(x) a(y), \psi),$$

$$\Sigma(u, v, \theta, x, y, \psi) = (u, v, \theta + \beta(\theta) a(x)) \times [(1 - \gamma(\theta)) b(y) + \gamma(\theta) c(y)] a(u) a(v), x, y),$$

$$\Delta(u, v, \theta, x, y, \psi) = (u, v, \theta, x, y - 2\delta(\theta) c(y) a(x) a(u) a(v), \psi).$$

If $V_1 = I_1$, we identify I_0 with $[10] \times [9, 10] \times [0] \subset W_1$ and I_1 with $[10] \times [0, 20] \times [0] \subset W_1$. Then Λ, Σ, and Δ map $W_1 \times I_1$ onto itself and $h' = \Delta \Sigma \Lambda | W_1 \times I_1$ (resp. $h' = \Delta \Sigma \Lambda$) is a homeomorphism of $W_1 \times V_1$ onto itself which leaves $\text{Bdry } (W_1 \times V_1) \cup (w \times V_0)$ pointwise fixed. For $(x, y, \psi) \in V_0$, $\Delta \Sigma \Lambda (W_0 \times (x, y, \psi))$ is trivially imbedded in $W_1 \times (x, y, \psi)$ and the projection proj on W_1 of $\Delta \Sigma \Lambda (W_0 \times (x, y, \psi))$ is independent of x, y, ψ in V_0. To see this it is sufficient to compute $\Delta \Sigma \Lambda (u, v, \theta, x, y, \psi)$ for (u, v, θ) in W_0, $x, y \in [9, 10]$ and θ a point of non-linearity of α, β, γ or δ. Suppose we have a homeomorphism ρ' of W_1 onto W_1 which leaves $\text{Bdry } W_1 \cup w$ pointwise fixed, and with $\rho'(W_0) = I_0^{-1}(A_0)$. Define $P = \rho' \times I : W_1 \times V_1 \to W_1 \times V_1$, define $h = P h'$. Then h has the necessary properties.
Since $\lambda^{-1}(R_0)$ is trivially imbedded in W_1, it is in a 3-cell in the interior of W_1. There is a homeomorphism g' of E^3 onto itself leaving $E^3 - W_1$ pointwise fixed and such that $g'(W_0)$ and $\lambda^{-1}(R_0)$ both lie in a 3-cell u in the interior of W_1. It is evident that there is a homeomorphism in S mapping W_0 onto W_0' and so there is a homeomorphism g'' in S of E^3 onto itself mapping $g'(W_0)$ onto $\lambda^{-1}(R_0)$. We can find a 3-cell U outside of which g'' is the identity and a homeomorphism φ mapping U onto u which is the identity on $\lambda^{-1}(R_0) \cup g'(W_0')$. Define $g = \text{identity outside } u, g = \varphi g'' \varphi^{-1}$ on u. Then $h = gg'$ is a homeomorphism leaving boundary W_1 fixed and mapping W_0 onto $\lambda^{-1}(R_0)$. Since $w \subset \text{Interior } W_0', h(w) \subset \text{Interior } \lambda^{-1}(R_0)$ and since $w \subset \text{Interior } \lambda^{-1}(R_0)$ there is a homeomorphism i of E^3 onto itself leaving $E^3 - \lambda^{-1}(R_0)$ fixed and mapping $h(w)$ into w. Let U_0, u_0 be 3-cells, with $U_0 \supset W_1, \lambda^{-1}(R_0) \supset u_0, \text{Interior } u_0 \supset w$ and let φ_0 be a homeomorphism of U_0 onto u_0 leaving w pointwise fixed. Let $j = \varphi_0(ih)^{-1} \varphi_0^{-1}$ on $u_0, j = \text{identity on } W_1 - u_0$. Then $\rho' = jih$ is a homeomorphism of W_1 onto W_1,

$$\rho'(W_0') = jih \lambda^{-1}(R_0) = \lambda^{-1}(R_0),$$

$\rho' | \text{Bdry } W_1 = \text{identity}$ and $\rho' | w = \varphi_0(ih)^{-1} \varphi_0^{-1} iih | w = \varphi_0 | w = \text{identity}$. This completes the proof.

BIBLIOGRAPHIE.

(Manuscrit reçu le 30 novembre 1959.)

James Glimm,
Institute for advanced Study,
Princeton (Etats-Unis).