JAMES GLIMM

Two cartesian products which are euclidean spaces

<http://www.numdam.org/item?id=BSMF_1960__88__131_0>
TWO CARTESIAN PRODUCTS WHICH ARE EUCLIDEAN SPACES

BY

JAMES GLIMM

(Princeton) (1).

WHITEHEAD has given an example of a three-dimensional manifold W which is not (homeomorphic to) E^3, Euclidean 3-space [3]. We prove the following theorem about W, the first statement of which is due to A. SHAPIRO.

Theorem. — If W is the manifold described below then $W \times E^1$ is homeomorphic to E^4. Also $W \times W$ is homeomorphic to $E^3 \times W$ (which is homeomorphic to E^6).

That W is not homeomorphic to E^3 was proved in [1], [2]. In [1] it is shown that no cube in W contains W_0 (defined below), which implies W is not E^3. The homeomorphism $W \times E^1 \approx E^4$ can be used to show the existence of a two element (and so compact) group of homeomorphisms of E^4 onto itself whose fixed point set is W. The problem of showing that $W \times W$ is homeomorphic to E^6 was suggested to the author by L. ZIPPIN.

Let W_0, W_1, R_0, R_1 be solid tori with W_0 simply self-linked in the interior of W_1 (see fig. 1) and R_0 trivially imbedded in the interior of R_1. Let I_0 and I_1 be closed bounded intervals of E^1 with I_0 contained in the interior of I_1. Let w (resp. r) be a 3-cell in the interior of W_0 (resp. R_0), let e (resp. f, g) be a homeomorphism of E^3 (resp. E^3, E^1) onto itself with $e(W_0) = W_1$ [resp. $f(R_0) = R_1$, $g(I_0) = I_1$] and $e \mid w$ (resp. $f \mid r$) the identity. Let

\[W_n = e^n(W_0), \quad R_n = f^n(R_0), \quad I_n = g^n(I_0). \]

Let $W = \bigcup_{n=1}^{\infty} W_n$, we suppose that

\[E^3 = \bigcup_{n=1}^{\infty} R_n, \quad E^4 = \bigcup_{n=1}^{\infty} I_n. \]

(1) Fellow of the National Science Foundation (U. S. A.).
Let $S = \{ h \mid A: A \subset \mathbb{R}^3, h \text{ is a homeomorphism of } \mathbb{R}^3 \text{ onto itself which is the}
\text{identity outside a compact set } \};$ we further suppose $e \in S$, $f \subset S$ and $\lambda(R_e) = W_0$ for some λ' in S.

Proof. — We prove both statements simultaneously. Let V_n denote I_n (resp. W_n), V denote E^1 (resp. W). For each positive integer n, we construct a homeomorphism $h_n: W_n \times V_n \to R_n \times V_n$ with the properties

1. $h_n(W_{n-1} \times V_{n-1}) = R_{n-1} \times V_{n-1};$
2. $h_n|W_{n-2} \times V_{n-2} = h_{n-1}|W_{n-2} \times V_{n-2} \quad (n \geq 2).$

Suppose we have constructed all the h_n. Then we define

$$\Phi: W \times V \to \mathbb{R}^3 \times V$$

as follows. If $(x, y) \in W \times V$, then for some n, $(x, y) \in W_n \times V_n$. Let $\Phi(x, y) = h_{n+1}(x, y)$. By (2) we see that Φ is well-defined, by (1) we see that Φ is onto. Since h_n is a homeomorphism, Φ is also.

Suppose the following lemma is true. Using the lemma, we will construct the h_n.

Lemma. — If we are given a homeomorphism $\beta': \omega \times V_0 \to R_0 \times V_0$ (into), and if β' has the form $\lambda' \mid \omega \times I$ where λ' is a homeomorphism in S of W_0 onto R_0, then there is a homeomorphic extension β of β',

$$\beta: W_1 \times V_1 \to R_1 \times V_1, \quad \beta(W_0 \times V_0) = R_0 \times V_0,$$
and $\beta | \text{Bdry}(W_1 \times V_1) = \lambda \times I$ for λ some homeomorphism in S of W_1 onto R_1.

Let λ' be a homeomorphism in S mapping W_0 onto R_0. Let $h_1 = \beta$, the extension of $\beta' = (\lambda' | w) \times I$ given by the lemma. We suppose inductively that for n a positive integer greater or equal to 2, h_{n-1} has been constructed, and $h_{n-1} | \text{Bdry}(W_{n-1} \times V_{n-1}) = \gamma \times I$, for γ some homeomorphism in S of W_{n-1} onto R_{n-1}. We note that h_1 has this property. Observe that $(\gamma^{-1} \times I) h_{n-1}$ is a homeomorphism of $W_{n-1} \times V_{n-1}$ onto itself leaving the boundary pointwise fixed. Let h be the extension of this map to $W_n \times V_n$ which is the identity on $W_n \times V_n - \text{Interior}(W_{n-1} \times V_{n-1})$. Let r' be a 3-cell with Interior $R_{n-1} \supset r' \supset R_{n-2}$. Let $w' = \gamma^{-1}(r')$. Let $k : W_n \to W_n$ be a homeomorphism in S, $k | (W_n - \text{Interior } W_{n-1}) = \text{identity}$, $k(w') \subset w$. Let β be the extension of $\gamma^{-1} \times I | w \times V_{n-1}$ to a homeomorphism of $W_n \times V_n$ onto $R_n \times V_n$ as given by the lemma. Let $h_n = \beta(k \times I) h$. We check that h_n satisfies (1) and (2),

$$h_n(W_{n-1} \times V_{n-1}) = \beta(W_{n-1} \times V_{n-1}) = R_{n-1} \times V_{n-1}.$$

If $z \in W_{n-2} \times V_{n-2}$, then $(k \times I) h(z) \in w \times V_{n-1}$ and

$$h_n(z) = \beta(k \times I) h(z) = (\gamma^{-1} \times I) (k \times I) (\gamma^{-1} \times I) h_{n-1}(z) = (k \times I) h_{n-1}(z)$$

as asserted. Also

$$h_n | \text{Bdry}(W_n \times V_n) = \beta(k \times I) h | \text{Bdry}(W_n \times V_n) = (k \times I) | \text{Bdry}(W_n \times V_n),$$

where the last equality arises from the form of β on $\text{Bdry}(W_n \times V_n)$ and the fact that $(k \times I)(\text{Bdry}(W_n \times V_n)) = \text{Bdry}(W_n \times V_n)$. Thus h_n satisfies the induction hypothesis and all the h_n can be defined, if we prove the lemma.

Proof of Lemma. — Given $\beta' = \lambda' | w \times I : w \times V_0 \to R_0 \times V_0$, we can extend $\lambda' | w$ to a homeomorphism in $S \lambda$ of W_1 onto R_1. In fact let j be a homeomorphism in S of R_1 onto itself which maps R_0 onto R_0 and $\lambda'(w)$ into r. Let

$$\lambda = j^{-1} f j \lambda' e^{-1}.$$

Then λ is a homeomorphism in S of W_1 onto R_1 and $\lambda | w = j^{-1} f j \lambda' | w = \lambda' | w$ so λ is the desired extension of $\lambda' | w$. It is now sufficient to construct a homeomorphism h of $W_1 \times V_1$ onto itself which leaves $w \times V_1$ pointwise fixed with $h | \text{Bdry}(W_1 \times V_1) = \mu \times I$ for some μ in S which maps W_1 onto W_1, and with $h(W_0 \times V_0) = \lambda^{-1}(R_0) \times V_0$. In fact $(\lambda \times I) h = \beta$ is a homeomorphism of $W_1 \times V_1$ onto $R_1 \times V_1$, β extends β', and

$$\beta(W_0 \times V_0) = \mu^{-1}(R_0) \times V_0 = R_0 \times V_0,$$

$$\beta | \text{Bdry}(W_1 \times V_1) = \mu \times I | \text{Bdry}(W_1 \times V_1).$$
The homeomorphism \(h \) will be given as the product of four homeomorphism \(\Lambda, \Sigma, \Delta \) and \(P \) of \(W_1 \times V_1 \) onto itself. \(\Lambda, \Sigma, \Delta \) will each leave \(\text{Bdry} (W_1 \times V_1) \cup (w \times V_0) \) pointwise fixed. \(\Lambda \) will lift the dark portion of \(W_0 \), \(\Sigma \) will slide this lifted part away from the link, and \(\Delta \) will drop the image under \(\Sigma \Lambda \) of the dark part of \(W_0 \) back into its original plane. We suppose \(W_1 \) is \(D \times C \) where \(D \) is the square \(\{(u, v) : 0 \leq u, v \leq \pi \} \) and \(C \) is the circle \(\{ \theta : 0 \leq \theta < 2\pi \} \). We suppose that

\[
W_0 \subset \{(u, v) : 9 \leq u, v \leq 10 \} \times C, \quad w \subset D \times \{ \theta : 6 \leq \theta < 2\pi \},
\]

the link in \(W_0 \subset D \times \{ \theta : 9 \leq \theta < 1 \} \). Let \(\alpha, \beta, \gamma, \delta \) be functions on \(C \), let \(a, b, c \) be functions on \([0, 20]\), defined as follows. Let

\[
\begin{align*}
\alpha([0, 2]) &= 1, & \alpha([4, 2\pi]) &= 0, & \beta(0) &= 0,
\alpha([5, 4]) &= 1, & \beta([6, 2\pi]) &= 0, \\
\gamma([0, 1]) &= 0, & \gamma([2, 2\pi]) &= 1, & \delta([0, 1]) &= 0,
\delta([1.5, 3]) &= 1, & \delta([5, 2\pi]) &= 0,
\end{align*}
\]

and let \(\alpha, \beta, \gamma, \delta \) be linear on intervals for which they are not defined above. Let

\[
\begin{align*}
\alpha(0) &= 0, & a([9, 10]) &= 1, & a(20) &= 0, \\
b([0, 10]) &= 0, & b([11, 12]) &= 1, & b(20) &= 0, \\
c(0) &= 0, & c([9, 12]) &= 1, & c(20) &= 0,
\end{align*}
\]

and let \(\alpha, b, c \) be linear on intervals for which they are not defined above. Let \(\varepsilon \) be a continuous map of \(W_0 \) into \([0, 1]\) such that \(\varepsilon(u, v, \theta) = \alpha(\theta) \) for \((u, v, \theta)\) in the dark part of \(W_0 \), \(\varepsilon = 0 \) on the rest of \(W_0 \) and on \(\text{Bdry} W_1 \). If \((u, v), (x, y) \in D, \theta, \psi \in C \), let

\[
\begin{align*}
\Lambda(u, v, \theta, x, y, \psi) &= (u, v, \theta, x, y + \varepsilon(u, v, \theta)) a(x) a(y, \psi), \\
\Sigma(u, v, \theta, x, y, \psi) &= (u, v, \theta + \beta(\theta)) a(x) a(y, \psi) \\
x (1 - \gamma(\theta)) b(y) + \gamma(\theta) c(y)) a(u) a(v, x, y), \\
\Delta(u, v, \theta, x, y, \psi) &= (u, v, \theta, x, y + 2\delta(\theta)) c(y) a(x) a(u) a(v, \psi).
\end{align*}
\]

If \(V_i = I_i \), we identify \(I_0 \) with \([10] \times [9, 10] \times \{0\} \subset W_1 \) and \(I_1 \) with \([10] \times [0, 20] \times \{0\} \subset W_1 \). Then \(\Lambda, \Sigma, \Delta \) and \(\Lambda \) map \(W_1 \times I_1 \) onto itself and \(h' = \Delta \Sigma \Lambda \mid W_1 \times I_1 \) (resp. \(h' = \Delta \Sigma \Lambda \)) is a homeomorphism of \(W_1 \times V_1 \) onto itself which leaves \(\text{Bdry} (W_1 \times V_1) \cup (w \times V_0) \) pointwise fixed. For \((x, y, \psi) \in V_0, \Delta \Sigma \Lambda (W_0 \times (x, y, \psi)) \) is trivially imbedded in \(W_1 \times (x, y, \psi) \) and the projection \(\pi_0 \) on \(W_1 \) of \(\Delta \Sigma \Lambda (W_0 \times (x, y, \psi)) \) is independent of \(x, y, \psi \) in \(V_0 \). To see this it is sufficient to compute \(\Delta \Sigma \Lambda (u, v, \theta, x, y, \psi) \) for \((u, v, \theta) \) in \(W_0 \), \(x, y \) in \([9, 10]\) and \(\theta \) a point of non-linearity of \(\alpha, \beta, \gamma \) or \(\delta \). Suppose we have a homeomorphism \(\rho' \) of \(W_i \) onto \(W_1 \) which leaves \(\text{Bdry} W_i \cup W \) pointwise fixed, and with \(\rho'(W_0) = \pi^{-1}(R_0) \). Define \(P = \rho' \mid I : W_1 \times V_1 \to W_1 \times V_1 \), define \(h = Ph' \). Then \(h \) has the necessary properties.
Since $\lambda^{-1}(R_o)$ is trivially imbedded in W_1, it is in a 3-cell in the interior of W_1. There is a homeomorphism g' of E^3 onto itself leaving $E^3 - W_1$ pointwise fixed and such that $g'(W_o)$ and $\lambda^{-1}(R_o)$ both lie in a 3-cell u in the interior of W_1. It is evident that there is a homeomorphism in S mapping W_0 onto W'_0 and so there is a homeomorphism g'' in S of E^3 onto itself mapping $g'(W'_0)$ onto $\lambda^{-1}(R_o)$. We can find a 3-cell U outside of which g'' is the identity and a homeomorphism φ mapping U onto u which is the identity on $\lambda^{-1}(R_o) \cup g'(W'_0)$. Define $g = \text{id} \text{outside } U, g = g'' \varphi^{-1}$ on u.

Then $h = gg'$ is a homeomorphism leaving boundary W_1 fixed and mapping W_0 onto $\lambda^{-1}(R_o)$. Since $w \subset \text{Interior } W'_0, h(w) \subset \text{Interior } \lambda^{-1}(R_o)$ and since $w \subset \text{Interior } \lambda^{-1}(R_o)$ there is a homeomorphism i of E^3 onto itself leaving $E^3 - \lambda^{-1}(R_o)$ fixed and mapping $h(w)$ into w. Let U_o, u_o be 3-cells, with $U_o \supset W_1, \lambda^{-1}(R_o) \supset u_o, \text{Interior } u_o \supset w$ and let φ_o be a homeomorphism of U_o onto u_o leaving w pointwise fixed. Let $j = \varphi_o(ih)^{-1} \varphi^{-1}$ on $u_o, j = \text{id}$ on $W_1 - u_o$. Then $\rho' = jih$ is a homeomorphism of W_1 onto W_1.

$$\rho' | \text{Bdry } W_1 = \text{id} \quad \text{and} \quad \rho' | w = \varphi_o(ih)^{-1} \varphi^{-1} \varphi_0 \text{id} | w = \varphi_0 | w = \text{id}. \quad \text{This completes the proof.}$$

BIBLIOGRAPHIE.

(Manuscrit reçu le 30 novembre 1959.)

James Glimm,
Institute for advanced Study,
Princeton (États-Unis).