H.S. Allen

Duality of the spaces of linear functionals on dual vector spaces

<http://www.numdam.org/item?id=BSMF_1952__80__233_0>
DUALITY OF THE SPACES OF LINEAR FUNCTIONALS
ON DUAL VECTOR SPACES;

By H. S. ALLEN.

1. Dual linear vector spaces have been studied by Dieudonné [1] and Jacobson [2] and self-dual spaces by Rickart [3], [4]. In this paper it is established that the spaces of linear functionals on dual spaces are dual spaces and that the space of linear functionals on a self-dual space is self-dual and of the same type (symmetric or unitary), assuming that the characteristic of the field of scalars is not two.

2. Let \(E \) and \(F \) be left and right linear vector spaces over a field \(K \). Suppose there is a bilinear functional \((x, y) \) defined on \(E \times F \) to \(K \) which is non-degenerate, i.e., \((x, y) = 0 \) for all \(x \) (resp. all \(y \)) implies \(y = 0 \) (resp. \(x = 0 \)) then \(E \) and \(F \) are said to be dual spaces relative to \((x, y) \). Let \(F^* \) and \(E^* \) be the left and right \(K \)-spaces whose elements are the linear functionals on \(F \) and \(E \), the algebraic operations of addition and scalar multiplication being defined as in Bourbaki [5]. If \(x \in E \) and \(f \in E^* \) we write \(f(x) = \langle x, f \rangle \): the spaces \(E \) and \(E^* \) are dual spaces relative to \((x, f) \). If \(y \in F \) and \(g \in F^* \) we write \(g(y) = \langle g, y \rangle \): the spaces \(F^* \) and \(F \) are dual spaces relative to \((g, y) \). We prove the following theorem.

Theorem 1. — If the characteristic of \(K \neq 2 \), then \(F^* \) and \(E^* \) are dual spaces.

If \(y_1 \in F \), the functional \(f_1 \) defined on \(E \) by \(\langle x, f_1 \rangle = (x, y_1) \) belongs to \(E^* \) and the mapping \(y_1 \to f_1 \) is an isomorphic mapping of \(F \) on a subspace \(M \) of \(E^* \). We shall denote this correspondence by writing \(f_1^2 = y_1 \). Similarly \(E \) is isomorphic to a subspace \(N \) of \(F^* \) under a mapping \(x_1 \to g_1 \) where \(\langle g_1, y \rangle = (x_1, y) \) and we write \(g_1^3 = x_1 \).

There is a subspace \(Q \) of \(E^* \) which is the algebraic complement of \(M \) (i.e., \(E^* \) is the direct sum \(M + Q \)) and a subspace \(P \) of \(F^* \) which is the algebraic complement of \(N \). Suppose \(g \in F^* \) and \(f \in E^* \). Let \(g = g_1 + g_2 \) where \(g_1 \in N \), \(g_2 \in P \) and \(f = f_1 + f_2 \) where \(f_1 \in M \), \(f_2 \in Q \). If \(g_1^3 = x_1 \) and \(f_1^3 = y_1 \) we define

\[
\{g, f\} = \frac{1}{2} [\langle x_1, f_1 \rangle + \langle g_1, y_1 \rangle].
\]
It is easily proved that the functional \(\langle g, f \rangle \) is bilinear. Suppose \(f \) is fixed and \(\langle g, f \rangle = 0 \) for every \(g \). Taking \(g_2 = 0 \) we obtain
\[
\langle g, y_1 \rangle = \langle g_1, y_1 \rangle = \langle x_1, y_1 \rangle = \langle x_1, f_1 \rangle \quad \text{and} \quad 0 = \langle g_1, f \rangle = \frac{1}{2} \langle x_1, f + f_1 \rangle.
\]
This holds for every \(x_1 \in E \) and it follows that
\[
f + f_1 = 2f_1 + f = 0.
\]
Hence \(2f_1 = -f_2 \in M \cap Q \) and therefore \(f_1 = 0, f_2 = 0 \) and \(f = 0 \). Similarly \(\langle g, f \rangle = 0 \) for every \(g \) implies \(g = 0 \). It follows that \(E^* \) and \(E^* \) are dual spaces relative to \(\langle g, f \rangle \).

3. A left vector space \(E \) over a field \(K \) is said to be self-dual if there is an involution \(a \mapsto a^t \) in \(K \) and a scalar product \(\langle x, y \rangle \) defined on \(E \times E \) to \(K \) with the properties (i) \(\langle x, y \rangle \) is linear in \(x \) for every \(y \), (ii) \(\langle x, y \rangle = 0 \) for all \(y \) implies \(x = 0 \), (iii) \(\langle y, x \rangle = e \langle x, y \rangle \) where \(e = \pm 1 \) is a constant independent of \(x \) and \(y \). If every vector is isotropic, i.e. \(\langle x, x \rangle = 0 \). If there exist non-isotropic vectors in the space, the space is said to be unitary, (Rickart [3], [4]). As before \(E^* \) will denote the space of linear functionals on \(E \). We prove the following result.

Theorem 2. — If the left vector space \(E \) over a field \(K \) of characteristic \(\neq 2 \) is self-dual, then the right \(K \)-space \(E^* \) is self-dual. The space \(E^* \) is symplectic or unitary according as \(E \) is symplectic or unitary.

Let \(E_r \) be the right \(K \)-space whose elements are the elements of \(E \) with addition defined as on \(E \) and scalar multiplication defined by \(xa = a^t x (x \in E, a \in K) \). Then \(E \) and \(E_r \) are dual spaces relative to \(\langle x, y \rangle \). The space \(E_r \) is isomorphic to a subspace \(M \) of \(E^* \) : we have \(x_1 \mapsto X_1 \) where \(\langle x, X_1 \rangle = \langle x, x_1 \rangle \) and we write \(x_1 = X_1^t \). There is a subspace \(Q \) of \(E^* \) which is the algebraic complement of \(M \). Suppose \(X \) and \(Y \) in \(E^* \). Let \(X = X_1 + X_2 \), where \(X_1 \in M, X_2 \in Q \) and \(Y = Y_1 + Y_2 \), where \(Y_1 \in M, Y_2 \in Q \). Let \(X_r = x_1 \) and \(Y_r = y_1 \). We define the functional
\[
\langle [X, Y] \rangle = \frac{1}{2} \left[e \langle x_1, Y \rangle + \langle y_1, X \rangle \right]
\]
on \(E^* \times E^* \) to \(K \). It is easily verified that \([X, Y] \) is linear in \(Y \) for every fixed \(X \). Suppose \([X, Y] = 0 \) for every \(X \). Take \(X_2 = 0 \) and we obtain
\[
o = \langle [X, Y] \rangle = \frac{1}{2} \left[e \langle x_1, Y \rangle + \langle y_1, X \rangle \right]
\]
\[
= \frac{1}{2} \left[e \langle x_1, Y \rangle + \langle y_1, x_1 \rangle \right] = \frac{1}{2} e \left[\langle x_1, Y \rangle + \langle x_1, y_1 \rangle \right]
\]
\[
= \frac{1}{2} \left[e \langle x_1, Y \rangle + \langle x_1, Y \rangle \right] = \frac{1}{2} e \langle x_1, Y + Y_1 \rangle.
\]
This holds for every \(x_1 \in E \) and it follows as in theorem 1 that \(Y = 0 \). Evidently \([X, Y] = e [Y, X]^t \) and hence \(E^* \) is self-dual with respect to \([X, Y] \). If \(E \) is unitary we may suppose that \(\langle x, y \rangle \) is hermitian, i.e. \(e = 1 \) as indi-
cated by Rickart [3], [4]. There is an element $x \in E$ such that $(x, x) \neq 0$.
If $X_1 = x_1$ we have $[X_1, X_1] = (x_1, x_1)$ and E^* is unitary.
If E is symplectic the form (x, y) is skew-hermitian, i. e. $c = -1$ and K is a
field (Rickart). In this case $\alpha^t = \alpha$ for every $\alpha \in K$ and E^* is symplectic.

BIBLIOGRAPHIE.

[3] C. E. RICKART, Isomorphic groups of linear transformations II (Amer. J. Math., t. 73,
[4] C. E. RICKART, Isomorphisms of infinite dimensional analogues of the classical groups