Détermination des nombres de Bernoulli; par M. de Presle.

(Séance du 6 juin 1886.)

1. Exposé de la question. — Les nombres de Bernoulli \(B \) sont définis par la relation

\[
\frac{x}{2} \frac{e^x + 1}{e^x - 1} = B_1 \frac{x^1}{1 \cdot 2} - B_2 \frac{x^2}{1 \cdot 2 \cdot 3 \cdot 4} - \ldots - (-1)^n B_n \frac{x^n}{1 \cdot 2 \ldots (2n)} + \ldots
\]

La valeur de \(\cot x \) est

\[
\cot x = i \frac{e^{2x} + 1}{e^{2x} - 1}
\]

et, en développant le second membre à l'aide de la relation précédente,

\[
\cot x = \frac{1}{x} - B_1 \frac{2^1 x^1}{1 \cdot 2} + B_2 \frac{2^2 x^2}{1 \cdot 2 \cdot 3 \cdot 4} - \ldots - (-1)^n B_n \frac{2^n x^{2n-1}}{1 \cdot 2 \ldots (2n)} + \ldots
\]
si nous désignons par C_n le coefficient de x^{2n-1}, nous aurons

$$C_n = (-1)^n \frac{2^{2n}}{1 \cdot 2 \ldots (2n)} B_n, \quad B_n = (-1)^n \frac{1 \cdot 2 \ldots (2n)}{2^{2n}} C_n.$$

L'expression de la tangente se déduit de celle de la cotangente par la relation

$$\tan x = \cot x - 2 \cot 2x;$$

on aura donc, pour le coefficient E_n de x^{2n-1}, dans $\tan x$,

$$E_n = - (2^{2n-1}) C_n$$

et, par suite,

$$E_n = (-1)^{n+1} \frac{(2^{2n-1}) 2^{2n}}{1 \cdot 2 \ldots (2n)} B_n, \quad B_n = (-1)^{n+1} \frac{1 \cdot 2 \ldots (2n)}{(2^{2n-1}) 2^{2n}} E_n;$$

si donc nous connaissions le développement de $\tan x$, nous déduirions de la dernière égalité la valeur de B_n.

2. Développement de la tangente en série entière. — Nous allons d'abord nous proposer la détermination des dérivées successives de $\tan x$. Soit

$$\varphi(x) = a_n \cos^{-2n} x;$$

nous aurons

$$\varphi'(x) = 2na_n \cos^{-2n+1} x \sin x,$$

$$\varphi''(x) = 2n(2n+1)a_n \cos^{-2n+1} x \sin^2 x + 2na_n \cos^{-2n} x$$

ou bien

$$\varphi''(x) = 2n(2n+1)a_n \cos^{-2n+1} x - 4n^2 a_n \cos^{-2n} x.$$

La dérivée de $\tan x$ étant $\cos^{-2} x$, de la valeur de $\varphi''(x)$, on déduira les expressions successives des dérivées impaires de $\tan x$:

\begin{align*}
D_1 \tan x &= 1 \cos^{-2} x, \\
D_3 \tan x &= 1.2.3 \cos^{-4} x - 1.2.3.4. \cos^{-2} x, \\
D_5 \tan x &= 1.2.3.4.5 \cos^{-6} x - 1.2.3.4.5.2^2(1^2 + 2^2) \cos^{-4} x \\
&\quad + 1^2.4^2 \cos^{-2} x, \\
D_7 \tan x &= 1.2.3.4.5.6.7 \cos^{-8} x - 1.2.3.4.5.2^2(1^2 + 2^2 + 3^2) \cos^{-6} x \\
&\quad + 1.2.3.4^2(1^4 + 2^4 + 4^2) \cos^{-4} x - 1.2.4^2 \cos^{-2} x, \\
D_9 \tan x &= 1.2.3.4.5.6.7.8.9 \cos^{-10} x \\
&\quad - 1.2.3.4.5.6.7.2^2(1^2 + 2^2 + 3^2 + 4^2) \cos^{-8} x \\
&\quad + 1.2.3.4.5.2^4(1^4 + 2^4 + 4^4 + 1^2 2^2 + 2^2 3^2 + 3^2 4^2) \cos^{-6} x \\
&\quad - 1.2.3.2^6(1^6 + 2^6 + 4^6 + 1^2 2^4 + 2^2 3^4 + 3^2 4^2) \cos^{-4} x + 1.2.8.18 \cos^{-2} x.
\end{align*}
Désignons par $S_1^r(z^2)^r$ la somme des produits obtenus en prenant les nombres $i^2, a^2, 3^2, \ldots, q^2$ et, en formant avec eux tous les produits possibles de degré $2r$ avec répétition, nous apercevons la loi de formation suivante :

$$D_{2n+1} \text{tang} x = 1.2\ldots(2n+1) \cos^{-2(n+1)} x$$

$$-1.2\ldots(2n-1)2^2 S_1^r(z^2)^1 \cos^{-2n} x$$

$$+ 1.2\ldots(2n-3)2^4 S_1^r(z^2)^3 \cos^{-2(n-1)} x - \ldots$$

$$+ (-1)^p 1.2\ldots[2(n-p)+1]2^{2p} S_1^r(z^2)^p \cos^{-2(n-p+1)} x$$

$$+ (-1)^{p+1} 1.2\ldots[2(n-p)-1]2^{2p+1} S_1^r(z^2)^{p+1} \cos^{-2(n-p)} x \pm \ldots$$

Supposons cette loi vraie pour $D_{2n+1} \text{tang} x$, elle le sera encore pour $D_{2n+3} \text{tang} x$; en effet :

Dans $D_{2n+3} \text{tang} x$, le coefficient de $\cos^{-2(n-p+1)} x$ sera

$$(-1)^{p+1} 2(n-p)[2(n-p)+1]1.2\ldots[2(n-p)-1]2^{2(p+1)} S_1^{r-p}(z^2)^{p+1}$$

$$(-1)^{p+1} 2(n-p+1)1.2\ldots[2(n-p)+1]2^{2p} S_1^{r-p+1}(z^2)^p$$

ou bien

$$(-1)^{p+1} 1.2\ldots[2(n-p)+1]2^{2(p+1)} S_1^{r-p}(z^2)^{p+1}$$

$$+ (n-p+1)2^{2(p+1)} S_1^{r-p+1}(z^2)^p$$

ou encore

$$(-1)^{p+1} 1.2\ldots[2(n-p)+1]2^{2(p+1)} S_1^{r-p+1}(z^2)^{p+1},$$

car on a

$$S_1^r(z^2)^r = S_1^{r-1}(z^2)^r + q^2 S_1^{r-1}(z^2)^r - 1;$$

la loi est donc générale.

3. Expression des nombres de Bernoulli. — Dans l'expression de $D_{2n+1} \text{tang} x$ supposons x nul ; nous avons

$$1.2\ldots(2n+1) - 1.2\ldots(2n-1)2^2 S_1^r(z^2)^1 - \ldots$$

$$+ (-1)^{p+1} 1.2\ldots[2(n-p)-1]2^{2(p+1)} S_1^{r-p}(z^2)^{p+1}.$$

Cette expression, divisée par $1.2\ldots(2n+1)$, est le coefficient de x^{2n+1} dans le développement de $\text{tang} x$; nous avons donc

$$E_n = 1 - \frac{2^2}{2n(2n+1)} S_1^r(z^2)^1 - \ldots$$

$$+ (-1)^{p+1} \frac{2^{2(p+1)}}{2(n-p)[2(n-p)+1] \ldots (2n+1)} S_1^{r-p}(z^2)^{p+1} \pm \ldots$$

$$+ (-1)^{n} \frac{2^{2n}}{1.2\ldots(2n+1)}$$
et, par suite,

\[B_n = (-1)^{n+1} \frac{1 \cdot 2 \ldots (2n)}{(2^n - 1) 2^n} \left[1 - \frac{2^2}{2n(2n + 1)} S^n (2^2)^3 + \ldots \right. \]

\[+ (-1)^{p+1} \frac{2^{p+1}}{2(n - p)(2n + p + 1) \ldots (2n + 1)} S^{p-p}(2^2)^{p+1} \pm \ldots \]

\[+ \left. (-1)^n \frac{2^{2n}}{1 \cdot 2 \ldots (2n + 1)} \right]. \]