EDITH LIPKIN

Subset sums of sets of residues

<http://www.numdam.org/item?id=AST_1999__258__187_0>
SUBSET SUMS OF SETS OF RESIDUES

by

Edith Lipkin

Dedicated to Grisha Freiman, with respect and affection

Abstract. — The number \(m \) is called the critical number of a finite abelian group \(G \), if it is the minimal natural number with the property:
for every subset \(A \) of \(G \) with \(|A| \geq m \), \(0 \notin A \), the set of subset sums \(A^* \) of \(A \) is equal to \(G \). In this paper, we prove the conjecture of G. Diderrich about the value of the critical number of the group \(G \), in the case \(G = \mathbb{Z}_q \), for sufficiently large \(q \).

Let \(G \) be a finite Abelian group, \(A \subset G \) such that \(0 \notin A \). Let \(A = \{a_1, a_2, \ldots, a_{|A|}\} \), where \(|A| = \text{card} A \).

Let

\[A^* := \{x \mid x = a_1 \varepsilon_1 + a_2 \varepsilon_2 + \cdots + a_{|A|} \varepsilon_{|A|}, \ \varepsilon_j \in \{0, 1\}, \ 1 \leq j \leq |A|, \ \sum_{j=1}^{|A|} \varepsilon_j > 0\} \]

and

\[X := \{m \in \mathbb{N} \mid \forall A \subset G, |A| \geq m \Rightarrow A^* = G\}. \]

Since \(|G| - 1 \in X \), then \(X \neq \emptyset \) if \(|G| > 2 \). The number

\[c(G) = \min_{m \in X} m \]

was introduced by George T. Diderrich in [1] and called the critical number of the group \(G \).

In this note we study the magnitude of \(c(G) \) in the case \(G = \mathbb{Z}_q \), where \(\mathbb{Z}_q \) is a group of residue classes modulo \(q \). We set \(c(q) := c(\mathbb{Z}_q) \). A survey of the problem was given by G.T. Diderrich and H.B. Mann in [2].

In the case when \(q \) is a prime number John Olson [3] proved that

\[c(q) \leq \sqrt{4q - 3} + 1. \]

1991 Mathematics Subject Classification. — 11 P99, 05 D99.

Key words and phrases. — Subset sum, residue.

© Astérisque 258, SMF 1999
Recently J.A. Dias da Silva and Y.O. Hamidoune [4] have found the exact value of \(c(q) \) for which an estimate

\[
2q^{1/2} - 2 < c(q) < 2q^{1/2}
\]

is valid.

If \(q = p_1p_2, p_1 \geq p_2, p_1, p_2 - \text{prime numbers} \), then

\[
p_1 + p_2 - 2 \leq c(G) \leq p_1 + p_2 - 1
\]

as was proved by Diderrich [1].

It was proved in [2] that for \(q = 2\ell, \ell > 1 \)

\[
c(G) = \ell \text{ if } \ell \geq 5 \text{ or } q = 8
\]

\[
c(G) = \ell + 1 \text{ in all other cases.}
\]

Thus, to give thorough solution for \(G = \mathbb{Z}_q \) we have to find \(c(q) \) when \(q \) is a product of no less than three prime odd numbers.

G. Diderrich in [1] has formulated the following conjecture:

Let \(G \) be an Abelian group of odd order \(|G| = ph \) where \(p \) is the least prime divisor of \(|G| \) and \(h \) is a composite number. Then

\[
c(G) = p + h - 2.
\]

We prove here this conjecture for the case \(G = \mathbb{Z}_q \) for sufficiently large \(q \).

Theorem 1. — There exists a positive integer \(q_0 \) that if \(q > q_0 \) and \(q = ph, p > 2, \) where \(p \) is the least prime divisor of \(q \) and \(h \) is a composite number, we have

\[
c(q) = p + h - 2.
\]

To prove Theorem 1 we need the following results.

Lemma 1. — Let \(A = \{a_1, a_2, \ldots, a_{|A|}\} \subset N, N = \{1, 2, \ldots, \ell\}, S(A) = \sum_{i=1}^{|A|} a_i, \)

\[
A(g) = \{x \in A | x \equiv 0(\text{mod } g)\}, \quad B(A) = \frac{1}{2} \left(\sum_{i=1}^{|A|} a_i^2 \right)^{1/2}.
\]

Suppose that for some \(\varepsilon > 0 \) and \(\ell > \ell_1(\varepsilon) \) we have \(|A| \geq \ell^{2/3+\varepsilon} \) and

\[
(1) \quad |A(g)| \leq |A| - \ell^{3+\frac{\varepsilon}{2}},
\]

for every \(g \geq 2 \). Then for every \(M \) for which

\[
|M - \frac{1}{2}S(A)| \leq B(A)
\]

we have \(M \subset A^* \).

Lemma 2. — Let \(\varepsilon \) be a constant, \(0 < \varepsilon \leq 1/3 \). There exists \(\ell_0 = \ell_0(\varepsilon) \) such that for every \(\ell \geq \ell_0 \) and every set of integers \(A \subset [1, \ell] \), for which

\[
(2) \quad |A| \geq \ell^{3+\varepsilon},
\]
the set A^* contains an arithmetic progression of ℓ elements and difference d satisfying the condition

\begin{equation}
 d < \frac{2\ell}{|A|}.
\end{equation}

We cited as Lemma 1 the Proposition 1.3 on page 298 of [5].

Proof of Lemma 2. — Let us first assume that A fulfills the condition (1) in Lemma 1. Since we have

\[B(A) \geq \frac{1}{2} \sqrt{\sum_{i=1}^{|A|} i^2} > \frac{1}{2} \sqrt{\frac{|A|^3}{3}} > \frac{1}{2\sqrt{3}} \epsilon^{1+\frac{3}{2}\epsilon} \]

and every M from the interval $(\frac{1}{2} S(A) - B(A), \frac{1}{2} S(A) + B(A))$ belong to A^*, there exists an arithmetic progression in A^* of the length $2B(A) > \ell$, if $\ell > \ell_0 = \ell_1(\epsilon)$.

Now we study the case when A does not satisfy (1). We can then find an integer $g_1 \geq 2$ such that $B_1 \subset A = A_0$ and B_1 contains those elements of A_0 which are divisible by g_1 and for the set $A_1 = \{x / g_1 | x \in B_1$ and $x \equiv 0 \pmod{g_1}\}$ we have

\[|A_1| > |A_0| - \epsilon^{\frac{3}{2} + \frac{\epsilon}{2}}. \]

Suppose that this process was repeated s times and numbers g_1, g_2, \ldots, g_s were found and sets A_1, A_2, \ldots, A_s defined inductively, B_j being a subset of A_{j-1} containing those elements of A_{j-1} which are divisible by g_j and

\[A_j = \{x / g_j | x \in B_j$ and $x \equiv 0 \pmod{g_j}\} \]

so that we have

\[|A_j| > |A_{j-1}| - \ell_j^{\frac{3}{2} + \frac{\epsilon}{2}}, \quad j = 1, 2, \ldots, s. \]

From

\[|A_s| \geq |A_{s-1}| - \ell_j^{\frac{3}{2} + \frac{\epsilon}{2}} > |A| - s\ell_j^{\frac{3}{2} + \frac{\epsilon}{2}} \]

and

\[\ell_s = \left\lfloor \frac{\ell_{s-1}}{q_s} \right\rfloor \leq \frac{\ell}{2s} \]

it follows that

\begin{equation}
 |A_s| \geq \frac{1}{2} |A| \geq \frac{1}{2} \ell_j^{\frac{3}{2} + \frac{\epsilon}{2}} > \ell_s^{\frac{3}{2} + \epsilon}. \tag{4}
\end{equation}

The condition (2) of Lemma 2 for A_s is verified, for some sufficiently large s the condition (3) is fulfilled and thus A_\ast contains an interval

\[\left(\frac{1}{2} S(A_s) - B(A_s), \frac{1}{2} S(A_s) + B(A_s) \right). \]

We have, in view of (4),

\[B(A_s) \geq \frac{1}{2} \sqrt{\sum_{i=1}^{|A_s|} i^2} > \frac{1}{2} \sqrt{\frac{|A_s|^3}{3}} \]

\[\geq \frac{1}{4\sqrt{6}} \ell^{1+\frac{3}{2}\epsilon} > \ell. \tag{5} \]

\[\text{SOCIÉTÉ MATHÉMATIQUE DE FRANCE 1999} \]
We have shown that A^* contains an arithmetic progression of length ℓ and difference $d = g_1g_2 \cdots g_s$, and thus A^* has the same property.

We now prove (2). From

$$\ell_s = \left\lfloor \frac{\ell}{d} \right\rfloor, \quad \ell_s \geq |A_s| \geq \frac{1}{2}|A|$$

we have

$$\left\lfloor \frac{\ell}{d} \right\rfloor \geq \frac{1}{2}|A|$$

or

$$d \leq \frac{2\ell}{|A|}.$$

Lemma 2 is proved.

Lemma 3 (M. Chaimovich [6]). — Let $B = \{b_i\}$ be a multiset, $B \subset \mathbb{Z}_q$. Suppose that for every $s \geq 2$, s dividing q, we have

$$|B\setminus B(s)| \geq s - 1.$$

There exists $F \subset B$ for which

$$|F| \leq q - 1,$$

$$F^* = \mathbb{Z}_q.$$

Proof of Theorem 1. — Let $q = p_1p_2 \cdots p_k$, $k \geq 4$, $p = p_1 \leq p_2 \leq \cdots \leq p_k$. We have

$$p^k \leq q \Rightarrow p \leq q^{1/4}.$$

Let $A \subset \mathbb{Z}_q$ be such that $0 \not\in A$ and

$$|A| \geq \frac{q}{p} + p - 2;$$

we have to prove that $A^* = \mathbb{Z}_p$.

From (7) and (8) we get

$$|A| > \frac{q}{p} \geq q^{3/4}.$$

Let us consider some divisor d of q, and denote by A_d a multiset A viewed as a multiset of residues mod d. Let us show that for every δ dividing d the number of residues in A_d which are not divisible by δ satisfies the condition of Lemma 3.

The number of residues in \mathbb{Z}_q which are divisible by δ is equal to q/δ. Therefore the number of such residues in A (which are all different) is not larger than $q/\delta - 1$, because $0 \not\in A$.

From this reasoning and from (7) we get the estimate

$$|A_d\setminus A(\delta)| \geq |A| - \left(\frac{q}{\delta} - 1 \right) \geq$$

$$\frac{q}{p} + p - 2 - \frac{q}{\delta} + 1 = \frac{q}{p} + p - \left(\frac{q}{\delta} + \delta \right) + \delta - 1.$$

The function $x + q/x$ is decreasing on the segment $[1, \sqrt{q}]$.

ASTÉRISQUE 258
The least divisor of \(g \) is equal to \(p \), and the maximal one to \(q/p \). Therefore
\[
p \leq \delta \leq \frac{q}{p}.
\]
If \(p \leq \delta \leq \sqrt{q} \), we have
\[
\frac{q}{p} + p \geq \frac{q}{\delta} + \delta.
\]
In the case \(\sqrt{q} \leq \delta \leq \frac{q}{p} \), let \(\rho = \frac{q}{\delta} \). Then \(\delta = \frac{a}{\rho}, \sqrt{q} \leq \frac{q}{\rho} \leq \frac{q}{p} \) and \(p \leq \rho \leq \sqrt{q} \) and we have
\[
\frac{q}{p} + p \geq \frac{q}{\rho} + \rho = \delta + \frac{q}{\rho}.
\]
From (11) and (12) it follows from (10) that we have
\[
|A_d \setminus A(\delta)| \geq \delta - 1.
\]
Let us apply the Lemma 3 to \(A_d \). Condition (13) is condition (6) of Lemma 3. Therefore there exists \(F_d \subset A_d \) such that \(|F_d| \leq d - 1 \) and \(F_d^* = \mathbb{Z}_d \).

Viewing \(F_d \) as a set of residues mod \(q \), let
\[
A' = \bigcup_{d/q \leq d < q^{1/3}} F_d.
\]
It is well known that the number of divisors \(d(q) = O(q^\varepsilon) \) for every \(\varepsilon > 0 \) so that
\[
|A'| < q^{1/3 + \varepsilon}
\]
for sufficiently large \(q \).

Take now \(A'' = A \setminus A' \). Take the least positive integer from each class of residues of the set \(A'' \) and denote this set by \(\tilde{A}'' \). We have \(\tilde{A}'' \subset [1, q - 1] \). We set \(\ell = q \) and see that all conditions of Lemma 1 are valid for \(\tilde{A}'' \). Thus, \((\tilde{A}'')^* \) contains an arithmetic progression \(\mathcal{L} \) with a length \(q \) and a difference \(\Delta \) such that
\[
\Delta < \frac{2q}{q^{\delta}} = 2q^{1/4}.
\]
If \((\Delta, q) = 1 \) then \((\tilde{A}'')^* = \mathbb{Z}_q \). Suppose that \(D = (\Delta, q) > 1 \). Then \(\mathcal{L} \) (and therefore \((\tilde{A}'')^* \) which contains \(\mathcal{L} \)) contains the residues of \(\mathbb{Z}_q \) which are divisible by \(D \). If \(\mathbb{Z}_D \) is a system of residues mod \(q \) representing a system of all residues mod \(D/q \), then \((\tilde{A}'')^* + \mathbb{Z}_D = \mathbb{Z}_q \). But \(F_D \subset A' \) and \(F_D^* = \mathbb{Z}_D \). Thus
\[
A^* \supset (\tilde{A}'')^* + (A')^* = \mathbb{Z}_q.
\]
Theorem 1 is proved in the case \(k \geq 4 \).

Now we have to study the case when \(q \) is a product of three primes. Let \(q = p_1 p_2 p_3 \), \(p = p_1 \leq p_2 \leq p_3 \). Suppose that for some positive \(\varepsilon \) we have \(p < p^{1/3 + \varepsilon} \). The proof may be completed in a similar way to what was done.

In the general case we can use a stronger result than Lemma 2. Namely, the formulation of Lemma 2 is valid if in (2) we replace the number 2/3 in the exponent by 1/2 (see G. Freiman [7] and A. Sárközy [8]). So, in the case of \(q \) being a product of three primes, we can use this stronger version and prove Theorem 1.
As we have seen, the version of Lemma 1 with the exponent 2/3 was sufficient in the majority of cases. It is preferable to use this version, for its proof is much simpler than the case 1/2. Secondly, in the case 2/3 estimates of error terms have been obtained explicitly by M. Chaimovich. It provides us with the possibility to get an explicit range of validity for Theorem 1.

Lemma 4. Define a function of \(\ell \) in the following manner:

\[
m_0(\ell) = \left(\frac{12}{\pi^2} \right)^{1/3} \ell^{2/3} (\log \ell + 1/6)^{1/3} \left(2 - \frac{4\gamma}{3} \right)^{1/3}
\]

where \(\gamma = \left(\frac{12}{\pi^2} \frac{\log \ell + 1/6}{\ell} \right)^{1/3} \).

Then for \(\ell > 155 \) a subset sum of each subset \(A \subset \{1, 2, \ldots, \ell\} \) with \(|A| = m > m_0(\ell) \) contains an arithmetic progression of cardinality \(\ell \).

Simplifying (15) we can take

\[
m_0(\ell) = 1.3 \ell^{2/3} (\log \ell + 1/6)^{1/3}.
\]

In the case of four or more primes in a representation of \(q \) we have to verify an inequality

\[
\ell^{3/4} > 1.3 \ell^{2/3} (\log \ell + 1/6)^{1/3}
\]

which is fulfilled for

\(\ell \geq 3000. \)

In some special cases we can give better estimates. For example, if \(p = 3 \) we have \(m > q/3 \) and instead of (16) we have

\[
\ell/3 > 1.3 \ell^{2/3} (\log \ell + 1/6)^{1/3},
\]

\(\ell > 64(\log \ell + 1/6) \)

which is valid for

\(\ell \geq 500. \)

References

E. Lipkin, School of Mathematical Sciences, Sackler Faculty of Exact Sciences, Tel Aviv University, Tel-Aviv, Israel