Mohammed E. B. Bekka
Alain Valette

Lattices in semi-simple Lie groups, and multipliers of group C^*-algebras

<http://www.numdam.org/item?id=AST_1995__232__67_0>
1 Introduction, and some history.

Let G be a locally compact group, and H be a closed subgroup. Viewing $L^1(G)$ as a two-sided ideal in the measure algebra $M(G)$, and viewing elements of $L^1(H)$ as measures on G supported inside H, we obtain an action of $L^1(H)$ on $L^1(G)$ as double centralizers. It is easy to check (see e.g. proposition 4.1 in [Rie]) that this action extends to an action of the full group C^*-algebra $C^*(H)$ as double centralizers on $C^*(G)$; this corresponds to a $*$-homomorphism $j_H : C^*(H) \to M(C^*(G))$, where $M(C^*(G))$ denotes the multiplier C^*-algebra of $C^*(G)$. We now quote from p. 209 of Rieffel's Advances paper [Rie]:

_It does not seem to be known whether this homomorphism j_H is injective. It will be injective if and only if every unitary representation of H is weakly contained in the restriction to H of some unitary representation of G [Fe2]. J.M.G. Fell has pointed out to us that the example that he gave in which this appeared to fail (p. 445 of [Fe2]) depended on the completeness of the classification of the irreducible representations of $SL_3(\mathbb{C})$ given in [GeN], and there is now some doubt that this classification is complete [Ste]._

Probably this quotation requires some word of explanation. In [Fe2], Fell studies extensions to the topological framework of Frobenius reciprocity for finite groups. Thus he introduces a list of weak Frobenius properties, the last and weakest one being (WF3):

The locally compact group G satisfies property (WF3) if, for any closed subgroup H of G, every representation σ in the dual \hat{H} is weakly contained in the restriction $\pi|_H$ of some unitary representation π of G.

Property (WF3) is indeed equivalent to the injectivity of j_H for any closed subgroup H; for completeness, we shall give a proof in Proposition 2.1 below. In §6 of [Fe2], Fell wishes to show that even (WF3) may fail, by taking $G = SL_3(\mathbb{C})$ and $H = SL_2(\mathbb{C})$; to this end he appeals to the incomplete description of \hat{G} given in [GeN]; Fell’s proof was recently corrected in Remark 1.13(i) of [BLS].

In this paper, we take for G a semi-simple Lie group with finite centre and without compact factor, and as closed subgroup a lattice Γ. In section 3, we prove:

THEOREM 1.1 Let G be a semi-simple Lie group without compact factors, with finite centre and with Kazhdan’s property (T). Let Γ be an irreducible lattice in G, and let σ be a non-trivial irreducible unitary representation of Γ of finite dimension n. Then σ
determines a direct summand of $C^*(\Gamma)$ which is contained in the kernel of $\varrho_\Gamma : C^*(\Gamma) \to M(C^*(G))$; this direct summand is isomorphic to the algebra $M_n(\mathbb{C})$ of n-by-n matrices.

If G is a non-compact simple Lie group with finite centre, then G has property (T) unless G is locally isomorphic either to $SO(n,1)$ or $SU(n,1)$ (see [HaV]). For these two families, we prove in section 4:

THEOREM 1.2 Let G be locally isomorphic either to $SO(n,1)$ or $SU(n,1)$, for some $n \geq 2$. Let Γ be a lattice in G. Denote by $\hat{\Gamma_f}$ the set of (classes of) irreducible, finite-dimensional unitary representations of Γ. If the trivial representation 1_Γ is not isolated in $\hat{\Gamma_f}$ (for the induced Fell-Jacobson topology), then infinitely many elements of $\hat{\Gamma_f}$ are not weakly contained in the restriction to Γ of any unitary representation of G. In particular $\varrho_\Gamma : C^*(\Gamma) \to M(C^*(G))$ is not injective.

In view of Theorems 1.1 and 1.2, it seems natural to formulate the following

Conjecture. If Γ is a lattice in a non-compact semi-simple Lie group G, then $\varrho_\Gamma : C^*(\Gamma) \to M(C^*(G))$ is not injective.

This conjecture means that, if ρ is a representation of G which is faithful on $M(C^*(G))$ (e.g. take for ρ either the universal representation of G, or the direct sum of all its irreducible representations), then $\rho|_\Gamma$ is never faithful on $C^*(\Gamma)$; this has bearing on a question of de la Harpe in his paper in these Proceedings (see immediately after Problem 13 in [Har]). In §5, we give examples of lattices Γ in $SO(n,1)$ or $SU(n,1)$ such that 1_Γ is not isolated in $\hat{\Gamma_f}$; this is the case for any lattice in $SL_2(\mathbb{R})$, any non-uniform lattice in $SL_2(\mathbb{C})$, and any arithmetic lattice in $SO_o(n,1)$ for $n \neq 3, 7$.

In the final §6, we come back to property (WF3) and show that it always fails for almost connected, non-amenable groups:

THEOREM 1.3 Let G be an almost connected, locally compact group. The following properties are equivalent:

(i) G has Fell’s property (WF3);

(ii) G is amenable.

Observe that Theorem 1.3 cannot hold for any locally compact group. Indeed, any discrete group G satisfies property (WF3) since, given a subgroup H of G, one checks easily that $C^*(H)$ is a C^*-subalgebra of $C^*(G) = M(C^*(G))$.

We thank M. Boileau, M. Burger, B. Colbois, T. Fack, F. Paulin and G. Skandalis for useful conversations and correspondence. P-A Cherix has nicely done the final TeXification and proofreading.

A word about terminology: as usual, semi-simple Lie groups are assumed to be connected and non-trivial; group representations are assumed to be unitary, strongly continuous, and on non-zero Hilbert spaces.
2 On multipliers of C^*-algebras.

For a C^*-algebra B, we denote by $M(B)$ its multiplier algebra.

Proposition 2.1 Let A, B be C^*-algebras, and let $j : A \to M(B)$ be a $*$-homomorphism. The following properties are equivalent:

(i) j is one-to-one;
(ii) for any $a \in A$, there exists a non-degenerate $*$-representation π of B such that σ is weakly contained in $\tilde{\pi} \circ j$, where $\tilde{\pi}$ denotes the extension of π to $M(B)$;
(iii) any $\sigma \in \hat{A}$ is weakly contained in $\{\tilde{\pi} \circ j | \pi \in \hat{B}\}$.

Fell's property (WF3), mentioned in §1, is deduced from property (ii) above by taking $B = C^*(G)$ and $A = C^*(H)$, for any closed subgroup H of the locally compact group G.

Proof of Proposition 2.1. (i) \Rightarrow (ii) Let us assume that j is injective, so that we may identify A with a C^*-subalgebra of $M(B)$. Let π be a faithful representation of B. It is known that the extension $\tilde{\pi}$ of π to $M(B)$ is also faithful ([Ped], 3.12.5). Thus any representation of A is weakly contained in the restriction of $\tilde{\pi}$ to A.

(ii) \Rightarrow (iii) This follows from decomposition theory.

(iii) \Rightarrow (i) Assume that (iii) holds. Fix a non-zero element x of A; choose $\sigma \in \hat{A}$ such that $\sigma(x) \neq 0$. Our assumption says that $\ker \sigma$ contains $\bigcap_{\pi \in \hat{B}} \ker \tilde{\pi} \circ j = \ker(\bigoplus_{\pi \in \hat{B}} \tilde{\pi} \circ j)$; in particular $x \not\in \ker(\bigoplus_{\pi \in \hat{B}} \tilde{\pi} \circ j)$. It follows that $j(x) \neq 0$, i.e. that j is one-to-one.

3 Proof of theorem 1.1

We slightly generalize Theorem 1.1 in the following form:

Theorem 3.1 Let G be a non-compact semi-simple Lie group with finite centre and with Kazhdan's property (T). Let Γ be an irreducible lattice in G, and let σ be an irreducible representation of Γ of finite dimension n, which is not contained in the restriction to Γ of a unitary, finite-dimensional representation of G. Then σ determines a direct summand of $C^*(\Gamma)$ isomorphic to the algebra $M_n(\mathbb{C})$ of n-by-n matrices, which moreover is contained in the kernel of $j_{\Gamma} : C^*(\Gamma) \to M(C^*(G))$.

Observe that Theorem 1.1 is an immediate consequence of Theorem 3.1: indeed, if G has no compact factor, then any unitary, finite-dimensional representation of G is trivial.

Proof of Theorem 3.1. Since G has property (T), so has Γ ([HaV], Théorème 4 in Chapter 3). Let σ be an irreducible representation of Γ, of finite dimension n. By Theorem 2.1 in [Wan], σ is isolated in the dual $\hat{\Gamma}$, hence determines a direct sum decomposition of $C^*(\Gamma)$:

$$C^*(\Gamma) = J \oplus M_n(\mathbb{C})$$

where J is the C^*-kernel of σ.
We assume from now on that \(\sigma \) is not contained in the restriction to \(\Gamma \) of a unitary, finite-dimensional representation of \(G \), and wish to prove that the direct summand \(M_n(\mathbb{C}) \) lies in the kernel of \(j_\Gamma : C^*(\Gamma) \to M(C^*(G)) \). Suppose by contradiction that \(j_\Gamma \) is non-zero on \(M_n(\mathbb{C}) \). Choose \(\pi \in \hat{G} \) such that \(\tilde{\pi} \circ j_\Gamma \) is non-zero, hence faithful on \(M_n(\mathbb{C}) \) (here \(\tilde{\pi} \) denotes the extension of \(\pi \) to \(M(C^*(G)) \), as in Proposition 2.1). Then the \(C^* \)-kernel of \(\tilde{\pi} \circ j_\Gamma \) is contained in \(J \), which means that \(\sigma \) is weakly contained in the restriction \(\pi|_{\Gamma} \). As \(\sigma \) is isolated in \(\hat{\Gamma} \), this implies that \(\sigma \) is actually a subrepresentation of \(\pi|_{\Gamma} \) (see Corollary 1.9 in [Wan]). Our assumption shows that \(\pi \) is infinite-dimensional.

Two cases may occur:

(a) \(\pi \) is a discrete series representation of \(G \) (if any); this would imply that \(\sigma \) is an irreducible subrepresentation of the left regular representation of \(\Gamma \), which in turn implies that \(\Gamma \) is finite - and this is absurd.

(b) \(\pi \) is not in the discrete series of \(G \); then, by a result of Cowling and Steger (Proposition 2.4 in [CoS]), the restriction \(\pi|_\Gamma \) is irreducible, which contradicts the fact that \(\sigma \) is a finite-dimensional subrepresentation.

With a contradiction reached in both cases, the proof of Theorem 3.1 is complete.

We thank G. Skandalis for a helpful conversation that led to a more explicit version of Theorem 3.1.

Remark. Let us show that there are countably many finite-dimensional elements \(\sigma \in \hat{\Gamma} \) satisfying the assumptions of Theorem 3.1.

Thus, let \(G/Z(G) \) be the adjoint group of \(G \); this is a linear group. Denote by \(\Gamma_1 \) the image of \(\Gamma \) in \(G/Z(G) \); as a finitely generated linear group, \(\Gamma_1 \) is residually finite (see [Mal]); a non-trivial irreducible representation \(\sigma \) of \(\Gamma \) that factors through a finite quotient of \(\Gamma_1 \) cannot be contained in the restriction to \(\Gamma \) of a finite-dimensional unitary representation of \(G \).

This argument shows that \(\text{Ker}[j_\Gamma : C^*(\Gamma) \to M(C^*(G))] \) contains the \(C^* \)-direct sum of countably many matrix algebras.

4 The cases \(SO_o(n, 1) \) and \(SU(n, 1) \).

We begin with the following result, which is certainly known to many experts (see [Moo], Proposition 3.6; compare also with [Mar], Chap. III, (1.12), Remark 1).

Proposition 4.1 Let \(G \) be a simple Lie group with finite centre, and let \(\Gamma \) be a lattice in \(G \). Denote by \(\gamma \) the quasi-regular representation of \(G \) on \(L^2(G/\Gamma) \), and by \(\gamma_0 \) the restriction of \(\gamma \) to \(L^2_0(G/\Gamma) = \{ f \in L^2(G/\Gamma) | <f|1> = 0 \} \).

(a) There exists \(N \in \mathbb{N} \) such that the \(N \)-fold tensor product \(\gamma_0^\otimes N \) is weakly contained in the left regular representation \(\lambda_G \) of \(G \).

(b) The trivial representation \(1_G \) is not weakly contained in \(\gamma_0 \).

Proof. (a) Suppose first that \(G \) has Kazhdan's property (T). Then, by Theorems 2.4.2 and 2.5.3 in [Cow], there exists \(N \in \mathbb{N} \) such that \(\pi^\otimes N \) is weakly contained in
Suppose now that G is locally isomorphic either to $SO_0(n,1)$ or to $SU(n,1)$. Let K be a maximal compact subgroup of G. Let $\hat{G}_1 = \{ \pi \in \hat{G} | \pi|_K \text{ contains } 1_K \}$ be the set of all spherical representations of G. Observe that \hat{G}_1 is open in \hat{G} (because $\pi \in \hat{G}_1$ if and only if there exists $\xi \in H_\pi$ such that $\int_K \langle \pi(k)\xi, \xi \rangle dk \neq 0$). For a unitary representation σ of G, set $\text{Supp} \sigma = \{ \pi \in \hat{G} | \pi \text{ is weakly contained in } \sigma \}$. By Proposition 3.6 in [Moo], the existence of $N \in \mathbb{N}$ such that σ^{2N} is weakly contained in λ_G is equivalent to $1_G \notin \text{Supp} \sigma \cap \hat{G}_1$ (the proof of this uses the explicit description of the unitary duals of $SO_0(n,1)$ and $SU(n,1)$). So we must prove that 1_G is not in $\text{Supp} \gamma_0 \cap \hat{G}_1$ or, equivalently, that 1_G is isolated in $\text{Supp} \gamma \cap \hat{G}_1$.

Recall the standard parametrization of \hat{G}_1. Let ρ be half the sum of the positive roots associated with a maximal split torus of G. Then \hat{G}_1 identifies (topologically) with $i\mathbb{R}_+ \cup [0,\rho]$, the representations π_s with $s \in i\mathbb{R}_+$ being the spherical principal series representations, those π_s with $s \in [0,\rho]$ being the spherical complementary series representations, and π_0 being the trivial representation 1_G.

Let X be the Riemannian symmetric space associated with G. The Laplace-Beltrami operator Δ on X is invariant for the left action of G, so it descends to a positive, unbounded operator on $L^2(G \backslash X)$. It is well-known that π_s is weakly contained in γ if and only if $\rho^2 - s^2$ belongs to the spectrum of Δ on $L^2(G \backslash X)$ (see §4 of Chap. 1 in [GGP] for $G = SL_2(\mathbb{R})$ and Γ uniform, or Theorem 1.7.10 in [GaV] for the general case; note that this Theorem is stated there for the quasi-regular representation of G on $L^2(X)$, but the proof extends word for word to our representation γ).

Denoting by $\lambda_1(\Gamma \backslash X)$ the bottom of the spectrum of the restriction of Δ to the orthogonal of constants in $L^2(\Gamma \backslash X)$, we see that our result follows from $\lambda_1(\Gamma \backslash X) > 0$. In turn, this is a consequence of the facts that the continuous spectrum of Δ on $L^2(G \backslash X)$ is the half-line $[\rho^2,\infty[$ (see [OsW]), and that its discrete spectrum is a sequence increasing to ∞ (see Theorem 3 in [BoG]). In our case, $\lambda_1(G \backslash X) > 0$ can also be deduced from the fact that $\lambda_1(M) > 0$ for any complete Riemannian manifold M with finite volume and pinched negative sectional curvature (see [Dol]).

(b) This follows from (a) and non-amenability of G.

Proof of Theorem 1.2

We shall use several times Fell’s inner hull-kernel topology, which is defined on sets of unitary (not necessarily irreducible) representations of a locally compact group (cf. [Fel], section 2): a net $(\pi_i)_i \in I$ of representations converges to a representation π if and only if π is weakly contained in $\{ \pi_j | j \in J \}$ for each subnet $(\pi_j)_j \in J$ of $(\pi_i)_{i \in I}$.

Assume that G and Γ satisfy the assumptions of Theorem 1.2. We are going to show that Fell’s property (WF3) fails for the pair (G,Γ); i.e., we shall produce some $\sigma \in \hat{\Gamma}$ such that σ is not weakly contained in the set $\{ \pi_{1_\Gamma} | \pi \in \hat{G} \}$.

Since 1_Γ is not isolated in $\hat{\Gamma}$, there exists a sequence $(\sigma_n)_n \in \mathbb{N}$ in $\hat{\Gamma} - \{1_\Gamma\}$ that converges to 1_Γ.

1st step: There exists a sequence of integers $n_1 < n_2 < ...$, and spherical complementary series representations π_{n_k} of G such that π_{n_k} is weakly contained in $\text{Ind}_{1_\Gamma}^\hat{G} \sigma_{n_k}$ for any k, and $\lim_{k \to \infty} \pi_{n_k} = 1_G$.
Indeed, by continuity of induction ([Fel], Theorem 4.1),

\[\lim_{n \to \infty} \text{Ind}^G_n \sigma_n = \text{Ind}^G_1 \eta = \gamma. \]

Since \(1_G \) is a subrepresentation of \(\gamma \), we also have

\[\lim_{n \to \infty} \text{Ind}^G_n \sigma_n = 1_G. \]

This implies that there exists integers \(n_1 < n_2 < \ldots \), and irreducible representations \(\pi_{nk} \) of \(G \) such that \(\pi_{nk} \) is weakly contained in \(\text{Ind}^G_n \sigma_{nk} \) for any \(k \), and such that \(\lim_{k \to \infty} \pi_{nk} = 1_G \) (cf. proof of Lemme 2, §1, in [Bur]). Since the spherical dual \(\hat{G}_1 \) is open in \(\hat{G} \), and since \(G \) is not amenable, we can clearly assume that \(\pi_{nk} \) is either \(1_G \), or a spherical complementary series representation. To exclude the case \(\pi_{nk} = 1_G \), we are going to show that \(1_G \) is not weakly contained in \(\text{Ind}^G_n \sigma_{nk} \); this can be viewed as a form of Frobenius reciprocity.

Indeed, since \(\sigma_{nk} \) is finite-dimensional, \(\sigma_{nk} \) does not contain \(1_G \) weakly. Moreover, we know by Proposition 4.1(b) that \(1_G \) is isolated in \(\text{Supp} \gamma \). Hence, by a result of Margulis ([Mar], Chap. III, (1.11)(b)), \(1_G \) is not weakly contained in \(\text{Ind}^G_n \sigma_{nk} \). This proves the 1st step.

Let \(\pi_{nk} \in \hat{G} \) be a sequence as above. By Proposition 4.1(a), there exists \(N \in \mathbb{N} \) such that \(\gamma_0^{\otimes N} \) is weakly contained in \(\lambda_G \). Since \(\lim_{k \to \infty} \pi_{nk} = 1_G \), we see that \(\pi_{ni}^{\otimes N} \) is not weakly contained in \(\lambda_G \) for \(l \in \mathbb{N} \) big enough. Fix such an \(l \), and set \(\sigma = \sigma_{ni} \) and \(\pi = \pi_{ni} \).

2nd step: \(\sigma \) is not weakly contained in \(\{ \rho \mid \rho \in \hat{G} \} \). Indeed, assume by contradiction that there exists a sequence \(\rho_n \in \hat{G} \) with \(\lim_{n \to \infty} \rho_n | r = \sigma \).

Then

\[\lim_{n \to \infty} \text{Ind}^G_n \sigma_n | r = \text{Ind}^G_1 \sigma. \]

Hence, since \(\pi \) is weakly contained in \(\text{Ind}^G_1 \sigma \):

\[\lim_{n \to \infty} \text{Ind}^G_n (\sigma_n | r) = \pi. \]

But

\[\text{Ind}^G_n (\sigma_n | r) = \rho_n \otimes \text{Ind}^G_n 1_G = \rho_n \oplus (\rho_n \otimes \gamma_0). \]

Since \(\pi \) is irreducible, this implies (upon passing to a subsequence) that either \(\lim_{n \to \infty} \rho_n \otimes \gamma_0 = \pi \) or \(\lim_{n \to \infty} \rho_n = \pi \).

We first exclude the case \(\lim_{n \to \infty} \rho_n \otimes \gamma_0 = \pi \). Indeed, \((\rho_n \otimes \gamma_0)^{\otimes N} = \rho_n^{\otimes N} \otimes \gamma_0^{\otimes N} \) is weakly contained in \(\lambda_G \). Hence, \(\lim_{n \to \infty} \rho_n \otimes \gamma_0 = \pi \) would imply that \(\pi^{\otimes N} = \lim_{n \to \infty} (\rho_n \otimes \gamma_0)^{\otimes N} \) is weakly contained in \(\lambda_G \); this would contradict our choice of \(\pi \).

It remains to exclude the case \(\lim_{n \to \infty} \rho_n = \pi \). Since the set \(\hat{G}_1^c = \{ \pi_s | s \in]0, r[\} \) of all spherical complementary series representations is open in \(\hat{G} \) and since \(\pi \in \hat{G}_1^c \), we can clearly assume that \(\rho_n \in \hat{G}_1^c \) for all \(n \). Then, there exists \(s_o \in]0, r[\) such that, for all \(n \):

\[\rho_n \in \{ \pi_s : 0 < s < s_o \}. \]

Therefore, there exists \(M \in \mathbb{N} \) such that \(\rho_n^{\otimes M} \) is weakly contained in \(\lambda_G \), for all \(n \in \mathbb{N} \). Hence

\[\sigma^{\otimes M} = \lim_{n \to \infty} (\rho_n^{\otimes M}) | r. \]

72
is weakly contained in λ_Γ. Since σ^{BM} is finite-dimensional, this contradicts non-amenability of G. This concludes the proof of Theorem 1.2.

Remark: In our previous paper [BeV], Theorem 1.2 was already proved for $G = PSL_2(\mathbb{R})$ and Γ the fundamental group of a closed Riemann surface of genus 2.

5 Some examples of lattices in $SO_0(n, 1)$ and $SU(n, 1)$.

Let Γ be a lattice in a simple Lie group locally isomorphic either to $SO_0(n, 1)$ or $SU(n, 1)$. Let us denote by Γ_{f_q} the set of elements of $\hat{\Gamma}$ that factor through some finite quotient of Γ.

DEFINITION 5.1 We say that Γ satisfies property (*) if the trivial representation 1_Γ is not isolated in $\hat{\Gamma}_{f_q}$, for the induced Fell-Jacobson topology.

Our property (*) is precisely the negation of property $(T; R(\mathbb{Z}))$ in the notation of Lubotzky-Zimmer [LZ], where a lucid discussion of this property appears on pp. 291-292. Since $\hat{\Gamma}_{f_0}$ is a subset of $\hat{\Gamma}_{f}$, it is clear that, if Γ satisfies (*), then 1_Γ is not isolated in $\hat{\Gamma}_f$; note the question at the bottom of p. 291 of [LZ] whether or not the converse implication holds.

The purpose of this section is to give examples of lattices with property (*), i.e. for which Theorem 1.2 is true. We begin with a sufficient condition for property (*).

PROPOSITION 5.2 If Γ has a finite index subgroup Γ_\circ that maps homomorphically onto \mathbb{Z}, then Γ has property (*).

Proof. Let $(\chi_m)_{m \in \mathbb{N}}$ be a sequence of non-trivial characters of finite order of \mathbb{Z}, viewed as characters of Γ_\circ, that converges to the trivial character. Set:

$$\pi_m = Ind_{\Gamma_\circ}^{\Gamma} \chi_m.$$

Claim: π_m factors through some finite quotient of Γ. Indeed, since χ_m has finite order, the subgroup $Ker \chi_m$ of Γ_\circ has finite index in Γ, so there exists a normal subgroup N_m of Γ, of finite index and contained in $Ker \chi_m$. Then π_m factors through the finite group Γ/N_m, which establishes the claim.

The rest of the proof is similar in spirit to the first step of the proof of Theorem 1.2, but considerably easier: by continuity of induction, the sequence $(\pi_m)_{m \in \mathbb{N}}$ converges to the quasi-regular representation λ_\circ of Γ on $L^2(\Gamma/\Gamma_\circ)$. Since λ_\circ contains the trivial representation 1_Γ, we may select for any $m \in \mathbb{N}$ an irreducible component σ_m of π_m in such a way that the sequence $(\sigma_m)_{m \in \mathbb{N}}$ converges to 1_Γ in $\hat{\Gamma}$. By the claim, each σ_m lies in $\hat{\Gamma}_{f_q}$; finally, no σ_m may be trivial, by Frobenius reciprocity. This shows that 1_Γ is not isolated in $\hat{\Gamma}_{f_q}$.

Because Γ is finitely generated, the condition that Γ_\circ maps homomorphically onto \mathbb{Z} is equivalent to the non-vanishing of the first cohomology $H^1(\Gamma_\circ, \mathbb{C})$. This is known to have deep representation-theoretic consequences, as it gives information on the decomposition of $L^2(G/\Gamma_\circ)$ into irreducibles (see the whole of Chapter VII in [BoW], and
M.E.B. BEKKA, A. VALETTE

especially Propositions 4.9 and 4.11). There is a conjecture, sometimes attributed to Thurston (see e.g. [Bor], 2.8), according to which any uniform lattice Γ in $SO_0(n,1)$ ($n \geq 2$) admits a finite index subgroup Γ_0 such that $H^1(\Gamma_0, \mathbb{C}) \neq 0$. Next proposition summarizes what we know about this problem, both in the uniform and non-uniform cases.

Proposition 5.3 The following lattices Γ in $SO_0(n,1)$ admit a finite index subgroup Γ_0 such that $H^1(\Gamma_0, \mathbb{C}) \neq 0$, and hence satisfy property (*):

(i) any lattice in $PSL_2(\mathbb{R}) \simeq SO_0(2,1)$;
(ii) any non-uniform lattice in $PSL_2(\mathbb{C}) \simeq SO_0(3,1)$;
(iii) any uniform lattice Γ in $PSL_2(\mathbb{C})$ such that, for some x in the 3-dimensional real hyperbolic space $H_3(\mathbb{R})$, the orbit $\Gamma.x$ is invariant under some orientation-reversing involutive isometry of $H_3(\mathbb{R})$;
(iv) any arithmetic lattice, provided $n \neq 3, 7$; any non-uniform arithmetic lattice, without restriction on n.

Proof. The proof is compilation; however, it makes constant use of Selberg’s lemma asserting that any lattice has a torsion-free subgroup of finite index.

(i) A torsion-free lattice in $PSL_2(\mathbb{R})$ is either a surface group (in the uniform case) or a non-abelian free group (in the non-uniform case); in any case, it surjects onto \mathbb{Z}.

(ii) Any torsion-free non-uniform lattice in $PSL_2(\mathbb{C})$ surjects onto \mathbb{Z}, by Propositions 5.1 and 3.1 in [Lub].

(iii) See Theorem 3.3 and Corollary 3.4 in [Hem]. Explicit examples of such lattices are given in §4 of [Hem].

(iv) The first statement is the main result of [LiM]. For the second one, combine the main result in [Mil] with the remarks on p. 365 of [LiM].

Concerning uniform lattices in $PSL_2(\mathbb{C})$, it seems appropriate to mention here the connection with a somewhat (in)famous question which is for sure due to Thurston (question 18 in [Thu]): does any complete, finite-volume, hyperbolic 3-manifold have a finite-sheeted cover that fibers over the circle S^1? An affirmative answer would imply that any lattice Γ in $PSL_2(\mathbb{C})$ satisfies property (*) (indeed, let Γ_1 be a torsion-free subgroup of finite index in Γ; then Γ_1 is the fundamental group, $\pi_1(M)$, of a complete finite-volume hyperbolic 3-manifold M; if N is a finite-sheeted cover of M which fibers over S^1, then $\Gamma_0 = \pi_1(N)$ is a finite-index subgroup of Γ_1 that maps onto $\pi_1(S^1) = \mathbb{Z})$. For an example of a compact hyperbolic 3-manifold that does not fiber over S^1 but with a finite-sheeted cover that does, see example 2.1 in [Gab].

\[1\] Clearly, for a 3-dimensional closed hyperbolic manifold M, fibering over S^1 is a much stronger condition than having non-zero first Betti number. Algebraically, this can be seen by Stallings’ fibration theorem [Sta]: if N is a normal subgroup of $\pi_1(M)$ such that $\pi_1(M)/N = \mathbb{Z}$, then N comes from a fibration of M over S^1 if and only if N is a finitely generated subgroup. Also, surface groups in $\pi_1(M)$ that come from some finite-sheeted cover of M fibering over S^1 (so-called virtual fibre groups) have been characterized algebraically in Corollary 1 of [Som].
In contrast with Proposition 5.3, we are not aware of any "large" class of lattices in \(SU(n,1) \) that satisfies property (*). Essentially the only result we know is that, for any \(n \geq 2 \), there exists a uniform arithmetic lattice \(\Gamma \) in \(SU(n,1) \) such that \(H^1(\Gamma, \mathbb{C}) \neq 0 \) (see Theorem 1 in [Kaz], or Theorem 1.4(b) in [Li]).

To conclude, let us indicate why, for a given lattice \(\Gamma \) in \(SU(n,1) \), it is usually difficult to check that \(\Gamma \) satisfies property (*). Assume that \(\Gamma \) is arithmetic. It is then easy to construct elements of \(\hat{\Gamma} \): take a congruence subgroup \(\Gamma(p) \) and consider irreducible representations of \(\Gamma \) that factor through the finite group \(\Gamma/\Gamma(p) \) (for \(\Gamma = SL_2(\mathbb{Z}/n\mathbb{Z}) \), these are representations that factor through some \(SL_2(\mathbb{Z}/n\mathbb{Z}) \)). Denote by \(\hat{\Gamma}_{arith} \) the subset of elements in \(\hat{\Gamma} \) that factor through some \(\Gamma/\Gamma(p) \); then it follows from Selberg's inequality (see [Sel] for \(n = 2 \), and corollary 1.3 in [BuS] for \(n > 2 \)) that the trivial representation \(\tau \) is isolated in \(\hat{\Gamma}_{arith} \). Thus, if \(\Gamma \) verifies property (*), any non-stationary net in \(\hat{\Gamma} \) that converges to \(\tau \) will have to leave \(\hat{\Gamma}_{arith} \) eventually.

We have been informed by M. Burger that, in unpublished work with P. Sarnak, similar phenomena have been obtained for a large class of arithmetic lattices in \(SU(n,1) \).

6 Proof of Theorem 1.3

We begin with hereditary properties of the class of groups satisfying Fell’s property (WF3).

LEMMA 6.1 Let \(G \) be a locally compact group with property (WF3).

(a) Any closed subgroup of \(G \) has property (WF3).

(b) Let \(K \) be a compact normal subgroup of \(G \); then \(G/K \) has property (WF3).

Proof. (a) is obvious. To see (b), denote by \(p : G \to G/K \) the quotient map. Let \(L \) be a closed subgroup of \(G/K \); fix \(\tau \in \hat{L} \). Set \(H = p^{-1}(L) \) and \(\sigma = \tau \circ (p|_H) \). Let \(\pi \) be a representation of \(G \) on a Hilbert space \(\mathcal{H} \) such that \(\pi|_H \) weakly contains \(\sigma \). Let \(\mathcal{H}^K \) be the space of \(K \)-fixed vectors in \(\mathcal{H} \). Since \(K \) is a normal subgroup, \(\mathcal{H}^K \) is an invariant subspace of \(\pi \), and we denote by \(\pi_o \) the restriction of \(\pi \) to \(\mathcal{H}^K \). Since \(K \) is compact and \(\sigma \) is irreducible, it is easy to see that \(\pi_o \) is weakly contained in \(\pi_o|_H \). But \(\pi_o|_H \) can be viewed as a representation of \(L = H/K \), that weakly contains \(\tau \).

Next lemma is probably well-known.

LEMMA 6.2 Let \(G \) be a Lie group, and let \(S \) be a semisimple analytic subgroup. The closure \(\bar{S} \) of \(S \) is reductive.

Proof. We begin with a

Claim: Let \(h \) be a finite-dimensional Lie algebra, and let \(s \) be a semisimple ideal; then there exists an ideal \(j \) of \(h \) such that \(h = s \oplus j \). Indeed, let \(\text{Der}(s) \) be the Lie algebra of derivations of \(s \). Since \(s \) is an ideal in \(h \), we have a Lie algebra homomorphism:

\[
\alpha : h \to \text{Der}(s) : X \to ad(X)|_s
\]
the kernel of which is precisely the centralizer of s in h; set $j = \text{Ker} \alpha$. Since s is semisimple, $\text{Der}(s)$ is canonically isomorphic to s, so that α is onto and $h = s \oplus j$; this establishes the claim.

To prove Lemma 6.2, denote by s and h the Lie algebras of S and \tilde{S} respectively. Clearly $\text{Ad}(x)(s) = s$ for any x in S, so by density the same is true for any x in \tilde{S}. This shows that s is an ideal in h. By the claim, there exists an ideal j of h such that $h = s \oplus j$. To see that h is reductive, it is enough to prove that j is central in h. But, for $X \in j$, we have $\text{Ad}(x)(X) = X$ for any x in S; again by density, this remains true for any x in \tilde{S}; so X is central in h.

Proof of Theorem 1.3 It is easy to see that any amenable group G satisfies property (WF3); indeed, for a closed subgroup H of G, by amenability of H any representation of H is weakly contained in the left regular representation of H, which is itself contained in the restriction to H of the left regular representation of G; see also Corollary 1.5 in [BLS] for another proof.

Let us now prove the converse, namely that any almost connected locally compact group G with property (WF3) is amenable. In this proof, the stability of amenability under short exact sequences will be used constantly.

1st step: reduction to the connected case. Let G_0 be the connected component of the identity of G. By Lemma 6.1(a), G_0 has property (WF3). If G_0 is amenable, then so is G, since G/G_0 is compact.

2nd step: reduction to the Lie group case. Let G be a connected group with property (WF3). By the structure theory for connected groups, G admits a compact normal subgroup K such that G/K is a Lie group. By Lemma 6.1(b), G/K has property (WF3). If G/K is amenable, then so is G, since K is compact.

3rd step: reduction to the reductive case. Let G be a connected Lie group with property (WF3). Let $G = RS$ be a Levi decomposition, with R the solvable radical and S a semisimple analytic subgroup. Then the closure \tilde{S} is reductive with property (WF3), by Lemmas 6.1(a) and 6.2. If \tilde{S} is amenable, then so is $\tilde{S}/(\tilde{S} \cap R) = G/R$, hence so is G.

Coda. Let G be a connected, reductive Lie group with property (WF3). The adjoint group $G/Z(G)$ is a semisimple Lie group without centre, so it decomposes as a direct product

$$G/Z(G) = G_1 \times \cdots \times G_n$$

of simple Lie groups without centre. To prove that G is amenable, we have to show that G_j is compact for $j = 1, \cdots, n$. So suppose by contradiction that some G_j, say G_1, is not compact. By root theory, G_1 then contains a 3-dimensional analytic subgroup L which is locally isomorphic to $SL_2(\mathbb{R})$. Because G_1 is centreless, hence linear, L is closed in G_1 (any semisimple analytic subgroup in a linear group is closed, see Theorem 2 in [Got]). By the proof of Theorem 3 in [BeV], there exists a lattice Γ in L and a representation $\tau \in \hat{\Gamma}$ such that $\tau \otimes \bar{\tau}$ is not weakly contained in the restriction to Γ of any unitary representation of L. Denote by $p : G \to G_1$ the homomorphism obtained by composing the quotient map $G \to G/Z(G)$ with the projection of $G/Z(G)$ onto G_1. Set $H = p^{-1}(\Gamma)$ and $\sigma = \tau \circ (p|_H)$. Because H is closed in G, we find by property
(WF3) a net \((\rho_i)_{i \in I}\) in \(\hat{G}\) such that

\[
\lim_i \rho_i|_H = \sigma.
\]

Then:

\[
\lim_i (\rho_i \otimes \tilde{\rho}_i)|_H = \sigma \otimes \tilde{\sigma}.
\]

But, since \(\rho_i\) is irreducible, the representation \(\rho_i \otimes \tilde{\rho}_i\) of \(G\) is trivial on \(Z(G)\), so it factors through a representation \(\pi_i\) of \(G/Z(G)\). Last formula then reads:

\[
\lim_i \pi_i|_\Gamma = \tau \otimes \tilde{\tau}
\]

and this contradicts our choice of \(G\) and \(\tau\).

References

[Har] P. de la HARPE, Operator algebras, free groups, and other groups, these Proceedings.

Mohammed E. B. Bekka
Département de Mathématiques
Université de Metz, Ile du Saulcy
F-57045, Metz, France

Alain Valette
Institut de Mathématiques
Université de Neuchâtel
Rue Emile Argand 11
CH-2007 Neuchâtel, Suisse

79