ERIC AMAR

A problem of ideals

Astérisque, tome 217 (1993), p. 9-12

<http://www.numdam.org/item?id=AST_1993__217__9_0>
Recently U. Cegrell [2] proved the following result:

Theorem. Let \mathcal{B} be the unit ball of \mathbb{C}^n and $f_1 \in A(\mathcal{B})$, $f_2 \in H^\infty(\mathcal{B})$ such that $\forall z \in \mathcal{B}$, $|f_1(z)| + |f_2(z)| \geq \delta$ then there are two functions g_1, g_2 in $H^\infty(\mathcal{B})$ such that: $f_1g_1 + f_2g_2 = 1$ in \mathcal{B}.

where, as usual, if Ω is a domain in \mathbb{C}^n, $A(\Omega)$ is the algebra of all holomorphic functions in Ω continuous up to the boundary, $A^k(\Omega)$ is the algebra of all holomorphic functions in Ω, C^k up to $\partial \Omega$ and $H^\infty(\Omega)$ is the algebra of all holomorphic and bounded functions in Ω.

This means, in this special case, that the Corona is true. He uses a nice analysis of pic functions and representing measures in the ball, of independant interest.

The aim of this note is to give a very simple proof of this theorem which is also more general.

In order to state the result, let me give the following definition:

Definition. We say that the bounded pseudo-convex domain in \mathbb{C}^n has the L^∞_q property if: for any $(0, q)$ form ω in $C^\infty(\Omega) \cap L^\infty(\Omega)$, there is a $(0, q - 1)$ form u in $C^\infty(\Omega) \cap L^\infty(\Omega)$ such that: $\bar{\partial}u = \omega$.

As usual, a $(0,0)$ form is just a function.
There are many examples of such domains: the strictly pseudo-convex ones [6], the polydiscs [8], the ellipsoids [4], [11], the domains of finite type in \(\mathbb{C}^2 \) [3], [5].

We shall prove the following:

Theorem 1. Let \(\Omega \) be a pseudo-convex bounded domain in \(\mathbb{C}^n \) verifying the \(L_1^\infty \) condition and let \(f_1 \in A(\Omega) \), \(f_2 \in H^\infty(\Omega) \) such that \(\forall z \in \Omega, |f_1(z)| + |f_2(z)| \geq \delta \) then there are two functions \(g_1, g_2 \) in \(H^\infty(\Omega) \) such that: \(f_1 g_1 + f_2 g_2 = 1 \) in \(\Omega \).

Proof:

because \(f_1 \) is continuous up to \(\partial \Omega \), it is easy to make a function \(\chi \in C^\infty(\overline{\Omega}) \) such that:

\[
\chi = \begin{cases}
1 & \text{in } \{ |f_1| > \delta/2 \} \\
0 & \text{in } \{ |f_1| < \delta/4 \}
\end{cases}
\]

Now let \(\omega := \frac{\partial \chi}{f_1 f_2} \), then \(\omega \in C^\infty(\Omega) \cap L^\infty(\Omega) \) because on the set where \(\overline{\partial} \chi \neq 0 \), \(|f_1 f_2| > \delta^2/16 \). Moreover, \(\overline{\partial} \omega = 0 \) in \(\Omega \), hence, by the \(L_1^\infty \) condition, there is a \(u \in L^\infty(\Omega) \) such that: \(\overline{\partial} u = \omega \).

Let us define

\[
g_1 := \frac{\chi}{f_1} - u f_2 \quad \text{and} \quad g_2 := \frac{1 - \chi}{f_2} + u f_1;
\]

then we get:

\[
\overline{\partial} g_1 = 0, \quad \overline{\partial} g_2 = 0
\]

hence these functions are holomorphic in \(\Omega \) and:

\[
f_1 g_1 + f_2 g_2 = 1.
\]

Moreover the \(g_i \)'s are easily seen to be bounded in \(\Omega \), hence the theorem.

Now using the Koszul’s Complex method as in [9], it is easy to prove, using exactly the same lines the:

Theorem 2. Let \(\Omega \) be a pseudo-convex bounded domain in \(\mathbb{C}^n \) verifying the \(L_q^\infty \) condition for \(q \leq p - 1 \) and let \(f_1, \ldots, f_{p-1} \in A(\Omega), f_p \in H^\infty(\Omega) \) such that \(\forall z \in \mathbb{B} \sum_{i=1}^{p} |f_i(z)| \geq \delta; \) then there are \(p \) functions \(g_1, \ldots, g_p \) in \(H^\infty(\Omega) \) such that: \(\sum_i f_i g_i = 1 \) in \(\Omega \).

Now let us define the \(C_p^k \) property for a pseudo-convex bounded domain in an analogous way:
Definition. We say that the bounded pseudo-convex domain in \mathbb{C}^n has the C^k_q property if: for any $(0, q)$ form ω in $C^k(\Omega)$, there is a $(0, q - 1)$ form u in $C^k(\Omega)$ such that: $\bar{\partial}u = \omega$.

For k finite, the domains listed above with the L^∞_q property have the C^k_q property too. For $k = \infty$ a very famous theorem by J.J. Kohn [10] says that all pseudo-convex bounded domains with smooth boundary has the C^∞_q property.

The same way has above, we can show:

Theorem 3. Let Ω be a pseudo-convex bounded domain in \mathbb{C}^n verifying the C^k_q condition for $q \leq p - 1$ and let $f_1, ..., f_p \in A^k(\Omega)$, such that $\forall z \in \Omega \sum_{i=1}^{p} |f_i(z)| \geq \delta$; then there are p functions $g_1, ..., g_p$ in $A^k(\Omega)$ such that: $\sum_i f_ig_i = 1$ in Ω.

As a classical corollary we get:

Corollary. Let Ω be a pseudo-convex bounded domain in \mathbb{C}^n verifying the C^k_q condition for $q \leq n$, then the spectrum of the algebra $A^k(\Omega)$ is $\overline{\Omega}$.

In the case $k = \infty$, M. Catlin [1] and M. Hakim and N. Sibony [7] already proved this result, the method they used is also a division method but slightly different and their method cannot give theorem 1 and 2 here.

References

 Thesis, Princeton University

 Proceedings of the International Workshop, Wuppertal 1990
 Aspects of Mathematics

[6] H. Grauert, I. Lieb: Das Ramirezsche Integral und die Lösung der Gleichung $\bar{\partial} f = \alpha$ im Bereich der beschränkten Formen.
Rice Univ. Studies 56, 26–50 (1970)

Bull. Amer. Math. Soc. 73, 943–949 (1967)

Amar Eric
Université Bordeaux I
351 Cours de la Libération
33405 Talence, France