D. W. MASSER

Note on a conjecture of Szpiro

Astérisque, tome 183 (1990), p. 19-23

<http://www.numdam.org/item?id=AST_1990__183__19_0>
1. Elliptic Curves. L. Szpiro has put forward the

Conjecture. For each $\varepsilon > 0$ there is a constant $C(\varepsilon)$ with the following property. Let E be any elliptic curve defined over the rationals with minimal discriminant D and conductor N. Then $|D| < C(\varepsilon)N^{6+\varepsilon}$.

This has a number of remarkable consequences (see for example [V] and [HS]), and so a proof would be of considerable interest. Perhaps also a disproof would have some significance. In the present note we show at least that the inequality of the conjecture cannot be much improved; in particular, it would be false in the form $|D| \leq C N^6 (\log N)^k$ for any absolute constants C and k. This research was supported in part by the National Science Foundation.

Theorem. For any $\delta > 0$ and N_0 there is an elliptic curve E defined over the rationals whose minimal discriminant D and conductor $N > N_0$ satisfy

$$|D| \geq N^6 \exp\left\{ (24-\delta)(\log N)^{1/2}(\log \log N)^{-1}\right\}.$$

The proof of this result will be reduced to number theory using the following observation. First for a non-zero rational integer n we write $S(n)$ for the square-free kernel of n; that is, the product of all distinct positive primes dividing n.

Lemma 1. Suppose a, b, c are coprime rational integers with

$$a + b + c = 0, \ a \equiv 1 \pmod{4}, \ c \equiv 0 \pmod{32}.$$

Then the equation

$$y^2 = x(x-a)(x+b)$$

defines an elliptic curve E whose minimal discriminant D and conductor N satisfy

$$|D| = 2^{-8}(abc)^2, \ N = S(abc).$$

Paco’s. In the standard notation ([S] p. 46) the equation (1) gives

$$c_4 = 16(a^2 + ab + b^2), \ \Delta = 16(abc)^2.$$
Let \(p \) be an odd prime. It is easy to verify that if \(p \) divides \(\Delta \) then \(p \) cannot divide \(c_4 \). It follows (see [S] p. 172) that the equation (1) is minimal for all \(p \neq 2 \).

This is not so for \(p = 2 \). Indeed, the change of variables

\[
x = 4x' + a, \quad y = 8y' + 4x'
\]

leads to the equation

\[
y' + x'y' = x'^3 + (a + 8B)x'^2 + 2abx',
\]

(2)

where the integers \(a \) and \(B \) are defined by

\[
a = 4a + 1, \quad c = -32B.
\]

For this new equation we have

\[
c'_4 = a^2 + ab + b^2, \quad \Delta' = 2^{-8}(abc)^2;
\]

and since \(c'_4 \) is odd, we see now that (2) is minimal for \(p = 2 \).

The formula for \(D \) follows at once. The formula for \(N \) follows from the definition ([S] p. 361). For if \(p \) does not divide \(abc \) (in particular \(p \neq 2 \)) then \(E \) has good reduction at \(p \). If \(p \) divides \(abc \) and \(p \neq 2 \) then (1) is minimal and \(p \) does not divide \(c_4 \), so \(E \) has multiplicative reduction ([S] p. 180). Finally if \(p = 2 \) then (2) is minimal, \(c'_4 \) is odd, and again \(E \) has multiplicative reduction. This completes the proof of Lemma 1.

It is clear that our Theorem is a consequence of Lemma 1 together with the following

Proposition. For any \(\delta > 0 \) and \(S_0 \) there are coprime rational integers \(a, b, c \) with

\[
a + b + c = 0, \quad a \equiv 1 \pmod{4}, \quad c \equiv 0 \pmod{32}
\]

and \(S = S(abc) \geq S_0 \) satisfying

\[
|abc| \geq S^3 \exp\left(\frac{(12-6)(\log S)^{1/2}(\log \log S)^{-1}}{20}\right).
\]

(3)
A similar result with the weaker inequality
\[\max(|a|, |b|, |c|) > S \exp\left((4-\delta)(\log S)^{1/2}(\log \log S)^{-1}\right) \]
was established recently by C. Stewart and R. Tijdeman [ST]. In the next section we shall prove our Proposition by means of a small modification in their proof.

2. Number Theory. We require a preliminary lemma. For \(y \geq 0 \) write
\[\theta(y) = \sum_{p \leq y} \log p \]
as usual, and for \(x \geq 0 \) let \(\psi_\circ(x,y) \) be the number of positive odd integers not exceeding \(x \) that are divisible only by primes not exceeding \(y \).

Lemma 2. For any \(\delta > 0 \) and all sufficiently large \(x \) we have
\[e^{-\theta(y)} \psi_\circ(x,y) \geq \exp\left((4-\delta)(\log x)^{1/2}(\log \log x)^{-1}\right) , \]
where \(y = (\log x)^{1/2} \).

Proof. Let \(\Psi(x,y) \) denote the usual number of positive integers not exceeding \(x \) that are divisible only by primes not exceeding \(y \). Good estimates when \(y = (\log x)^{1/2} \) were obtained by V. Ennola [E]; we use the version
\[\psi(x,y) = \exp\{\pi(y)\log \log x - y + O(y(\log y)^{-2})\} \]
\[\pi(y) = y(\log y)^{-1} + y(\log y)^{-2} + O(y(\log y)^{-3}) \]
is the usual prime counting function, and we deduce that
\[\Psi(x,y) = \exp\{y + 2y(\log y)^{-1} + O(y(\log y)^{-2})\} . \quad (4) \]
Clearly also
\[\psi(x,y) = \sum_{h=0}^{\infty} \psi_\circ(2^{-h}x,y) \leq H \sum_{h=0}^{H} \psi_\circ(2^{-h}x,y) \leq (H+1)\psi_\circ(x,y) \quad (5) \]
for \(H = \lfloor (\log x)/(\log 2) \rfloor \). Finally
\[\theta(y) = y + O(y(\log y)^{-2}) , \quad (6) \]
and this together with (4) and (5) leads to the inequality of Lemma 2.
Proof of Proposition. Select x large, put $y = (\log x)^{1/2}$, and let p be the least prime greater than y. Write $T = \Psi_0(x,y)$ and define the positive integer t by

$$x \leq 2^t < 2x.$$

From Lemma 2 we see that $T/pt \to \infty$ as $x \to \infty$. Define the positive integer n by

$$\frac{1}{2} T \leq 2^n pt < T,$$

and assume x is so large that $n \geq 5$. Since $T > 2^n pt$, a simple application of the Box Principle enables us to find $t+1$ odd integers x_0, \ldots, x_t, divisible only by primes not exceeding y, satisfying

$$1 \leq x_0 < x_1 < \ldots < x_t \leq x,$$

and in the same residue class modulo $2^n p$. Since $2^t > x$, we can find i with $1 \leq i \leq t$ and

$$x_i < 2x_{i-1}.$$

(7)

Let d be the highest common factor of x_i and x_{i-1}, and write

$$a = \frac{x_i}{d}, \quad b = \frac{x_{i-1}}{d}, \quad c = \frac{x_i - x_{i-1}}{d},$$

where the sign is chosen such that $a \equiv 1 \pmod{4}$. Since d is odd and $n \geq 5$, we also have $c \equiv 0 \pmod{32}$; and clearly $a + b + c = 0$. Further $p > y$ and so p does not divide x_i; thus p does not divide d. Because p divides $x_i - x_{i-1}$, it must divide c, so that

$$S = S(abc) \geq p.$$

Therefore by assuming x sufficiently large we may suppose $S \geq S_0$ as required.

It remains to check (3). Now clearly $S(ab) \leq \frac{1}{2} e^8(y)$, and since 2^n divides c we have $S(c) \leq 2^{-n} e^8(y) |c|$. Thus

$$S \leq S(ab)S(c) \leq 2^{-n} e^8(y) |c|.$$

(8)

Also $|a| \geq |c|$ and (7) gives $|b| \geq \frac{1}{2} |a| \geq \frac{1}{2} |c|$, so that

$$|abc| \geq \frac{1}{2} |c|^3 \geq \frac{1}{2} S^3 \left(2^n e^8(y)\right)^3.$$

22
Further \(p \leq 2y \) and so
\[
2^n \geq \frac{T}{(2\pi^2)} \geq \frac{T}{(4\pi t)} > \frac{(1/8)T}{\log x}^{-3/2}.
\]

Therefore
\[
|abc| \geq 2^{-10} S^3 (\log x)^{-9/2} (e^{-\theta(y)} T)^3.
\]

Hence by Lemma 2, if \(x \) is sufficiently large we have
\[
|abc| \geq S^3 \exp\{(12-\delta)(\log x)^{1/2}(\log \log x)^{-1}\}.
\]

The Proposition follows on noting from (6) and (8) that if \(x \) is sufficiently large then
\[
S < e^{\theta(y)} |c| < e^{2y} x < x^{1+\delta}.
\]

References

D.W. Masser
University of Michigan
Ann Arbor, USA