ODILE GAROTTA

On Auslander-Reiten systems

Astérisque, tome 181-182 (1990), p. 191-194

<http://www.numdam.org/item?id=AST_1990__181-182__191_0>
On Auslander-Reiten systems

Odile Garotta

INTRODUCTION

Let G be a finite group, k an algebraically closed field whose characteristic p divides the order of G, and denote by A a symmetric interior G-algebra (that is a symmetric k-algebra A together with a homomorphism $\phi: G \to A^\ell$). In [2], we introduce the notion of Auslander-Reiten system of G over A (cf. §1), as a “generalization” in terms of idempotents of the usual notion of almost split sequence of kG-modules, which then corresponds to the case where A is the algebra of k-endomorphisms of a kG-module. Furthermore we show in [2] that every primitive idempotent i of A^G such that $i \not\in A^G_0$ is the right extremity of a unique Auslander-Reiten system, up to embedding of A into a symmetric interior G-algebra and to conjugacy by invertible G-fixed elements of that algebra (we will be talking abusively of “the Auslander-Reiten system ending with i”); our construction of that system proceeds mainly like the construction of the almost split sequence terminating in a given kG-module M (that is we take the pullback of a projective cover of ΩM over a generator of the $\text{End}_{kG}(M)$-socle of $\text{Ext}^1(M, \Omega^2 M)$).

Let k be the trivial kG-module and denote by R_k the almost split sequence terminating in k, and by L_k the corresponding Auslander-Reiten system of G. In [1], Auslander and Carlson show that the tensor product of any indecomposable kG-module M with the sequence R_k is either split or almost split up to an injective factor, and they give various criteria describing the second case (3.6., 4.7.). Using a different approach, we investigate a similar question for Auslander-Reiten systems: we give here sufficient conditions for certain pullbacks from the tensor product $i \otimes L_k$ to be either split, or else equal up to a trivial system to the Auslander-Reiten system ending with i. In other words, denoting by u_G a representative of a generator of the socle of $\text{Ext}^1(k, \Omega^2 k)$ (see §1), we look for cases when the equivalence class of some tensor product with u_G lies in the socle of the bimodule which corresponds here to $\text{Ext}^1(M, \Omega^2 M)$. Since our sufficient conditions are not satisfied for all kG-modules, we obtain the related results of [1] (3.6, 4.7.) for very specific modules only. Yet our approach applies when i is a source idempotent of a block, and in that significant case (see [2], VII) we obtain an explicit generator of the socle. This last result, which was the starting point of this study, was suggested to me by Lluis Puig.
Section 1 presents our notations, the main definitions of [2] which are of use here, as well as two preliminary lemmas. We give our results in section 2.

§1 NOTATIONS AND PRELIMINARIES

We write A^\times for the group of units of A and denote by a^x the element $\phi(x^{-1})a\phi(x)$ of A, where $a \in A$ and $x \in G$. The corresponding action of G makes A into a G-algebra. If H and K are two subgroups of G with $K \subset H$, we denote by A^H the algebra of H-fixed elements of A, and by $\text{Tr}^H_ K : A^K \to A^H$ the relative trace map, defined by $\text{Tr}^H_ K(a) = \sum a^x$, where x runs over a right transversal of H modulo K; the image of this map is the two-sided ideal $A^H_ K$ of A^H. If P is any p-subgroup of G, we denote by $B_{BrP} : A^P \to A(P)$ the Brauer morphism, that is the homomorphism corresponding to the quotient by the ideal $\sum_{Q \in P} A^P_ Q$ of A^P. Furthermore we set $\overline{A^H} = A^H/A^H_ K$, and for any a in A^H we denote by \overline{a} the image of a in $\overline{A^H}$.

All modules and algebras are finite dimensional k-spaces, and the modules are left modules. We denote by A^{opp} the opposite algebra of A, by $\text{J}(A)$ the Jacobson radical of A, and by H^M (resp. Q^M) a projective cover (resp. a Heller translate) of the module M. Our tensor products are taken over k; note that the tensor product of two (symmetric) interior G-algebras is again a (symmetric) interior G-algebra.

Suppose we are given three mutually orthogonal idempotents i, i^o, i' of A^G, together with two elements $d \in iA^G i^o$ and $d' \in i^o A^G i'$: we say that $S = (i, i^o, i', d, d')$ is a system of G over A if we have $dd' = 0$ and if there exists (s, s') in $i^oAi \times i'Ai^o$ satisfying the conditions:

$$i = ds, \\ i^o = sd + d's' \quad \text{and} \quad i' = s'd'.$$

In case $i^o \in A^G_ i$, we call S a Heller system; we say S is trivial if $i = 0$, and split if $i \in dA^G$. Set $i^+ = i + i^o + i'$. The commuting algebra of the system S is by definition the interior G-subalgebra A_S of i^oAi^+ whose elements commute with i, i^o, i', d and d' simultaneously. We call S an Auslander-Reiten system if it is a non trivial system, if the algebra A_S is local, and if for every symmetric interior G-algebra B and every embedding of interior G-algebras $f : A \to B$, we have $f(d)B = f(i)J(B^G)$ (by definition an embedding $f : A \to B$ is a homomorphism of interior G-algebras that is one-to-one and satisfies $\text{Im } f = f(1)Bf(1)$). The idempotent i is then primitive in A^G (cf. [2]).

The following additional notations are fixed throughout this note. Considering projective covers of the kG-modules k and Ωk, we denote by E the interior G-algebra $\text{End}_k(k \oplus \Omega k \oplus \Omega \Omega k \oplus \Omega^2 k)$ and write e, e^*, e', e'' and e^r for the orthogonal idempotents of E corresponding to the projections on $k, \Omega k, \Omega \Omega k$ and $\Omega^2 k$ respectively. We consider Heller systems $H_k = (e, e^*, e', h, h')$ and $H_{\Omega k} = (e', e'^*, e'', m, m')$ of G over e (cf. [2]), and denote by u_G an element of $e' E^G e$ whose class $\overline{u_G}$ generates the 1-dimensional k-space $e' E^G e$ (cf. [2], III 3).

On the other hand, we denote by P a Sylow p-subgroup of G, and we write $A(G)$ for the quotient of A^G by its two-sided ideal $\sum_{Q \in P} A^G_ Q = \text{Tr}^G_ P(\text{ker } BrP)$ (if G is a p-group, then $P = G$ and we have $A(G) = Br_G(A^G)$, so the notation is consistent.) We begin with two lemmas which do not require A to be symmetric:

Lemma 1. For any element a in $\sum_{Q \in P} A^G_ Q$, we have $\overline{a} \otimes \overline{u_G} = 0$.

192
Proof: Let Q be a proper subgroup of P. We have $u_G \in E_1^Q \cap E^Q$ (cf. [2], IV 2.1.), so every $a' \in A^Q$ satisfies $\text{Tr}_{G}(a') \otimes u_G \in (A \otimes E)_1^Q$.

The converse of lemma 1 is true under certain conditions:

Lemma 2. Suppose that $G = P$ and that the interior P-algebra A has a P-stable basis. Take u in E^P such that $u \neq 0$ and let a be an element in A^P such that $Br_{P}(a) \neq 0$. Then $a \otimes u \neq 0$.

Proof: Set $v = a \otimes u$ and let B be a P-stable basis of A. The condition $Br_{P}(a) \neq 0$ ensures the existence of u in E^P such that $u \neq 0$. We consider the projection of v onto $u \otimes u$, in the decomposition $u \otimes u = (A \otimes E)_1^P$. Since u is not in E_1^P, we get $v \notin (A \otimes E)_1^P$.

§2

Fix an idempotent i in A^G, and set $B = iAi \otimes E$, $I = \sum_{Q \subseteq P} iA^Q_i$. The tensor product with e defines an embedding of interior G-algebras from iAi to B, and B is symmetric. Denote by $\mathcal{H} = (j_j, j^*_j, c, c')$ the Heller system $i \otimes \mathcal{H}_i$ of G over B. We recall from [2] that the $(j^*_jB^Gj; j^*B^Gj)$-bimodule $j^*_jB^Gj$ has same socles as a left and as a right module, and that if i is primitive the socles have dimension 1 (cf. [2], III); furthermore in this case, if u is any element in $j^*_jB^Gj$ whose class \bar{u} generates that socle, the Auslander-Reiten system ending with i is equal, up to a trivial system and to embedding, to the pullback of the Heller system $i \otimes \mathcal{H}_i$ over (j, u) (cf. [2], VI).

Lemma 1 shows in particular that the condition $i \in I$ (which in case i is primitive means that the Sylow subgroup P is not a defect group of i), implies that the tensor product with i or with any idempotent of iA^G_i, of the Auslander-Reiten system ending with i does not belong to the ideal I.

Proposition 1. For all a in iA^G_i whose module I is the $(iAi)(G)^{op}$-socle of $(iAi)(G)$, the element $a \otimes u_G$ is in the socle of $j^*_jB^Gj$.

Proof: Let a be such an element and set $u = a \otimes u_G$. Let \hat{B}_i denote the Heller algebra $B_i \otimes j^*_jB_j$ of \mathcal{H} (cf. [2]). In [2], III 3. we show that every "symmetrising" form τ on B determines a central form $\tau_{H,G}$ on B^G_{i}, which annihilates $(B^G_{i})^G$ and induces a symmetrising form on B_{i}^G; moreover the socle of B_{i}^G coincides with the orthogonal of the radical of B_{i}^G. Thus it is sufficient to prove that $\tau_{H,G}(u \cdot J(\hat{B}^G_{i})) = 0$. Since we have $u \cdot J(\hat{B}^G_{i}) = uJ((iAi \otimes E)e)^G$ and $eE = (eEe)^G \simeq k$, all we need to show is that the restriction of the form $\tau_{H,G}$ to the space $aJ(iA^G_i) \otimes u_G$ is zero. But the hypothesis yields $aJ(iA^G_i) \in I$, so we conclude by lemma 1.

Corollary. Suppose we have $J(iA^G_i) = I$. Then for all a in iA^G_i the element $a \otimes u_G$ lies in the socle of $j^*_jB^Gj$.

Proof: In this case the radical of $(iAi)(G)$ is $\{0\}$.

Let us assume next that $G = P$ and that i is primitive. Thus the algebra $(iAi)(P)$ is local, and it has a right socle of dimension 1. In certain cases we obtain a generator of the socle of $j^*_jB^Pj$:
Proposition 2. Suppose that the P-algebra iAi has a P-stable basis. Let a be an element of iAi^P whose image under Br_P generates the $(iAi)(P)^{op}$-socle of $(iAi)(P)$. The socle of j^1B^Dj is the k-space generated by $a \otimes u_P$.

Proof: Lemma 2 shows that $a \otimes u_P \neq 0$. The result then follows from proposition 1.

Remark: (Application to kG-modules) Let us consider the special case where A is the algebra of k-endomorphisms of an indecomposable kG-module M with vertex P, and where $i = \text{id}_M$. If M is simple, or if $G = P$ and M is an endo-permutation kP-module, then $(iAi)(G) \cong k$ (cf. [5], 5.8.), so the corollary applies: for $a = i$, our statement says that if M is simple, the tensor product of the almost split sequence $1 \otimes k$ with M is either split, or almost split up to a projective direct summand. On the other hand if M is an endo-permutation kP-module, proposition 2 shows that this same tensor product is, up to a projective direct summand, the almost split sequence terminating in M. These are two special cases of the results of Auslander and Carlson on the tensor product of the sequence $1 \otimes k$ with a kG-module, cf. [1], 3.6., 4.7. (indeed if M is an endo-permutation module, we have $p | \dim M$, because every P-stable basis of $iAi = \text{End}_k(M)$ contains a unique fixed point, cf. [4], 2.8.4.).

Application to the source algebra of a block. Let b be a primitive idempotent of the center ZkG of kG, and set $A = kB$. Assume b has a non trivial defect group, say D, and let i be a D-source of b, that is a primitive idempotent of A^D such that $b \in \text{Tr}_D^G(AD_iA^B)$. The hypotheses of proposition 2 are satisfied for the source algebra iAi and $P = D$. Let $SZ(D)$ denote the element $\sum_{x \in Z(D)} x$ of kD. We obtain an explicit generator of the socle of j^1B^Dj:

Theorem. Set $a = SZ(D) \cdot i$. The socle of j^1B^Dj is the k-vector space generated by $a \otimes u_D$.

Proof: Viewing the isomorphism of interior $Z(D)$-algebras $(iAi)(D) \cong kZ(D)$ (cf. [4], 14.5.) as an identification, the Brauer morphism $Br_D : iA^Di \to (iAi)(D)$ maps a to the element $SZ(D)$ of $kZ(D)$. Thus the $kZ(D)^{op}$-module generated by $Br_D(a)$ is trivial, that is isomorphic to k and equal to the $kZ(D)^{op}$-socle of $kZ(D)$. The conclusion now follows from proposition 2.

References