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Extensions of Variations of Mixed Hodge Structure 

by James A. Carlson and Richard M. Hain 

1. Introduction. 

In this paper we study the group Ext^X)(B, A) of Yoneda n-extensions in the category ^(X) of 
good unipotent variations of Q-mixed Hodge structure over a smooth complex algebraic variety 
X. In particular, we show (Theorem (11.5)) that the continuous Deligne-Beilinson (absolute 
Hodge) cohomology 

HU*i(x,x),q(p)) 

of the fundamental group of X is canonically isomorphic to the group 

Ext«(jc)(Q,Q(p))-

To compute this object, one uses the exact sequence of [2] to write 

i . i 
0 - Exti<(Q,JT--}(1ri(X),Q(p)) Ext£(x)(Q,Q(p)) Ext? ,« , Я ^ М Х Ш р ) ) о 

Here Hcont denotes the continuous cohomology of TTI(X,X). These groups carry natural mixed 
Hodge structures, and so one can form the indicated groups of extensions in the category Ti of 
mixed Hodge structures. 

There is also a natural map 

(1.2) xt?,«, Я^МХШр Hb(x,q(p)) 

into absolute Hodge cohomology, Beilinson's refined version of Deligne cohomology, defined in 
[2]. This is an isomorphism when X is a rational if(7r, 1). Since every algebraic curve and every 
abelian variety is a rational A'(7r, 1), we can interpret H^X, Q(p)) as the group of Yoneda n-
extensions of Q by Q(p) in 'H(X) in these cases. In particular, the higher Ext groups of 1~t(X) 
can be nontrivial. 

The idea that extensions of Z by Z(p) in H(X) give elements of H^(X^Z(p)) appears in 
the beautiful example [7] of Deligne. There he shows, among other things, that, when X is a 
curve, the obstruction to the vanishing of the cup product / U # € H^X,Z(2)) of two invertible 
functions 

f,g€H\X, 0*x) #*(* ,Z(1) ) Ext^w(Z,Z( l ) ) 
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is the same as the obstruction to finding a variation of mixed Hodge structure V over X with 
weight graded quotients Z(0), Z(l), Z(2) such that the extension V/Z(2) corresponds to the 
element g of Ext^(X)(Z, Z(l)) and such that jy_2V corresponds to the element / <g) Z(l) of 
Ext^(jjQ(Z(l), Z(2)). Subsequently, Beilinson [2] related absolute Hodge cohomology to exten­
sions in the category 7i of mixed Hodge structures. However, his construction does not appear 
to involve either variations of mixed Hodge structure or Griffiths transversality, both essential 
ingredients in Deligne's example. 

The attempt to understand the relationship between Beilinson's general construction of ab­
solute Hodge cohomology based on extensions, Deligne's example, and MacPherson's multi­
valued Deligne cohomology [12] led us to the constructions in this- paper. The calculation of 
Ext^(;q(i?, A) is not completely trivial because there are never any projective or injective ob­
jects in 7i(X), even when X is a point. The actual calculation of Ext^Y)(i?> A) is analogous to 
Beilinson's calculation [1] of Ext^(#, A) when X is a point, except that we work in the category 
of Hodge-theoretic representations of 7ti(X, x). This category, by [13], is equivalent to 7i(X), an 
essential ingredient of our calculations. 

We now sketch the idea behind the proof. Since W^X) is the category of Hodge theoretic 
representations of n\{X, X), the completed group ring fyir1(X, X)~, viewed as a right 7Ti(X,x)-
module via right multiplication, should play a distinguished role. Although QTTI(X, X)~ is not 
projective in 7i(X), or, more precisely, in a suitable completion H~°°(X) of 7i(X), it becomes 
projective if we forget either the rational structure of H(X), the Hodge filtration, or both. For 
this reason, we define the following three categories, each with the same objects as 7i(X). 

(1.3) Definition. 

i) 'HQ(X) : objects are those ofTi(X), morphisms are those of the underlying Q-iocai system 
which preserve the weight filtration, 

ii) 'HF(X) : objects are those of 7 i ( X ) , morphisms are those of the underlying C-local system 
which preserve the Hodge and weight titrations, 

in) Hc(X) : objects are those of7{(X), morphisms are those of the underlying C-local system 
which preserve the weight filtration. 

To compute Ext^(I?, A), we first view B as a right 7Ti(X, x)-module. Next, we find a resolution 
P# —> B —> 0 of B in H(X) which is projective in each of the categories of (1.3). One can, for 
example, take P9 to be the bar resolution of B. Now, if 

0 —> A —> £n_! —> > E0 —> B —> 0 

is an n-extension in 7i(X), we have chain maps <f>F : Pm —> E0 and ^ : —* m 
7{F(X) and 'HQ(X), respectively, which become homotopic in 1-Cc(X), say, via a homotopy 
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<f)C : P. —• Em [1]. Schematically, we have 

(1.4) 

Pn+1 Pn 

0 A 

x<<w 
cw< 

w<< 

P„-i 

<pmù 

Po 

#0 

B 

B 

0 

0 

Now observe that 

<t> = 

w<:;,,w< 
cvw<<< 

o^ùml 
wx<<< 

nv 
bw< 

satisfies = = 0 and <^£_i = </>% — <f>„. Thus is an n-cocycle in the complex 

(1.5) 

cone[W0 HomQ7ri(X)X)<P#, A) © F°W0 HomCni(x,x){P., A) —• W0 HomC7ri(x,x){P., 

When we take B = Q and A = Q(p), the above complex becomes 

(1.6) cone[P72p HomQ7ri<P#, Q) 0 F*>W2p Homc^P. , C) —• HomCui<P#, C)][-l] , 

and this computes iT^(7Ti(X), Q(p)). 

We note that there is a general procedure for computing extensions in any so-called mixed 
category [3]. This gives, in particular, a method for computing Ext in the category Tii^X). 
Nonetheless, we hope that the present approach will prove useful because of its directness. 

One can construct a variant of the the absolute Hodge cohomology of an algebraic variety 
as follows. Associate to each open set U in X the cochains that compute Ext^(c/)(Q, Q(p)). 
By choosing suitable cochains, one can associate to each Zariski (hyper)-covering of X a double 
complex. The cohomology of X with coefficients in Q(p) is obtained as the limit of the coho-
mologies of these double complexes. This will be the subject of a future paper [11] by the second 
author. 

We would like to thank Bob MacPherson and Joseph Steenbrink for helpful discussions during 
the initial stages of this work. 

2. Yoneda Extensions. 

An n-extension of B by A in H(X) is an exact sequence 

E : 0 —• A —• Eni —> En-2 —• > En —> B —• 0. 

An elementary equivalence of extensions is a morphism E E' which is the identity on 

the extreme left and right-hand terms, and Yoneda equivalence is the relation generated by 

elementary equivalence. The set of all Yoneda classes of n-extension forms an abelian group, 

written Extft(X)(B, A), relative to which there is a natural pairing, 

Eomc(B,A)Eomc(B,A)Eomc(B,A)Eomc(B,A)E<< 
E : 0 —• A —• Eni —> En-2 —• > En —> B<<< 
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given by splicing extensions together at the common term B. 

When X is a point, the group of 1-extensions has a particularly simple description [4,5], whicl 
we now recall. Let 

E : 0 —> A-U H B —+0 

be a 1-extension. Then there are morphisms : B —> H in and sF : B —• H in HF 
which satisfy IT o = id and TT O Sf = id. Define a difference homomorphism t/> = — sF E 
Home(B, A), and observe that the coset 

V> + Hom Q (£, A) + Hom F (£, A] 

is independent of the choice of the sections and sF of the Q- and F-structures. The corre­
spondence E i—• h/>l then defines a natural isomorphism 

(2.1) Ext^(£,A) 
Home (B, A) 

Hom Q (5, A) + Hom F (#, A) 

Prom this identification, we see that any mixed Hodge structure has nontrivial extensions from 
the right, so that there are no projective objects. Indeed, if A is a mixed Hodge structure of 
highest weight k, and 2p > fc, then 

Ext^(Q(-p), A) S A(p)c/A(p)Q St C ' m . 

Similarly, if A has lowest weight k and 2p < k, then 

Ext^AM-P)) = Â(-P)C/Â(-P)Q S C - , 

so that there are no injective objects. By restricting to an arbitrary point x £ -X", it follows that, 
other than 0, there are no projectives or injectives in ri(X) whenever X is a smooth variety. 

Extensions of degree one are easy to handle because every Yoneda equivalence is given by 
an elementary equivalence, in fact, one which induces an isomorphism on the middle term. 
For extensions of higher degree, equivalence is not the same as elementary equivalence, and 
elementary equivalences do not in general induce isomorphisms on the interior terms. The 
increased flexibility that this gives is so great that the higher Ext groups vanish when X is a point 
[1]. As we shall see, this is not generally true when X is nontrivial (e.g., X = P1 — { 0 , 1, o o } ) . 

3. Relative projectives. 

As a substitute for the absence of projectives in rt(X), we introduce the notion of relative 
projectives. To this end, let B be an abelian category and A an abelian subcategory with 
the same objects as B. An object P of A is a relative projective for A «—• B if whenever 
V —* W —• 0 is an epimorphism in A, each morphism P —• W in B lifts to V in B: 

P 

V < 0 
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A relative projective resolution of an object A in A with respect to B is an exact sequence 

> P2 —> Pi —> Po —•> A —• 0 

in *4 where each Pj is relatively projective with respect to A «—> The category B has enough 
projectives for A if for each A in A there exists a relative projective P for .4 5 and an 
epimorphism P —• A —• 0 in A. The standard argument (resolve kernels) gives the existence 
of resolutions: 

(3.1) Proposition. Every object of A has a relatively projective resolution in B if and only 
if B has enough projectives for A. 

(3.2) Lemma. When X is a point, each object of ri is projective, relative to HA, where 
A = Q, F, or C. 

The proof is an easy exercise, given the following splitting lemma: 

(3.3) Lemma . (Deligne) [6] Let H be a mixed Hodge structure. Then there is a canonical 
functorial bigrading H = ®p q Hp,q with the properties 

Eomc(B,A)Eo,A)w 

Eomc(B,A)Eomc(<< 

(3.4) Proposition. Suppose the B has enough projectives for A. If P. —• A —• 0 and 
Q0 —• A —• 0 are relatively projective resolutions of an object A of A with respect to B, then 
there exists a third relatively projective resolution Rm —> A —• 0, and a commutative diagram 
in A which relates them: 

P. A 0 

w< 

R. 

7TQ 

Q. 

A 

A 

0 

0 

Proof: Set Pn = Qn = Rn when n < - 1 . Set P_j = Q_i = R_x = A. Suppose that 
n > 0 and that the complex Rm and the maps 7rp : R. —• P. and TTQ : Rm —• Q0 have been 
constructed in dimensions < n. Let Kn-\ be the kernel of d : Rn-i —• Rn-2> Let L be the 
limit of the diagram 

Pn * Pn-1 <~^~ Kn-1 —Qn -1Eomc(B,A) Qn-

That is, 
L = { (p, k,q) E Pn 0 A V i ®Qn\dp = 7TPk,dq = 7vQk } . 
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Since the restrictions of d o irp and d o TTQ to Kn-\ vanish, it follows tht the natural projection 
L —• Kn-\ is surjective. Choose Rn to be any relative projective for A «—• B that surjects onto 
L. The projections Pn <— Rn —• Qn are then composites of Rn —> L with the canonical 
projections Pn <— L —> Qn, as required. 

Now observe that the categories H, *HQ, %F,and Tic fit together via the natural forgetful 
functors to give a 'Mayer-Viet oris' diagram 

(3.5) MH = <x* 
w< 

He 

Tip 

H 

We shall often write 

(3.6) Hom(£, A) for Hom*(£, A), HomQ(#, A) for Hom^(B, A), etc. 

Let us make the notion just used precise: 

(3.7) Definition. A commutative diagram of categories 

MA - < 

A01 

Ai 

A 

is Mayer-Vietoris if 

i) each arrow is the identity on the level of objects, 

ii) each arrow is an inclusion on the level of morphisms, 

ni) Hom^X, Y") is the intersection of Hom^0(X,Y) and Hom^^X, Y) in Hom^401(X, Y). 

The diagram M/H{X) of (2.1) is, by definition, the canonical Mayer-Vietoris diagram for 7i(X). 

(3.8) Proposition. The diagram H{X) is Mayer-Vietoris. 

(3.9) Definition. An object in A is a relative projective for a Mayer-Vietoris diagram MA 
if it is relatively projective for A «-> Ai, with I = 0, 1, 01. MA has enough projectives if for 
every object A in A there is an object P in A which is relative projective in MA. 

According to Lemma (3.2), the diagram ?i(point) has enough relative projectives. One of our 
main concerns is to show that for each X, a suitable completion of H(X) has enough relative 
projectives. This we do in section 7. 
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4. Construction of Ext^^4. 

Let A be an abelian category, MA a Mayer-Vietoris diagram on A which admits enough projec­

tives. Given an object A in A, let P«(A) be a relative projective resolution. Define, by analogy 

with Deligne-Beilinson cohomology [1], the complex 

(4.1) 

RYLora.MA(B,A) 
E0mAo(P(B),A) 

< 
EomAol(P(B),A) 

< 
Eom A l (P(B),A)<< 

where iq and ip are the forgetful functors. Following Beilinson [1] we use the notation 

D = 
A 

a 
c 

< 
B 

to denote the complex 

D = [A®B -^C][-ll 

where S = a — /3. We shall sometimes use the more compact notation 

(4.2) REomMA(B,A) = cone[ EomA[0](P(B),A) -U EomA[1](P(B),A) ] [ - l ] , 

where 8 = ÌQ — IF- AS an immediate consequence of (3.4), we have 

(4.3) Proposition. If MA has enough relative projectives, then RHom^^4(P, A) is well 

defined in the derived category of abelian groups. 

Define 

[4.4) E x t J ^ B , A) = Hn R H o m ^ ( B , A), 

The relation between this and the usual functor is given by the following 

(4.5) Theorem. There is a natural isomorphism c : Ext^(B, A) —> E x t ^ ^ B , A) . 

We shall give a proof of this result for M7i in the next section. Let us see, however, what we 

have for A = 7i — 7i(point). According to Lemma (3.2), every object in 7i is projective, so that 

we may take for P(B) the complex B concentrated in degree 0. Then 

(4.6) KRomM7i(B, A) = [ HomQ(B, A) © H o m F ( £ , A) — • H o m c ( # , A ) ] [ - l ] 

is a complex concentrated in degrees 0 and 1. Then 2.3.iii gives 

(4.7) Ext°M1t(B, A ) * E o m n ( B , A ) < < 

and 3.1 vields 

(4.8) Ext^B, A) : 
Home (В, A) 

HomQ(S, A) + H o m F ( B , A) 

H\<<Px-X;A) 
Eomw<<c(B,A) 

Since RHom has no cochains in degrees greater than 1, we find 

(4.9) ExtXm(£, A) = 0 for n > 1.<< 

Note that this agrees with Beilinson's result [1] for the vanishing of Ext^< 
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5. Complete variations. 

To have enough relative projectives to compute Ext^P, A), we need to adjoin certain inverse 
limits of unipotent variations of mixed Hodge structure to H(X). 

(5.1) Definition. A complete variation V of mixed Hodge structure over a smooth variety X 
consists of 

i) a local system VQ of rational vector spaces over X, 

ii) a filtration W* of VQ by sublocal systems, 

Hi) a filtration F* of Vc = VQ (g) Ox satisfying 
iv) for all r, s, WrV/WsV is a good unipotent variation of mixed Hodge structure [13] relative 

to the induced rational structure and Hodge and weight titrations, 

iv.a) VQ = IJWVVQ, and 

iv.b) WrMQ = lim WRVQ/W,VQ for all r. 

The weight filtration defines a natural topology on V that we shall call the W-adic topology. 
Morphisms between complete variations over X axe maps that preserve all structures (local 
system, Q-structure, and all filtrations). Let Hx denote the category of complete variations 
over X, define H^"°°(X) to be the full subcategory of Hx"whose objects satisfy W{V = 0 for 
some /, and define <H~°°(X) to be the full category whose objects satisfy V = W{V for some I. 

Objects of 7i+00(X) will be called upper complete variations and those of 7i~°°(X) will be called 
lower complete. 

(5.2) Proposition. The category of lower complete (respectively, upper complete) unipotent 
variations of mixed Hodge structures over X is abelian. 

(5.3) Remark. We have bifunctors 

H'00 <g> H~°° —> K etc. 

The faithful inclusion H ?i±00 induces a natural transformation 

Extn(X) —• Ext?i±oo(x) 

(5.4) Proposition. If A and B are in H(X), then the natural maps fi : Ext^pQ(i?, A) —> 
Ext^±oo(x)(-E?i^) are isomorphisms. 
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Proof: We give a proof for the case of H 00 by constructing an inverse for \i. To this end, 
choose an integer s such that 

GtTA = Gt?B = 0 if k < s. 

If 
E : 0 —• A —> En_j —> • E0 —> B —> 0 

is an n-extension in 7Ï 00 then so is 

E/Ws : 0 —> A —• En-i/W, —• > £0/W. —-> S — » 0, 

since * —• */Ws is an exact functor. Because the diagram 

E/W3 —» E 

is a Yoneda equivalence, we may define the required inverse for p, by u(E) = E/W9. 

6. Classification of complete variations. 

Throughout this section, X will denote a fixed smooth variety. Let QTTI(X,X) be the rational 
group ring of the fundamental group, let J denote the augmentation ideal, and let Q7Ti(X, X)~ 
be the J-adic completion of QTTI(X,X). According to [9], Q^^X, x)~carries a natural complete 
mixed Hodge structure. The next two theorems [13] give a classification of unipotent variations. 

(6.1) Theorem. If V —• X is a complete unipotent variation of mixed Hodge structure, then 
the monodromy representation 

prQTiOY,*)-—+End(V,) 

is a continuous morphism of complete mixed Hodge structures. 

Let HRep(X, x) be the category of morphisms 

piq^iX^xX—• EndfV). 

where V is a lower complete mixed Hodge structure and p is a morphism in H 00. 

(6.2) Theorem. The functor H~°°{X) —• HRep(X,x) that takes a variation to the mon­
odromy representation at the base point is an equivalence of categories. 

Note that if V and W are objects in H~°°{X), then Hom(V, W) is the object of H{X) which 
corresponds to the Q7Ti(-Y, a;)-module Hom(Vx, Wx) with the 7Ti action given by 

(</>-g)(v) = <j)(vg 1)g, 

where <f> e Eom(Vx,Wx), g G TTI((X,x),)v G Vx. 
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Let Q be the constant variation of weight 0, and note that the global sections of type (0,0) may 

be written 
TV = Hom*(x)(Q, V). 

(6.3) Proposition. Homw(x)(V, W) = THom(V, W) = TH°(X,Hom(V, W)). 

By an extension [13, (8.6)] of a theorem of Deligne (cf [16, 15]), the right-hand group carries a 
natural mixed Hodge structure. 

By analogy with the definitions of §2, we may define categories 

HRepQ(X,x) HRepF(X,x) HR«pc(X,x) 

of Q7Ti(X, a:^-modules. In each case the objects are the same as those of HRep(X,x), but the 
structural requirements on morphisms are relaxed in the obvious way. Consequently we get a 
Mayer-Vietoris diagram 

(6.4) MERep = HRepQ 

HRepc 

HRep 

HRepF 

(6.5) Proposition. There are equivalences of categories 

1~CQ = HRepQ 

71F — HRepp 

Tic — HRepc. 

Proof: To prove the first equivalence, consider two objects V and W of H °°(X), and observe 
that 

HomQ(V, W) £ T^o^°(^omQ(V, W) 

a WoH°(ty7Ti(X,xj,HomQ(Vx, Wx)) 

S Wo HamQ(Vx, Ws)*Wl{x'*y 

To prove the second equivalence, observe that 

Hom/rfV, W) = F° fl WnH^X^HomiV^W)) 
^F°f] WoH\Cm{X,x)\ Homc(Vx, Wx)) 

= F°nW0 Hom(Vx, wxf*^x>xy 

The verification for the third equivalence is similar to that of the first two. 
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7. Existence of relative projectives 

We now sketch a proof of the existence of relative projectives in 7ï~°°(X). To begin, we recall 
that if X is a smooth variety with basepoint then the canonical variation associated with 
(X, x) is the lower complete variation of mixed Hodge structure whose fiber over z G X is 

H\Px-X;<<A)< 

where PX)ZX is the space of homotopy classes of paths from x to z [14]. 

Now suppose that A is a lower complete variation of mixed Hodge structure over X, with Ax 
as fiber over the basepoint. Define HQ(PX-.X\ Axy to be the lower complete variation over X 
whose fiber over z is Ax ® H0(PX zXy. 

(7.1) Proposition. There is a surjective morphism 

H0(Pz,-X;Axy-UA<< 

in H(X). 

Proof: By the classification theorem (6.1) it suffices to construct a homomorphism 

H0(PXiXX,Axy-^Ax 

that preserves the filtrat ions. First, observe that 

ff0(P«,«*,Qr=Qiri(.x>)';< 

and that the augmentation 

JT0(P.,y Q)-—»Q—f 0 

is a homomorphism of Q7Ti(X, X) -modules that preserves filtrations. Now tensor with AX (a 
constant mixed Hodge structure) and apply (6.1) to obtain the map. 

The final step is to show 

(7.2) Proposition. If A is a lower complete variation and x £ X, then HQ(PX-X\ Axy is a 
relatively projective object ofH(X). 

Proof: Suppose that B —• C is an epimorphism in W^X), and that Ho(PXF-X\ A) —• C is 
a morphism in (say) 7^Q(JT). By the classification theorem, the problem of constructing a lift 
HQ(PX-X\ A) —> B such that the diagram 

H0(PX,-X;A) 

B 

< 

c 0 
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is equivalent to constructing the commutative diagram of Q7Ti(X, £)~-modules below, where the 
base and altitude are given: 

H\Px<<-X<<;A) 

Bx 

w 

cx 0 

Using the existence of relative projective for the simplest case, X = { # } , we obtain a lift 
Ax —> Bx in 7i(x) of the composition Ax «-* Ax ® Q7r1(X, X)~—• Cx: 

Ax 

Bx 

0 

cx 0. 

Now define 0 : A (g) Qiri(X,xy—y Bx by 

a ® g i-» 0(a) • g. 

This clearly (i) is a QTTJ (X, z)"-module homomorphism, (ii) lifts 0. In addition, 0 preserves the fil-
trations. If a G W\A, u G Wm^i{X,x)\ then 0(a) G WtCx and <j>(a®u) G Wi+mfr0(-Px,x^; A), 
and so 0(a) G W\BX. Since the module map Bx (g) Q7Ti(X, a:)"—• Bx preserves the filtrations, 

0(a <g) u) = 0(a) • m G Wi+mBx. 

Since 
H\Px-X;A)H\Px-X;A) 

l+m=k 

H\Px-X;A)H\Px-X;A) 

this shows that 0 is a morphism in HQ(X). Lifts in Tip and are treated in the same way. 

(7.3) Remark. Similarly, we can define relative injectives. A dual argument shows that the 
dual canonical variation, H°(PX-X; A) is injective and that 

0 — + A — > x t ? , « , Я ^ М Х Ш р 

is a morphism in 7{(X). The fiber can be identified with the space of closed iterated integrals, 
H°B(A'X). 

Sometimes it is convenient to use the bar resolution, which gives a relatively projective reso­
lution in TiiX): Fix x G X and consider 

B.(^„Q7r1(A-,i)-,fl,o(P«,-A") — » A. 

The piece of degree n is 

Ax ® 
n 

J(X,x))®H0(Px,-Xy. 

50 



EXTENSIONS OF VARIATIONS OF MIXED HODGE STRUCTURE 

8. From Ext?< to ExtMn* 

We shall now construct a natural transformation c : Ext^ —• ExtJ^. Throughout this section 
X is a fixed variety and Ti = Ti~°°(X). To begin, let P(B) be a relative projective resolution 
for B, let 

E : 0 —• A —> En_i —• • E0 —• B —• 0 

be an n-extension of B by A, and let K(E) be the complex 

A —> ^n-i * * * —• -Eo 

with canonical augmentation K(E) —• J3. Construct chain maps <f><* : P{B) — HT(JS) and 
: P(P) —•w<<<xxxx which lift id : B —• B in 7YQ and 7Yf, respectively. Since both maps lift 

the identity in Tic, they must be homotopic there. Let <j>€ : P(B) —• E[l] be such a homotopy, 
and define a characteristic class 

Ext^Y)(Q,Q(.)).Ext^Y)(Q,Q(.)). 

We claim that c(E) is a well-defined cocycle in r\H.omMn(B, A), and that c is a homomorphism 
of groups. For the first verification, observe that 

D{rfi, r,F, = (Dr,*, Dr,F, N<* - VF + Dnc) = (4>*,* 
D{rfi, r,F, = (Dr,*, Dr,F, N<* - VF + Dnc) = (4>*,* 

where D is the differential in RHom^-^. The fact that 2£n+i = 0, that <̂ z and <j>F are chain 
maps, and that <j>c is a homotopy imply that Dc(E) = 0, as required. 

Now suppose that ( <^„, ,w<<<<xxx ) and ( <̂ n, <f>n,nn̂ùmm ) are two representatives for c(£). 

Because </fl and <^ are both liftings of the identity in WQ , there is a homotopy rfi from one 

to the other. We may express this as Drfl = <f>® — where D is the natural differential in 

Hom(P(J5), E). Construct also rjF with DrjF = <j>F-~4> . Since <^ is homotopic to <j>F, we have 

D(j>c = <j№ — (pF, and, for the same reasons, D^ = ^ — <£F. Then 

z?(^c - f) = (*« - *Q) - (4>F - / ) = Dirf* - VF), 

so that DX = 0 in Tic, where A = <f>c — <j>€ — 77̂  + rjF. We claim that there is a solution to the 
equation Da = A. If so, we have 

D{rfi, r,F, = (Dr,*, Dr,F, N<* - VF + Dnc) = (4>*,*F,*C) - ( f \ t ,!>% 

as required. To justify the claim, we note that (DX)Q = dAo, where the subscript denotes the 
degree of the domain of the map. Consequently the diagram below exists and commutes: 

Pi Po B 

Ai Ac 0 

Eo E1 E* 

Since A and the zero map both lift 0 : B —> E0, and since P is projective in Tic, the equation 
Dfi = A is solvable, as claimed. 

We leave as an exercise the verification that ExtMn and c are independent of the resolution; for 
the former, see (4.3). 

51 



JA. CARLSON, RM. HAIN 

9. From ExtMn to Ext?*. 

We shall now construct a natural transformation from Ext^-w to Ext-^. 

To begin, we define the twisted direct sum 

(9.1) m = T e „ s, 

where S and T are in H and 77 : 5 —• T is in He- For the complex local system, set M = T® 5, 
and definew<xxx = FPT 0w<<<x For the rational structure, set 

MQ = Tq +( î7,1)5q. 

and define the weight filtration by 

WiM = WiT © (77, l)T^/5. 

C9.2Ì Lemma. T ©„ 5 is in H. as is the extension 

O—>T-UT®VS-^*S^O. 

Proof: Because 77 is a map of C-local systems, it commutes with the connection operators 
on S and T. Therefore the lattice and weight structure just defined are flat. Moreover, since 
both the Hodge filtration and the connection are given by direct sum, Griffiths transversality 
holds. To see that the Hodge and weight filtrations give a mixed Hodge structure on fibers, 
observe that the maps i and 7r of the lemma are strictly compatible with the Hodge and weight 
nitration. But if the end terms of an such exact sequence are mixed Hodge structures, then so 

is the middle term [8]. 

Next, we define twisted pushouts, an extension of the usual notion of pushout. 

(9.3) Definition. Consider the diagram D below, 

R d S 

F Q 

T 

w< 

where the superscript indicates the category to which the morphism belongs; if there is no 
superscript, then the arrow is in 7i. If 

Ext^Y)(Q,Q(.)).Ext^Y)(Q, 
Ext^Y)(Q,Q(.)).Ext^Y)(Q, 
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then D = (T, R, S) is a set of pushout data. 

(9.4) Definition. A pushout diagram e : (T, R, S) —• X is a diagram 

R d 
S 

F Q 

T 

w< 

<<x 

F Q 

< 

where 

aF o d = d'o pF , 

b) <r<*od = ffop<*, 

c) & or)C =<r<* -aF , 

(9.5) Definition. A morphism of pushout diagrams, A : e —• ei is an H-morphism X : X —• 
Xi such that 

a) X o crF = (7iF, 

b) X o <jQ = cri 

c) A o d' = aj 

(9.6) Definition. A pushout for (T, .R, S) is a pushout diagram eu : (T, 5 ) —• Z7 for which 
the following hold: 

a) Structure : gf is an H-morphism. 

b) Factorization: If ey : (T,R, S) —• V is a pushout diagram, then there is an H-morphism 
X : eu —• ty. 

c) Functoriality: If a : e\ —• e<i iS a morphism of pushout diagrams, then there is the 

canonical diagram 
eu w< 

¿2 

commutes. 

Thus, a pushout is a universal pushout diagram. 

(9.7) Proposition. For every set of pushout data (T, R, S) there is a pushout eu : (T, R, S) —• 
U. 
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