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The packing measure of the graph of a stable process 

by Fraydoun REZAKHANLOU and S. James TAYLOR 1 

Processes in with stationary independent increments are now 
called Levy processes. Many of these determine fractal sets in R^. 
During the period 1955-60, the speaker (James Taylor) corresponded 
with Paul Levy about the measure properties of the zero set of a 
Brownian path in R. Levy had already studied the stochastic nature 
of this set in great detail and clearly felt that it would be 
appropriate to find the right measure for telling the local time. 
The problem we worked on in the 1950's did not get resolved then 
because the needed techniques of Hausdorff measure theory were not 
yet developed. The expected result for Hausdorff measure was proved 
in [17] and the corresponding results for packing measure were 
obtained in [13]. 

In general, the sample path X t = X(t), 0 < t < + «>, of a Levy 

process determines a trajectory in R d, a graph = (t,X^) in R d + 1 , 

and occupation time sets in R. For a particular process these sets 
are often fractals. We call a set E C R d a fractal if its Hausdorff 
dimension dim E is the same as the packing dimension Dim E as 
defined in [15], and the common value is greater than the 
topological dimension. For the stable process of index a in R d, it 
is easily proved that: 

if a < d, the range is a fractal of dimension a, 
if a > d = 1, the level sets are fractals of dimension 1 - —, 

a 
if 0 < a < 2, the graph is a fractal of dimension max[l, 2 - ~ ] . 

In [13] the packing dimension 1 * was obtained for the range of a 
general Levy process, and in [9] it is shown that 

*The research on which this paper was based was carried out with the 
support of NSF under contract #DMS-83-17815. 
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i >3 < 1 ' < min(d,/3) 

and that these inequalities are sharp. Here /5 is the upper index of 
the process which can be defined using the Levy measure v by 

/3 = inf[a > 0: rai>{y: |y! > r) -» » as r 0] . 

This implies that some trajectories of L§vy processes are not 
fractals in our sense. In fact, given constants a,b such that 

2 
0 < a < b < 2, there is a Levy process in IR with dim E = a. 
Dim E = b, where E is the range of the process. 

In the lecture we sought to survey the developing study of 
fractals arising from a Levy process since 1953 when the first paper 
[5] was published by Paul Levy. This development was described in 
detail in [14] so we do not repeat it in this paper. Instead, we 
give precise packing measure results for the case of stable 
processes where there is much more detailed information available 
about the relevant distributions. The Hausdorff measure results for 
these sets are essentially complete, and the packing measure of the 
trajectory was found in [15] for transient Brownian motion, in [4] 
for planar Brownian motion, and in [13] for strictly stable 
processes a < d. In this paper we will obtain the correct packing 
measure function 9(s) = s/|log s| for the range of an asymmetric 
Cauchy process in 5R (d > 2). Together with [8] this shows that 
this random fractal is unusually regular as both Hausdorff and 
packing measures are finite and positive. 

Our main object in this paper is to investigate the packing 
measure of the graph = (t,Xt) of each stable process in 
We settle all the strictly stable cases in Section 2 except for the 
symmetric Cauchy process in IR and planar Brownian motion—these 
cases will require some different techniques. In Section 3, we show 
that 9(s) = s/llog s| is the right function to give finite positive 
packing measure to the graph of every asymmetric Cauchy process. 
The corresponding Hausdorff measure results were obtained in [8]. 

In Section 1, we collect the precise definitions and 
preliminary estimates, most of which come from previous work. We 
will adopt the convenient practice of using c and C with suffices to 
denote finite positive constants whose value may depend on the 
process being considered but not on the sample path w. 
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1 • Preliminaries 
Our detailed results will all relate to the class of Levy 

processes in which each increment has a stable distribution in IR 
with characteristic function 

E exp i <X s + t-X s,u> - exp t *(u) 

where, for a = 2, t(u) = - |"lu!2, for 0 < a < 2, 

+ (u) = -iu| a J wa(u,9)A/(d9), 
Sd 

w a(u,0) = [l-i sgn(u,9)tan ira/2] | <u/ | u| ,8> | a , a * 1, 

w 1(u,9) = |<u/|ui,9>| + (2I/ir)<u/|u| ,9> log|<u,9>j, 

and JJ is a probability measure on the surface of the unit sphere 
in *Rd. To ensure that the process is genuinely d-dimensional, we 
assume that u is not supported by a proper subspace of R^. The 
elimination of the linear drift made will not affect the results in 
the present paper. 

The transition density p(t,x) of X t is continuous and bounded 
for each t > 0. Whenever it satisfies the scaling property 

p(t,x) = p(rt.r 1 / ax)r d / a 

for all r > 0, we say that the process is strictly stable. In this 
case, r Xrt is another version of X t. When a * 1 , all our stable 
processes are strictly stable. When a = 1, if 

t = J 9/i(d9) * 0, 
Sd 

we say the Cauchy process is strictly asymmetric. Standard Brownian 
motion in ^ is the case a = 2. The asymmetric Cauchy process 
satisfies a modified scaling property: 

rX t and X r t - <| rt log v)i 

have the same distribution for r > 0, t > 0. 
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Whenever d = 1, 1 < a < 2, it is well known that X t has a 
jointly continuous local time L(x,t) such that, for Bore! E, 

[{s € (0,t): X s € E}| = jL(x,t)dx 
E 
t 

- / 1 E ( X s , d s -

Recently, Barlow [2] has obtained the exact modulus of continuity in 
x for L(x,s), 0 < s < t. We do not see how to use this directly 
because we need the asymptotic behavior as x -+ 0 and t 4 0, so we 
state the fundamental estimate used by Barlow in his proof. 

Lemma 1,1. fret Y t be the right coritjnuous inverse of L(0,t). Then 
for all t > 0, X > 0, 

P I sup L(x,s)-L(0,s) > Xp < expf-c — =-1 . 
U<s<Y t J " V t|x| a" i ; 

This is Proposition 2.7 of Barlow [1], applied to the strictly 
stable process of index a > 1, where Barlow's calculations show that 
if 

h(x) = E L(0,H x), H x = inf{t > 0: X t = x}, 
then 

c^lx!*"1 < h(x) < c^x!*" 1. 

For the strictly asymmetric Cauchy process in «Rd, we will need 
to estimate both tails of the distribution of X^. 

Lemma 1.2. If X = X J i§ a ranflom vectpr is R with a Cauphy 
distribution, there are constants c and C such that for X > 1, 

cX""1 < P{ |X| > X} < CX""1. 

Lemma 1.3. ii X t i§ a strjgtlY asymmetric Cauchy process in K d, 
there are positive constants a Q,c such that 
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(a) if 0 < a < a Q and 0 < t < a I log a| 1 , then 

P{ IX tl > a} < eta""1; and 

(b) P{ sup (X | > a} < eta" 1; 

o<s<t 

(c) If cailog a i " 1 < t < t Q, then 

P{|XJ < a} < C a , . 
t log^t 

Lemma 1.2 was proved as Lemma 1 of [8] and Lemmas 1.3(a),(c) 

as Lemma 2 of [8]. We now prove (b). Define the stopping time 

r = inf{s > 0: |X sl > a}. 

Let 
E = { sup |X I > a} = {T < t) 

0<s<t 

F = <|X tl > \ a}. 

Then 

P(E) - P(E fl F) + P(E (1 F C ) < P(F)+P(E) P{iX t-X rl > -| a} 

using the strong Markov property. By (a) we have 

P{|X t-X r! > i a} < ¿ for O < a < a Q , so 

P(E) < P(F) + i P(E), 

and 

P(E) < 2P(F) < 4cta" 1, by (a). 

We remark that this lemma implies that there are constants 

c 1 , c 2 such that as t 4 0, P{c ] Lt|log t| < |X tl < c 2 11 log t|} -+ 1. 

In fact, the local behavior of X^ is very close to being 

deterministic. 

We now recall the definition and properties of fractal 

measures that we will use. A measure function h(s) is a mapping 

(0,1) ~* (0,1) which is monotone increasing with h(0+) = 0, 

continuous, and satisfies the smoothness condition 
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|i|fl < c for a n s. 

The Hausdorff h-measure of subsets E C R d has been studied by many 
authors. In a recent paper [15], packing h-measure was defined as 
follows. First, we define a pre-measure 

00 

h-P(E) = lim sup{ Z h(2r.): B(x.,r.) disjoint, x. € E, r. < 6} 
640 i=l 1 1 1 1 1 

(1) 

where B(x^,r^) denotes the open ball centered at x^, radius r^. 

h-p(E) - inf{Z h-P(E i): E C UE±) (2) 

now defines a metric outer measure in R**, which we call h-packing 
measure. Using the functions h(s) = , fi > 0 gives the fractal 
index 

Dim E - inf{/6 > 0: s/5-p(E) = 0}, 

which we call the packing dimension of E. 
In order to calculate the packing measures, we will use two . 

technical results. 

fremma 3L.4. For each measure function h, there As a. constant c such 
d d that for all E c R and Borel measures /i with 0 < H/iii = ji(R ) < «> 

c „(1) infjli^sup ^{1%^ < t-p(B) 

I I / i l l sup 
X€E 

lim sup 
r40 

<P(2r) 
/i(B(x,r)) 

This is Theorem 5.4 of [15]. Instead of packing a set E by 
disjoint balls with center in E, we can use the class r of 
semi-dyadic cubes in R**. C € r if for some integer k, C is a cube 

-k 
of side 2 and each projection on an axis is a half open interval 1 -k 1 -k d of the form n 2 , (-̂  n+l)2 ) for some n € Z. Each x € R 

d -k belongs to 2 cubes of T with side 2 ; of these we denote by v^(x) 
-k-2 

the unique cube in T whose complement is at distance 2 from the 
-k-2 

dyadic cube of side 2 which contains x. Now put 

346 
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FE = { V k ( x ) : k € IN , x € E} 

and use the cubes in T_ to replace the balls B(x,r) of definition 
(1), with diameter ( d 1 / 2 2~ k) replacing 2r = diam B(x,r). This 
gives a new pre-measure h-P which is comparable to h-P, and the 

** 
final step (2) gives the dyadic packing h-measure h-p (E) with the 
same class of sets of zero measure or finite measure. 

Lemma 1.5. For each measure function h, there are constants ^ 1

, c 2 

such that for all E C R d 

c1h-p(E) < h-p**(E) < c 2h-p(E). 

This is proved in [15]. In order to compute the packing 
measure of the trajectory of a strictly stable process of index a, 
the following result was proved as Lemma 5 in [13]. 

Lemma 1.6. Suppose h(s) = sa^(s) where ^(s) is a measure function. 
and X t is strictly stable in K d with index a < d, then 

Т (г)+Т (г) 0 , [ + ( e , j 2 " + 0 0 

lim Inf h ( 2 r * = эссргсЦдд ал J L Y ( * , J ds 
+ 0» 0+ < + » 

Where T ¿(r) denotes the total time in B(0,r) £y the process X t and  

xt' xt a r ^ independent gopjes o_£ X t. 

2. The Strictly Stable Case 

We will deal with all values of a except for the critical 

cases a = 1 and the Brownian case a = 2 = d. Whenever d = 1 and 

1 < o < 2, hits points and the process is known to have a 

continuous local time. We will be interested in 

a a 

T(a,a) = J l (_ a # a )(X s)ds = J L(x,a)dx 
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where L(x,a) is a continuous version of the occupation time at x. 
Intuitively, when a is small, IL(x,a)-L(0,a)I should have smaller 
order than L(0,a). For a fixed a > 0, Barlow [2] has obtained very 
precise results about the modulus of continuity of L(x,a) in x. We 
do not see how to use these directly because we are interested in 
the asymptotics of T(a,a) as a 1 0. Our first objective is to show 
that these are the same as those of 2a L(0,a). 

If a > 1, it is well known that the right continuous inverse 
of L(0,a) is a subordinator of index /3 = 1 - 1/a. This index will 
give us an adequate bound on |L(x,a)-L(0,a)|. We do not strive for 
exact answers but are satisfied with estimates sufficient for our 
main objective. 

Lffmma 3,1. Suppose 1 < a < 2, /0 = 1 - 1/a ajQ& L(x,s) As the 
continuous local time fil the stable process X t o_£ index a An R. 
Then. i£ 0 < £ < 7 (a-2 + 1/a), 

lim 
k-*» 

L(y2 k,2" k)-L(0,2 k )  
2-k(/5+&) 0 a.s. 

if 0 < £ < j(a-2 + 1/a) and H(a) - <w : sup L(x,a) < 1>, there As an 
x 

a Q > 0 such that 

JT(a,a)-2aL(0,a) [ > ? 
E { 2-1/a+e, VajJ - c a 

a 
whenever 0 < a < a Q. 

Proof. For fixed y in [-1,1], let x = ay and use Lemma 1.1 to 
estimate the large tail of the distribution of IL(x,a)-L(0,a)|. Let 
Y 1(t) be the right continuous inverse of L(0,s) and v

2(t) the 
inverse of L(x,s). Now L(x,s) starts to grow at the first hitting 
time of x, so defining 

F(a) = <Y 2(a p £ ) < a} U { Y ^ J 2 £ ) < a}. 

and using Lemma 2.3 of [7] gives 
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P(F(a)) < cx exp(-c 2 a J ). (3) 

Now note that 

E(|L(x,a)-L(0,a)|lw, >) < E( sup IL(x,s)-L(0,s)i1„ ) 
H ( a ) 0<s<a H ( a ) 

= E ( sup |L(x,s)-L(0,s)|1 .1 1 
\><s<a H ( a ) F ( a ) c ; 

+ E( oSupJr J(x,s)-L(0,s)il H ( a )l p ( a )j 

< E ( sup L(x,s)-L(0,s)i 
0 < S < Y 1 ( P P & * J 

+ E[ sup L(0,a)-L(x,s))+P(F(a)) 
^0<s<Y 2(a p & ) ' 

since, for w € F(a), 0 < L(x,s) < 1 and 0 < L(0,s) < 1 whenever 
0 < s < a 

2 
< 2 / exp (-c » )du+P(F(a)) 

0 a |x| 

using Lemma 1.1 and the identity 

E(Z) = J P(Z > u)du, 
0 

valid for any non-negative random varible. But 
oo 

J exp(-cX 2)dX = c^c 1 ^ 2 , 
0 

so 

oo 

l{ exj 
0 

2 
u  

/3-e., ,a-l 
du = c_ o 

i(/5-e.) |<a-l) 
a 2 |x| 2 

C 5 3 

When a < a Q , (3) ensures that the term P(F(a)) is of smaller order 

so we obtain 
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F/lL(ay,a)-L(Q,a)i > <a " I'J -1+1/<*~ | e 

(a+ - - 2 ) - - ~£ 1 a }2 2 
C6 a 

Finally, 
a 

T(a,a)-2aL(0,a) « j (L(x,a)-L(0,a))dx, 
-a 

so 
f[T(a,a)-2aL(0,a)1 > f 1L(ay,a)-L(0,a)I _ 

El 2-1/a+e ^(ajj " J E jsTl" V a ) * 7 

< 2 c 6a 2 &, 

CprpUary 2t2» Under the cpnflfltlpns pj£ Lemma L i , 

„.-*..^-,^,..,->,. 0 . . . . 

Proof. For each 6 > 0 we have 

P T(2 k,2 k)-2 k + 1L(0,2 k)l T 

-k(l+/J+e) АН(а) 2 CgS- 1 

-k - I 6 k 

whenever 2 < a, and 5! 2 converges. The easy half of Borel 
Cantelli now gives 

lim lT(2" k,2" k)-2' k + 1L(0,2" k)l m 

£1 2-k(l+p+t) ^(a) 0 a' s-
But the joint continuity of the local time ensures that P(H(a)) 
as a 4 0. Hence, for almost all w we have w € H(a) for a < a ^ w ) , 
s o 1m \ ~ 1 a n d t n e corollary follows, n (a; 

Corollary 2.3. Suppose h(s) ifi monotone and such that s ̂  £h(s) -» 
as s i 0 for some e in (0,7(a-2+l/a)), then 

4 
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(a) lim sup ^ aáT ) = 2 l i m s u p LL°(kV a's' 

aio a í l ( a ) aio n ( a ) 

(b) lim inf T ^ ' f ) = 2 lim inf L j ? ' a ) a.s. 
aio a h ( a ) aio h ( a ) 

T (a,a)+T2(a,a) L (0,a)+L (0,a) 
(c) lim inf a h / a > = 2 lim inf r-r—r a.s. 

aio a h ( a ) aio h ( a ) 

Proof. The results follow immediately from Lemma 2.2 whenever 
-k 

a = 2 , k -+ «>. If the limiting values are 0 or + <», the 
monotonicity of T(a,a) or L(0,a) will fill up the gaps. If the 
limit is a positive constant a.s., we can remove the gaps using the 

-k 

sequence a = p , p > 1 and monotonicity. In (c), we are assuming 

two independent copies of the process. 

Since the limiting behavior of L(0,a) can be deduced from that 

of its inverse as t -• 0, and this process is a stable subordin-
ator of index J3 = 1 - 1/a, we can deduce from Corollary 2.3(a) that 

T(a,a) 
lim sup —^ r-r- 5 - - r - r r = c a.s. 

aio a 2 " 1 / a(logUog a| ) 1 / a 

and could even evaluate c whenever X^ is symmetric stable. This 

result is Theorem 5.1 of [7]. We will use Corollary 2.3(c) in the 

sequel but note that (a) could be used to prove 

Theorem 2.4. Suppose 1 < a < 2, X t is stable o£ index a in fR, and 

T(a,a) denotes the total time spent in [-a,a] up to t = a. jC£ S'(s) 

is monotone increasing. then 

0 — CO 

i. . - T(a,a) _. ( *(s) -lim inf —5 J-—— = according as —-—- ds 
aiO a 2 " 1 / a *(a) ' s 

* ' + 00 0+ < oo 

We omit the proof which uses standard Borel-Cantelli 

arguments. Now we can state the main theorem of the section. 

Theorem 2.5. Suppose 1 < a < 2, and = (t,Xt) is the graph 

pj£ â ?tr¿ctly stable process X t q£ Anf leX a ¿n. R. Then 1£ 
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h(s) = s 2 1 / a * ( s ) , wftere *(s) 1 § monptpne increasing, 

0 2 < 0 0 

h-p G[0,1] = acçorflino; as j ds 

+ 0» 0+ = + 00 

Remark. The case a = 2 relates to the graph of the Weiner process. 

It is surprising that 

3/2.. ,-1/2 o r „ „, s I log s I -p G[0,1] = «> a.s. 

even though X̂ . has a uniform modulus of continuity Ix^^-X^l < 

1/2 1/2 

ch (log h| . In [11] one of us considered the packing measure 

of the graphs of continuous functions and asked for conditions which 

ensure that a continuous function whose uniform modulus is h £(h) 

will have a graph for which h i 1(h) is the correct packing measure 

function. 

Proof. We use the standard trick of projecting Lebesgue measure 

from the time axis onto the trajectory of G^ = (t,X t). Define a 

random Borel measure in the plane by 

fj(E) = \ <t € [0,1] : (t,Xt) € E} } . 

In order to apply the density Lemma 1.4, we have to calculate 

l i m i n f p(B(xfr)> 

riO r 1 A X*(r) 

for x = G t , 0 < t < 1 . Clearly, 

Tx (l r4 r ) + Tx (I r4 r )
 - f(B(x,r)) < T x(r,r)+T x(r,r) 

where x = (t,X^) and 

T x(r,r) = I{s € (t,t+r): l
x

s-
x

tl < r} 

T x(r,r) = l{s € (t-r,t): !X s-X tl < r}. 
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Since X s has stationary independent increments, once we fix 
1 2 

t € (0,1), T x(r fr)+T x(r,r) behaves as r i 0 like the sum of two 
independent copies of T(r,r). By Corollary 3.3(c), 

T.(a,a)+T (a,a) L (0,a)+L (0,a) 
lim inf _ * = lim inf -i — ± 
aiO a 2 1 7 t(a) aio a^t(a) 

where L^,L^ are local times of two independent stable processes of 
index a. Note that there is no loss of generality in assuming that 
for a suitable £ > 0, s~&sl/(s) + «> as s I 0 and this allows us to 
satisfy the growth condition on h(s) in Corollary 2.3. 

L^(0,a) is also the time spent in (0,a) by the subordinator Y* 
which is strictly stable of index /5. We can apply Lemma 1.6 to get 

L 1 (0,a)+L.(0,a) 0 f+lti\2 = + °° 
lim inf — - — - = with { Z ds 

a i 0 a ^ * ) + c i+ or < oo 

Putting these results together gives, for t € (0,1) 

riO r T(r) 

If F C [0,1] is the set of t satisfying (4), a Fubini argument tells 
us that JF( = 1, so that fJ G(F) = 1 a.s. By Lemma 1.4 we get 

h-p G[0,1] > h-p G(F) = + oo a.s. 

We have to work harder in the other direction. Assume that 
Js~lvf(s) 2ds converges, and denote by H the set of good points 

fj(B(X ,r) ) 
H = {t € (0,1): lim inf ^Ipj = + oo>. 

Then |H| = 1 a.s. and Lemma 1.4 tells us that 9-p G(H) = 0. We have 
00 

to worry about the image of the bad points [0,1]\H = U H , where 
n=l n 

//(B(X ,r) ) 
H n " { t € ( 0 ' 1 ) : l i m i n f — h ( 2 r ) - n ) ' F o r 11 € H n r b y 

monotonicity we have 
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fj B(X t,2~ k) < cn h(2 k ) (5) 

_k 
for infinitely many k. Consider a semi-dyadic square S of side 2 

-k-2 
bad if G g hits the inside square of side 2 but spends less than 

-k 
c n h(2 ) in S. Any t € H n will be in infinitely many such bad S. 
The probability that S is bad given that it is hit is at most 

P{T(2~"k,2"~k) < c n h(2" k)}. (6) 
- J . 

We now assume, without loss of generality, that s t(s) -» «> as 
s i 0 for some positive £ < ^(<x-2 + . 

We now extend the idea we used in proving Lemma 2.1. Since 
L(x,s) is continuous in (x,s) for 0 < s < 1, and has compact 
support, it is uniformly continuous. We define the event 

J(a) = {w: I x | < a, 0 < t < a =» |L(y,s)-L(y+x,s+t) I < 1>. 

Clearly, J(a) J as a I 0 and P(J(a)) 1 as a I 0. Also, the local 
condition H(a) will be satisfied at every t e [0,1] if J(a) holds, 

-k 
For 2 < a, our first object is to prove 

P({T(2" k,2~ k) < C l h(2~ k)} n J(a)) < c 2*(2"" k). (7) 

The left hand side of (7) is bounded by 
-k+l -k -k P{2 **XL(0,2 ) < 2 c 1 h(2 )} 

+ P{|T(2" k,2" k)-2" k + 1L(0,2" k)|l J ( a ) > cx h(2" k)}. 

Using the results in [13] and the scaling property shows that the 
first term is 

P{L(0,1) < C l*(2~ k)> < c 3t(2" k), 

and the second term is bounded by 

p /lT(2- k,2- k)-2~ k + 1L(0,2~ k)1 n ^ ( 2 " k ) \ 
* \ 2-k(l+p+£) ^(a) - cl 2-k£ J 

< 2 ~ k & - /lT(2" k,2" k)-2" k + 1L(0,2" k)i \ 
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C 4 
¿ÍL 
+ (2 k ) 

c 5*(2
 k ) 

when k is large, because of the growth condition on + (s) . This 

completes the proof of (7). 

Now denote by Nfc the number of bad semi-dyadics entered by G t 

-k 

By Lemma 6.1 of [7], if w € J(a) and 2 < a, the number of semi-

dyadics entered by G t is 0 ( 2 k ( 2 " 1 / o t)) S o 

E(N k) < c 2

k ( 2 " 1 / a ) n t ( 2 ~ k ) . 

If we use all possible bad semi-dyadics without worrying about 

disjointness we get, for w € J(a), 

E h-p**(G(Hn)) < E h-P**(G(Hn)) 

-k 
< c I E (N. ) h ( 2 ) 

k=k Q 

-k 2 

< c Z +(2 K r 
k=k Q 

and this series converges. Letting k Q -+ *> gives 

E h-p**(G(Hn)) = 0 

so that h-p**(G(UH )) < Z h-p**G(H ) = 0 a.s. By Lemma 1.5, 
n n=l n 

h-p(G(UHn)) = 0 and so h-pG[0,l] = 0 a.s. on J(a). But a.s. for 

each w there is an a ^ ( w ) > 0 such that w s J(a) for 0 < a < so 

we conclude finally that h-p G[0,1] = 0 a.s., and we have completed 

the proof of Theorem 2.5. 

We now summarize the information regarding the other cases 

which can be solved by the same methods. 
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Theorem g f$. If G t = (t,Xt) is tfce graph of a strictly stable 

process X t o_£ index a iii B?
d. Then 

(a) II d > 2 ar^ 1 < a < 2, h(s) = s a*(s) 

h-pG[0,l] = according a§ J L

S

J ~ ds 

00 S + CO 

0+ 
(b) If d > 3 and a - 2, h(s) - s2(log|log s|) 1, there As a. 

finite c sjicii that a.s, fpr every Borel set E C [0,1], 

h-pG(E) = c|E|. 

(c) IÍ d > 1 and a < 1, h(s) = s, then a.s. for every Borel set 

E C [0,1], h-p(G(E)) - |E|. 

Proof. (a) This is the transient case. Since the projection of G t 

on the state space is the range of X t, we have h-pG[0,l] > h-pX[0,l] 

and the case when the integral diverges follows from Theorem 2 of 

[13]. A simple rate of escape argument shows that a.s. 

T(a,a) = T(a) for 0 < a < a Q 

so that the lim inf behavior of T(a) and T(a,a) will be the same. 

Whenever the integral converges the usual density argument shows 

that h-pG(H) = 0 where H is the set of good points. For bad points, 

since 

P{T(a) * T(a,a)} < a c, 

the probability that T x(a,a) is small is of the same order as T x(a) 

small, so the argument on page 219 of [13] is valid without change 

to yield h-pG[0,l] = 0. 

(b) This can be obtained using the above modifications to the 

argument in [15]. 

(c) When a < 1, J = Z ¡X.-X. I converges. Let G be the 
t€[0,l] r T 

set in R d + 1 obtained from the range of G^ by adding the countable 

set of line segments joining X^ _ to X^ whenever X̂ . has a 

discontinuity at t.. G is then a rectifiable arc in iR d + 1 of length 

(1+J). We can parametrize this set using arc length s from (0,0) in 
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such a way that each jump of X t at t = t. corresponds to an interval 

I. of length |X -X _| = J. starting at t.+ Z J.. In [16] we 
1 1 l 1 1 t j<t i

 3 

considered the linear packing measure of subsets of rectifiable arcs 
in R 2 and the result was extended in [10] to sets in Using 
the length parametrization of an arc f(s), we know that for any 
Borel set 

F c [0,1+J], h-p f(F) = h-m f(F) = |F|. 

In order to get subsets of (0 < t < 1), we first remove any 
points from U l ^ , and then note that every s € F - U l ^ corresponds to 
a t in (0,1) and every t € (0,1) corresponds to a value s $ U l ^ . It 
follows that if E is Borel C [0,1], we have a.s. 

h-p X(E) - |E|. 

Remark. The Hausdorff measure results corresponding to this theorem 
were obtained by Jain and Pruitt [3]. Our methods do not cover the 
strictly stable Cauchy case a = 1 or planar Brownian motion 
a = 2 = d. An analysis of the packing measure of the range of a 
symmetric Cauchy process in R is also missing from the literature. 
One expects the answer to be similar to that for planar Brownian 
motion [4]. 

3. The Strictly Asymmetric pa^cfoy Prpcess 
The Hausdorff measure properties of the graph of this process 

were obtained in [8]. We observed there that covering by equal 
balls did not increase the covering measure by more than a constant 
factor. The same phenomenon will be observed for packing. In fact, 
the same measure function 9(s) = s|log s| 1 is correct for both 
packing and covering so this random set has stronger regularity 
properties than any others previously studied. We have enough 
preliminary estimates to proceed to the main result. 

Theorem 3.1. given a. strictly asymmetric pauqfry prpqess X t AQ R D , 

there are finite positive constants c ,c such that 
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