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RECENT PROGRESS IN PROBABILISTIC NUMBER THEORY 
Adolf HILDEBRAND 

1 . Introduction 

Probabilistic number theory (in the sense of F33) can be 
described as the study of additive and multiplicative arithmetic 
functions from a general point of view, with an emphasis on 
probabilistic methods. A function f: IN -*<C is called additive (resp. 
multiplicative), if i t satisfies f(nm)=f(n)+f(m) (resp. 
f(nm) = f(n)f(m) ), whenever n and m are coprime. Most of the 
classical number-theoretic functions fall into one of these categories: 
y(n) (the Moebius function), c|)(n) (the Euler phi function) and d(n) 
(the divisor function) are multiplicative functions; Q(n) and oo(n) 
(the number of prime factors of n counted with resp. without 
multiplicity) are additive functions. 

The relevance of a general approach to additive and multiplicative 
functions lies in the fact that many interesting results on the 
mentioned familiar arithmetic functions depend essentially only on 
the additivity or multiplicativity of the function in question and 
not on its particular definition. For example, i t has been known 
since the beginning of this century that the limit lim — Z y(n) 

x -*00 n<x 
exists, a result which lies quite deep, since it is known to be 
equivalent to the prime number theorem. It turns out that here the 
only relevant property of the Moebius function is that of being a 
multiplicative function with values in [-1,13 • In fact, Wirsing fl9j 
proved in 1967, that for every such function the limit lim — Z f(n) 
exists. x X nix 

Probabilistic number theory has been developped in the last 
three decades. While in some areas the theory has reached a 
satisfactory stage of development, there remain others, where the 
results obtained so far are only fragmentary. I want to focus 
here on recently achieved results and open problems in those 
latter areas. A survey of "classical" probabilistic number theory can 
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be found, for example, in f2j . 

2. The Turan-Kubi1ius inequality 

In 1917, Hardy and Ramanujan [8] proved that if ¥(n) is any 
function tending to infinity, then 

CO (n) = loglog n + 0(¥(nV loglog ri* ) 
holds for "almost all" integers n , i . e. for n€(N\E , where 

lim - Z 1 = 0 . 
n< X 
n€E 

In 1934, Turan [18] gave a new proof for this result by 
establishing the inequality 

( 1) j7 Z (a)(n)- loglog N ) << loglog N 
„ • XT 

The theorem of Hardy and Ramanujan follows from (1) by Tchebycheff 1 s 
inequality, a familiar and very useful tool in probability theory. 
Turan's method greatly influenced the further develoment of 
probabilistic number theory. Besides being simpler than the method 
of Hardy and Ramanujan, i t had the advantage that i t can be applied 
in very general situations, since the inequality (1) can be easily 
generalized. This generalization has been carried out in full 
by Kubilius [l43, who derived a version of (1), which is valid 
uniformly for all additive functions. 

Turan-Kubi1ius inequality: Let 

Var(f,N) = I Z If(n) - I Z f(n) I 
n s "NT n ̂  N 

B(f,N) = Z 
* m .XT 

p <_N 

f(pm)12 \ 
m 

P 

1/2 

Then the ine quaii ty 

96 
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(2) Var(f ,N) <_ c B2(f ,N) 

holds for all additive functions f and a 11 N>_ 1 with an absolute 
cons tant c . 

Besides being of some interest for its own sake, this inequality 
proved to be an extremely useful tool in establishing deeper results 
on the distribution of the values of additive functions. The 
question therefore arises, whether and to what extent it is sharp. 
It turns out that for a large class of additive functions (2) is 
indeed best-possible in the sense that an inequality in the opposite 
direction (with a different constant) holds. However, this is not 
always the case: for the additive function f(n)=log n , the 
left-hand side of (2) remains bounded, as N ->CO 9 while the right-
hand side behaves like log N 

Recently, Ruzsa [ 1 6] showed that by slightly modifying the 
expression on the right of (2), one can obtain an inequality, in 
which both sides are of the same order of magnitude. 

Ruzsa's inequality: The re exist positive constants c ^ and ĉ  » 
such that the inequality 

Var(f,N) 
<c1 
ww 

min B2(f-Xlog,N)+|\|2 

holds for all additive functions f and all N> 1 . 

A problem, which has attracted some attention in the past few 
years, is that of determining the "optimal" constant in (2). Let 

cN = sup Var(f,N)B~2(f,N) 

where the supremum is taken over all additive functions f , for 
which B(f,N)F-0 . Kubilius devoted several papers to the problem of 
estimating ĉ  from above and below, and at the Oberwolfach meeting 
in 1980 he formulated the conjecture 
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11 m c XT = 1.5 
N ->co 

Shortly afterwards, Montgomery proved this conjecture (cf. [\ 5j ) . 
Thus 1.5 is "asymptotically" the optimal constant in (2), but 
this yields no information about the optimal value for c in (2), 
i. e. sup c . Numerical calculations carried out by Kubilius fl 

show that Cjj<1.5 for small values of N , and thus suggest the 
following 

Conj e c ture : (2) holds with c=1.5 . 

3. Limit distributions for additive functions 

In 1939, Erdò's and Kac [6] refined the theorem of Hardy and 
Ramanujan quoted in the preceding section by proving 

The orem (Erdos— Kac ) ! For every t€(R . 

1- 1 JL f T̂VT Cj(li; - lOglogN ^ , w^x lim — #{n<N: /-, V & <t } = $ ( t ) , N — /loglogN — 

vh ere 

(Ht) = -Г7Г~ 
t 

— co 
e 2 / 2d s 

i s the distribution function o f the Gaussian distribution. 

Kubilius £l 4*3 and Shapiro [17j independently generalized this 
result to a large class of additive functions. 

Theorem (Kubilius , Shapiro ) : Let f : |N ->R b_e_ additive , no_t 
identica1ly zero, and suppose that 

(3) Y. 
p<N 

I f(p)J>eB(f,N) 

f2(p) 
P 

o(B (f,N)) (N + °°) for every E>0 . 
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Then we have 

(4) lim i #{n<N: fUB(f N ) ^ " -C } = ®(t) ^^IR) , 

whe r e B(f,N) i_s defined as in section 2 and 

A ( f , N ) = 
pm<N 

f ( P ) 
m 

P 

It has been conjectured by Shapiro [l 7] , but s t i l l not proved, 
that the condition (3) is actually necessary for (4) to hold. 

The theorem of Kubilius and Shapiro can be viewed as a central 
limit theorem for additive functions, with the condition (3) being 
the analogue of the Lindeberg condition in the probabilistic central 
limit theorem. There exist by now a number of other theorems of this 
type, which constitute analogues of well-known limit theorems in 
probability theory. Such "limit theorems for additive functions" 
form the core of classical probabilistic number theory and are 
extensively treated in the monographs of Kubilius [l 4] and Elliott £3"]. 
Among the few open problems that are left in this area, the most 
attractive is perhaps the above mentioned conjecture of Shapiro 
concerning the necessity of the "Lindeberg condition" (3). 

4. Mean value theorems for multiplicative functions 

The main problem in the theory of multiplicative functions is 
to estimate or evaluate asymptotically the means — E f(n) of a 

n<x 
multiplicative function f . Results in this direction, so-called 
mean value theorems, are potentially important for the study of 
additive functions. In fact, by the characteristic function method 
the distribution of the values of an additive function g(n) can 
be linked to the behavior in mean of the multiplicative functions 
exp( i tg(n) ) , te (R • 

A central question is whether for a given multiplicative function 
or a given class of multiplicative functions the "mean value" 
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lim - Z f(n) 
x->°° n <x 

exists. This can be a quite non-trivial problem, as the example of 
the Moebius function shows. In 1961, Delange [l̂  characterized those 
multiplicative functions of modulus <_1 , which have a non-zero 
mean value. Wirsing £l 9] showed in 1967 that any re al -valued 
multiplicative function of modulus <1 has a mean value. Shortly 
afterwards, Halasz [7] devised a powerful analytic method, which 
enabled him to give a new and simpler proof for Wirsing' s theorem 
and to generalize it to complex-valued multiplicative functions. 
Halasz also obtained quantitative mean value estimates, which had 
important applications in the theory of additive functions. 

Recently, the author [9] derived Wirsing's mean value theorem 
from a large sieve inequality, a well-known and useful tool in 
analytic number theory. This method had the advantage that i t can 
easily be adapted to deal with sums of multiplicative functions 
over short intervals. In particular, it yields the following 
short interval mean value theorem, which is the first of i ts kind. 

Theorem[l 0): For any real-valued mul tiplicative f unc t ion f o f  
modulus <_ 1 and any function $ ( x ) <x satis f y ing log^x)^ log x 
( x->°°) , the 1 imi t 

lim XT—" 
x-$(x)<n<x 

z f (n; 

exists. 

An interesting, but probably very difficult problem is to 
determine the behavior of multiplicative functions on special 
sequences such as the sequence of the values of a polynomial with 
integer coefficients at integers or at primes. Almost nothing is 
known in this direction. In particular, it has not yet been proved 
that the limits 

1 2 lim— Z U(n +1) x x->oo n < X ' l i m v i h 1 p(p+l) 
x->°° p < X 

exist and are zero, as one would expect. 
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To conclude this section, I want to mention an old and very 
intriguing conjecture due to Erdos: 

Conjecture : Let f b_£ a_ comp 1 e t e 1 y mul tiplicative function 
( i . e . satis fying f ( nm) = f ( n ) f(m) for al 1 n , m € IN ) , assuming only  
the values +_ 1 . Then 

SUp I I f(n)| =0° 
x> 1 n<x 

5. Additive functions at consecutive integers 

In 1946, Erdos proved that a real-valued additive function f 
satis fying 

(5) f (n+ 1 ) - f (n) = o( 1 ) (n -»-00) 
o r 

(6) f(n+l) > f(n) (n>l) 

must be of the form 
(7) f = X log 
for some \€fR . Wirsing[203 and Katai[l2"] independently showed that 
the first of these conditions can be weakened to 

lim - Z If(n+1) - f ( n ) 1 = 0 x n<x1 1 X̂OO _ 

In 1979, Wirsing[2l"j proved that for a completely additive function 
the condition 

f(n+l) - f(n) = o(log n) (n ->OO) 

already implies that f is a multiple of the logarithm. 

These results show that,in a sense, the logarithm is the only 
"smooth" additive function. Very mild regularity conditions on the 
behavior of f (more specifically, on the behavior of the 
differences f(n+l)-f(n) ) already imply that f is a multiple 
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of the logari thm. 
The mentioned results are all of asymptotic nature. It is much 

more difficult to obtain quantitative estimates, which relate the 
behavior of the differences f(n+l)-f(n) on a finite interval 
to that, of f(n)-Xlog n with a suitable X on another finite 
interval. Elliott [4,Theorem 14. l] recently proved such a result, 
which had been previously conjectured by Ruzsa. 

Theorem (Ell iot t ) : Th e re exists an absolute constant c such  
that the ine quali ty 

inf max |f(n)-Xlog n| <_ c max | f ( n+1 ) - f ( n ) | 
X£IR n±N n<NC 

holds for all additive f unc t ions f : IN ->|R and alj. N>_1 . 

This is a very powerful theorem, and it implies, often in a 
much stronger form, almost all previously known results in this 
area. For example, an immediate consequence of El l iot t ' s theorem 
is that for any additive function f: {N ->|R and any a>_\ the 
estimate f ( n + 1 ) - f ( n ) =0 ( ( 1 o g n)a) implies f(n)=0((log n)06). 
Previously, this was only known when l£0K6/5 or a:>3 C[2l],£2 2p# 

The proof of El l iot t ' s theorem is extremely complicated and 
takes up a large part of the book [4] . It involves many new ideas, 
some of which are of independent interest. A major role in the proof 
is played by a Bombieri-Vinogradov type theorem for additive 
functions . 

Elliott in fact proved a more general result, involving the 
differences f(an + b )-f(cn + d) , where a, b, c, d are fixed positive 
integers satisfying ad-bc=|=0 . This enabled him, for example, to 
show that an additive function, for which the limit 
lim (f(an+b)-f(cn+d)) exists, must satisfy f(n)=Xlog n for some X 
and all n coprime to (ad-bc)ac , thus solving a conjecture of 
Katai [l l] . 

102 



PROBABILISTIC NUMBER THEORY 

6. Multiplicative functions at consecutive integers 

One may expect that the functions 

(8) f(n) = nZ (n>l) 
play an exceptional role among multiplicative functions similar to 
that of the functions (7) among additive functions, and one may 
try to find conditions on f , which imply (8). Recently, 
Wirsing (unpublished) proved that a multiplicative function f 
of modulus <1 and satisfying 

(9) lim f(n+l)f(n) = 1 
n+°° 

must be of the form (8). This is the analogue of Erdos ' result that 
for an additive function (5) implies (7). However, i t has not yet 
been proved that the same conclusion holds, when (9) is replaced 
by the weaker condition 

lim - I f(n+1)f(n) =1 x x->°° n<_x 

as was the case with Erdos' result. This is probably much more 
difficult than the corresponding result for additive functions. 

On the whole, our present knowledge about the behavior of 
multiplicative functions at consecutive integers is very poor. 
It would be of great interest to determine the asymptotic behavior 
of the quantities 

1 (10) - I f(n+l)f(n) x n<x 

in the case Ifl^l , say,but almost nothing is known in this direction. 
In the case of the Moebius function, the obvious conjecture is that 
the limit of (10) is zero, but this seems to be unattackable at 
present and lies perhaps as deep as the twin prime conjecture. 
It is not even known whether y(n+1)y(n)=- 1 holds on a set of 
positive density. 
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One can ask more generally for the simultaneous distribution 
of k consecutive values of f . Suppose, for example, that f is 
completely multiplicative and assumes only the values +1 . For every 
k-tuple £ = (E j , . . . ,E^) , E_̂  =+_ 1 , let 

N (x) = #{n<x: f(n+i)=ei , i= l , . . . ,k} 

Call f no rma1 , i f 

N (x) A/ 2~kx (x->OO) 

holds for every £ = ( E ^ , . . . , E ^ ) . Katai [l 3} has shown that, in a 
certain sense, almost all such functions f have this property. 
However, there"is no specific function f , which has been proved 
to be normal. In particular, it is not known whether the Liouville-
function X(n ) = (- 1 )̂ n̂̂  is normal, although this seems highly 
plausible . 

While the last problem in its full generality seems to be 
unattackable at present, the case of two consecutive values is 
perhaps not completely out of reach. For example, it is easy to 
see that for £=(1,1) and £=(-1,-1) we have N (̂x)>>x , N (x) 
being defined as above with respect to the Liouville function. 
The cases e=(l,-l) and E=(-l,l) are much more difficult. Here 
one can show, by a relatively complicated argument, that 

(x)>>x(loglog x) holds for arbitrary large values of x . 
There is s t i l l a great potential for further research, and the 
bound N (̂x)>>x for all choices of £=(£j>e2^ as a fi-rst maJor 
step towards the above mentioned general conjecture is perhaps 
not completely hopeless. 
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