Astérisque

MASAKI KASHIWARA Index theorem for constructible sheaves

Astérisque, tome 130 (1985), p. 193-209

<http://www.numdam.org/item?id=AST_1985__130__193_0>

© Société mathématique de France, 1985, tous droits réservés.

L'accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

INDEX THEOREM FOR

CONSTRUCTIBLE SHEAVES

by

Masaki KASHIWARA

R I M S, Kyoto University and l'Université de Paris VI. §0 - INTRODUCTION

0.1. Let X be a complex manifold of dimension n and let $\underline{\mathfrak{M}}$ be a holonomic module over the ring $\underline{\mathfrak{D}}_X$ of differential operators on X. Then the Rham complex DR($\underline{\mathfrak{M}}$) of $\underline{\mathfrak{M}}$ has constructible sheaves as its cohomology groups, and its local index $\sum (-1)^i \dim \underline{\mathrm{H}}^i (\mathrm{DR}(\underline{\mathfrak{M}}))_X$ at a point x can be expressed in terms of the characteristic cycle $\underline{\mathrm{Ch}}(\underline{\mathfrak{M}})$ of $\underline{\mathfrak{M}}$ (Kashiwara [3], Brylinski-Dubson-Kashiwara [1]). Recently Dubson [2] found a beautiful formula to describe this.

THEOREM - If X is a compact complex manifold, we have

 $\sum (-1)^{i} \dim H^{i}(X; DR(\underline{m})) = (-1)^{n} \underline{Ch}(\underline{m}) \cdot T_{X}^{\star} X .$

Here the last term means the intersection number of two n-cycles in $\ensuremath{\mathsf{T}^{\star}X}$.

0.2. The purpose of this lecture is to generalize his result to the real case.

Let X be a real analytic manifold of dimension n and F a constructible sheaf on X. First we shall define the characteristic cycle $\widetilde{SS}(F)$ of F as a $\pi^{-1}\omega_X$ -valued n-cycle in T^*X . Here ω_X denotes the orientation sheaf of X and π : $T^*X \rightarrow X$ is the cotangent bundle to X. In order to define this, we use the micro-local theory of sheaves developped in Kashiwara-Schapira [4].

Secondly we prove the index theorem.

THEOREM - Let F be a constructible sheaf, and $\varphi : X \rightarrow \mathbb{R} \ a \ C^2$ -function. Set $Y_{\varphi} = \{d\varphi(x) \ ; \ x \in X\} \subset T^*X$. We assume that $\{x \in \text{supp F}; \varphi(x) \leq t\}$ is compact for any t and that $\text{SSF} \cap Y_{\varphi}$ is compact. Then dim $H^j(X;F) < \infty$ for any j and we have

$$\sum (-1)^{j} \dim H^{j}(X;F) = (-1)^{n(n+1)/2} \widetilde{SS}(F).Y_{\varphi}$$

The proof uses the micro-local version of Morse's theory. Similarly to the Morse function, we deform φ a little in a generic position so that Y_{φ} intersects SSF transversally. Then we consider $H^{j}(\{x; \varphi(x) < t\}; F)$ and vary t. Then the cohomology groups change at points $t \in \varphi(\pi(Y_{\varphi} \cap SSF))$, and the obstruction can be calculated locally and coincides with the intersection number of Y_{φ} and $\widetilde{SS}(F)$ at $p \in SSF \cap Y_{\omega}$ with $t = \varphi_{\pi}(p)$.

§1 - SUBANALYTIC CHAINS

1.1. For a topological manifold X, let us denote by ω_{χ} the orientation sheaf of X. If X is oriented then $\omega_{\chi} \cong \mathbf{Z}_{\chi}$ and this isomorphism changes the signature when we take the opposite orientation of X.

1.2. If X is a differentiable manifold of dimension n and if θ is a nowhere vanishing n-form on X, then we shall denote by sgn θ the section of ω_{χ} given by the orientation that θ determines. Hence we have (1.2.1) $\operatorname{sgn} \varphi \theta = \operatorname{sgn} \varphi \operatorname{sgn} \theta$

where $\operatorname{sgn} \varphi = \pm 1$ if $\pm \varphi > 0$.

1.3. From now on, we assume that X is a real analytic manifold. For an integer r, let us denote by $E_r(X)$ the set of pairs (Y,s) of a subanalytic locally closed r-dimensional real analytic submanifold Y of X and a section s of ω_Y . We define the equivalence relation \sim on $E_r(X)$ as follows : $(Y_1,s_1) \sim (Y_2,s_2)$ if and only if there exists a subanalytic locally closed r-dimensional real analytic submanifold Y such that Y C $Y_1 \cap Y_2$, $s_1|_Y = s_2|_Y$ and $\overline{supp s_1} = \overline{supp s_2} = \overline{supp s_1} \cap \overline{Y}$.

We denote by $C_r(X)$ the set of equivalence classes in $E_r(X)$ and an equivalence class is called *subanalytic* r-chain. Remark that its support is not assumed to be compact.

We can define the boundary operator

$$\partial : C_r(X) \longrightarrow C_{r-1}(X),$$

so that $\partial \partial = 0$.

1.4. One can see easily that C_r : $U\longmapsto C_r(U)$ is a fine sheaf on X and we have the exact sequence

$$(1.4.1) 0 \to \omega_{\chi} \to C_n \xrightarrow{\partial} C_{n-1} \to \dots \to C_0 \to 0$$

This follows for example from the fact that any subanalytic set admits a subanalytic triangulation.

1.5. For a sheaf F on X, we set $C_r(F) = C_r \otimes F$. By (1.4.1), $\omega_{\chi} \otimes F$ is quasi-isomorphic to the complex of soft sheaves (1.5.1) $C_n(F) \rightarrow C_{n-1}(F) \rightarrow \cdots \rightarrow C_0(F)$. We set (1.5.2) $C_r(X;F) = \Gamma(X;C_r(F))$ and call its elements F-valued subanalytic r-chains. We have isomorphisms (1.5.3) $H_r^{inf}(X;F) \stackrel{=}{_{def}} H_r(C.(X;F)) = H^{n-r}(X;F \otimes \omega_{\chi}).$ (1.5.4) $H_r(X;F) \stackrel{=}{_{def}} H_r(\Gamma_c(X;C.(F))) = H_c^{n-r}(X;F \otimes \omega_{\chi}).$

1.6. Assume further that F is locally constant. For a subanalytic r-dimensional real analytic submanifold Y of X and for a section s of F $\otimes \omega_{Y}$ over Y, the pair (Y,s) determines an F-valued subanalytic r-chain.

1.7. The following criterion for a chain to be a cycle is evident.

LEMMA 1.1 - Let α be a subanalytic r-chain, $\varphi: X \dashrightarrow \mathbb{R}^r$ be a real analytic map. We assume that

(i) Supp $\alpha \longrightarrow \mathbb{R}^r$ is a finite map,

(ii) Supp $\partial \alpha \longrightarrow \mathbb{R}^r$ is an immersion,

(iii) the intersection number of α and ${\Psi^{-1}}(t)$ is constant in $t \in \mathbb{R}^r \, \setminus \, \phi(\text{Supp } \, \partial \alpha).$

Then α is a cycle, i.e. $\partial \alpha = 0$.

§2 - SYMPLECTIC GEOMETRY

2.1. Let X be an n-dimensional real analytic manifold of dimension n and π : $T^*X \longrightarrow X$ the cotangent bundle to X. Let θ_X denote the canonical 1-form on T^*X . Then $(d\theta_X)^n$ is nowhere vanishing and this gives the orientation of T^*X .

2.2. Now, let Y be a real analytic submanifold of X. Let T_Y^*X be the conormal bundle to Y. Then we have the canonical isomorphism

$$(2.2.1) \qquad \qquad \omega_{\mathrm{T}_{\mathrm{Y}}^{*}\mathrm{X}} \otimes \pi^{-1} \omega_{\mathrm{X}} \cong \mathbb{Z}_{\mathrm{T}_{\mathrm{Y}}^{*}\mathrm{X}} .$$

Since the choice of signature is important in the future arguments, we shall write this explicitely. Let (x_1, \ldots, x_n) be a local coordinate system of X such that Y is given by $x_1 = \ldots$ = $x_r = 0$, and let $(x_1, \ldots, x_n, \xi_1, \ldots, \xi_n)$ be the coordinates of T*X such that $\theta_X = \sum \xi_j dx_j$. Then the section $(-1)^r \operatorname{sgn} (d\xi_1 \ldots d\xi_r dx_{r+1} \ldots dx_n) \otimes \operatorname{sgn} (dx_1 \ldots dx_n)$ of $\omega_T^*_{YX} \otimes \pi^{-1} \omega_X$ does not depend on the choice of coordinates and it determines the isomorphism (2.2.1).

2.3. Let Λ be a subanalytic conic locally closed Lagrangian subvariety of T^{*}X such that the projection $\Lambda \longrightarrow X$ has a constant rank. Then we have $\omega_{\Lambda} \otimes \pi^{-1} \omega_{\chi} \cong \mathbf{2}_{\Lambda}$. In fact, locally, Λ is an open subset of T^{*}_YX for a real analytic submanifold Y of X and we can apply 2.2. Therefore Λ defines the $\pi^{-1} \omega_{\chi}$ -valued n-chain in T^{*}X (see 1.6), which we shall denote by [Λ].

§3 - CHARACTERISTIC CYCLE

3.1. Let us fix a commutative field k once for all, and vector spaces mean vector spaces over k. Let X be a real analytic manifold of dimension n. Let D(X) be the derived category of the abelian category of sheaves of vector spaces on X.

An object F of D(X) is called *constructible* if the following conditions are satisfied.

(3.1.1) $H^{j}(F) = 0$ except for finitely many j's.

(3.1.2) There exists a subanalytic locally finite decomposition $X = U X_{\alpha}$ of X such that $H^{j}(F)|_{X_{\alpha}}$ is a locally constant sheaf of finite rank for any j and any α^{α} .

We denote by $D^{\rm b}_{\rm C}(X)$ the full subcategory of D(X) consisting of constructible complexes.

3.2. For the notion of micro-support and its properties, we refer to [4]. We just mention the following properties.

For $F \in Ob(D^+(X))$, we can define the micro-support SS(F) of F as a closed conic subset of T^*X .

PROPOSITION 3.1 - Let $F \in Ob(D^+(X))$, φ a C^1 -function on X and let $t_1 \leq t_2$ be two real numbers. Assume that φ Supp $F \rightarrow \mathbb{R}$ is proper and that $d\varphi(x) \notin SSF$ for any $x \in X$ with $t_1 \leq \varphi(x) < t_2$. Then the restriction homomorphism

 $H^{j}(\{x; \varphi(x) < t_{2}\}; F) \rightarrow H^{j}(\{x; \varphi(x) < t_{1}\}; F)$ is an isomorphism for any j.

PROPOSITION 3.2. - If $F \in Ob(D_c^b(X))$, then SSF is a closed subanalytic Lagrangian subset of T^*X .

3.3. A morphism $u : F \rightarrow F'$ in $D^+(X)$ is called an isomorphism at $p \in T^*X$, if, for a distinguished triangle $F \xrightarrow{u} F' \rightarrow F'' \rightarrow F[1]$, we have $p \notin SSF''$. We denote by $D^+(X;p)$ the category obtained by localizing $D^+(X)$ by the isomorphisms at p (see [4]).

In particular, if φ is a C¹-function such that $d\varphi(\pi(p)) = p$ $\varphi(\pi(p)) = 0$, then $F \mapsto \mathbb{R} \ \Gamma_{\varphi^{-1}(\mathbb{R}^+)}(F)_{\pi(p)}$ is a functor from D⁺(X;p). Here \mathbb{R}^+ signifies the set of non-negative numbers.

PROPOSITION 3.3 - Let $F \in Ob(D_{c}^{b}(X))$ and Y a real analytic submanifold. If SSF $\subset T_{Y}^{\star}X$ on a neighborhood of $p \in T_{Y}^{\star}X$, then we have $F \cong \underline{V}_{Y}$ in $D^{+}(X;p)$ where V is a bounded complex of finite-dimensional vector spaces and V_{Y} is the constant sheaf on Y with V as fiber.

3.4 Let F be an object of $D_c^b(X)$. Then Λ = SSF is a subanalytic Lagrangian subvariety. Hence there exists a locally finite family $\{\Lambda_{\alpha}\}$ of real analytic subsets of $T^{\star}X$ satisfying the following conditions.

Then by proposition 3.3, for p $\in \Lambda_{\alpha}$ there exists a bounded

complex V_{α} of finite-dimensional vector spaces such that $F \cong V_{\alpha} \gamma_{\alpha}$ in $D^{+}(X;p)$. Then $\chi(V_{\alpha}) = \sum (-1)^{j} \dim H^{j}(V_{\alpha})$ is locally constant in p and hence determined by α . We set $m_{\alpha} = \chi(V_{\alpha})$.

DEFINITION 3.4 - We define the
$$\pi^{-1}\omega_X$$
-valued n-chain $\widetilde{SS}(F)$ by
(3.3.5) $\widetilde{SS}(F) = \sum m_\alpha [\Lambda_\alpha]$

It is almost obvious that this chain does not depend on the choice of $\{\Lambda_{\alpha}\}$. We shall call this the *characteristic cycle* of F. Later we shall show that $\widetilde{SS}(F)$ is in fact an n-cycle.

§4. INDEX THEOREM

4.1. Let X be a real analytic manifold of dimension n. For a real valued C^2 -function φ on X we set (4.1.1) $Y_{\varphi} = \{ d\varphi(x) ; x \in X \} \subset T^*X$ and (4.1.2) $Y_{\varphi}^{a} = \{-d\varphi(x) ; x \in X \} \subset T^{*}X.$ Then $Y_{\pmb{\varphi}} \, \text{and} \, \, Y_{\pmb{\varphi}}^{a}$ are isomorphic to X and hence we can regard them as $\pi^{-1}\omega_{v}$ -valued n-cycles in T^{*}X. 4.2. Now, we state the following three main theorems, whose proof is given in the next three sections. THEOREM 4.1 - For F \in Ob(D^b_c(X)), $\widetilde{SS}(F)$ is an n-cycle, i.e., $\partial \widetilde{SS}(F)$ = 0. THEOREM 4.2 - Let φ be a C²-function and F \in Ob(D^b_c(X)).We assume (4.2.1) For any $t \in \mathbb{R}$, $\{x \in \text{Supp F}; \varphi(x) \leq t\}$ is compact. (4.2.2) $Y_{\varphi} \cap SSF$ is compact. Then, dim $H^{j}(X;F) < \infty$ for any j and we have $\chi(X;F)_{def} \sum (-1)^{j} \dim H^{j}(X;F) = (-1)^{n(n+1)/2} \widetilde{S}(F).Y_{\varphi}.$ THEOREM 4.3 - Let φ and F be as in the preceding. We assume (4.2.1) and the following condition. $Y^{a}_{\boldsymbol{\varphi}} \cap SSF$ is compact. (4.2.3)

Then dim
$$H_c^j(X;F) < \infty$$
 for any j and we have
 $\chi_c(X;F) \stackrel{=}{\underset{def}{=}} \sum (-1)^j \dim H_c^j(X;F)$
 $= (-1)^{n(n+1)/2} \widetilde{SS}(F).Y_{G}^a$.

Remark that Theorem 4.1, $\pi^{-1}(\omega_{\chi}) \otimes \pi^{-1}(\omega_{\chi}) \cong \mathbb{Z}_{T^*\chi}$ and the condition (4.2.2) or (4.2.3) permit us to define the intersection number $\widetilde{SS}(F).Y_{\varphi}$ or $\widetilde{SS}(F).Y_{\varphi}^{\alpha}$.

§5 - PROOF OF MAIN THEOREMS (I)

5.1 We shall prove first the local version of Theorem 4.2 in a generic case. Let F be an object of $D_c^b(X)$, and we choose $\{\Lambda_{\alpha}\}$ and $\{Y_{\alpha}\}$ as in 3.4. Let x_o be a point of X and φ a C²-function on X such that

 $(5.1.1) \quad \varphi(x_0) = 0$,

(5.1.2) $d\varphi(x_{\circ}) \in \Lambda_{\alpha}$ and Y_{φ} intersects transversally Λ_{α} at $p = d\varphi(x_{\circ})$.

PROPOSITION 5.1 - Under these conditions we have

$$\chi(\mathbb{R}\Gamma_{\varphi^{-1}(\mathbb{R}^+)}(F)_{x_{\circ}}) = (-1)^{n(n+1)/2} (\widetilde{SS}(F) \cdot Y_{\varphi})_{p}$$

Here the last term means the intersection number of $\widetilde{SS}(F)$ and $Y_{\bf Q}$ at p = $d{\bf Q}(x_o)$.

PROOF - We shall take a local coordinate system (x_1, \ldots, x_n) of X such that Y_{α} is given by $x_1 = \ldots = x_r = 0$ and $x_{\circ} = 0$. Then we have

and

$$T_{p}(T_{\gamma_{\alpha}}^{*}X) = \{ (x,\xi) ; x_{1} = \dots = x_{r} = \xi_{r+1} = \dots = \xi_{n} \}$$
$$T_{p}(Y_{\varphi}) = \{ (x,\xi) ; \xi_{j} = \sum_{k} \frac{\partial^{2} \varphi}{\partial x_{i} \partial x_{k}}(0) x_{k} \}.$$

The transversality condition (5.1.2) implies that the Hessian matrix $\left(\frac{\partial^2 \varphi}{\partial x_j \partial x_k}(0)\right)_{r < j, k \leq n}$ is non-degenerate. Hence by Morse's lemma, after a change of local coordinates, we may assume that

$$\varphi|_{Y_{\alpha}} = \sum_{j>r} a_j x_j^2$$
 for $a_j \in \mathbb{R} \setminus \{0\}$

Let V be a bounded complex of vector spaces such that $F \cong \underline{V}_{Y_{\alpha}}$ in $D^{+}(X;p)$. Then as stated in 3.3, we have (5.1.3) $R\Gamma_{\varphi} - 1_{R} + {}^{(F)}x_{\circ} \cong R\Gamma_{\varphi} - 1_{R} + {}^{(\underline{V}}Y_{\alpha})x_{\circ}$. Let us note the following lemma.

LEMMA 5.2 - Let $Q\left(x\right)$ be a non-degenerate quadratic form on $\ensuremath{\mathbb{R}}^n$, q the number of negative eigenvalues of Q . Then for any vector spaces V , we have

Hence we have, by denoting
$$q = \# \{j; a_j < 0\}$$
,
 $H^k(\mathbb{R}\Gamma_{\varphi^{-1}\mathbb{R}^+}(F)_{x_{\circ}}) \cong \underline{H}^k_{\varphi^{-1}\mathbb{R}^+}(\underline{V}_{Y_{\alpha}})_{x_{\circ}} = H^{k-q}(V)$.

Therefore we obtain

(5.1.4)
$$\chi(\mathbb{R}^{\Gamma}_{\varphi^{-1}\mathbb{R}^{+}}(F)_{x_{o}}) = (-1)^{q}\chi(V) = (-1)^{q} \mathfrak{m}_{\alpha}$$
.

On the other hand, we have

$$(\widetilde{SS}(F).Y_{\varphi})_{p} = m_{\alpha}([T_{Y_{\alpha}}^{*}X].Y_{\varphi})_{p}$$
,

and we can easily verify

$$([T_{Y_{\alpha}}^{\star}X].Y_{\varphi})_{p} = (-1)^{n(n+1)/2} + q$$

This completes the proof of Proposition 5.1. Q.E.D.

5.2. Now we assume the condition (4.2.1) and the following conditions :

PROPOSITION 5.3 - Under these conditions we have dim $H^k(X;F) < \infty$

and

$$\chi(X;F) = (-1)^{n(n+1)/2} \widetilde{SSF}.Y_{\varphi}$$

PROOF - Set $\Omega_t = \{x; \varphi(x) < t\}$ and $Z_t = \{x; \varphi(x) \leq t\}$, and $\varphi \pi(Y_{\varphi} \cap SSF) = \{t_1, \ldots, t_N\}$ with $t_1 < \ldots < t_N$. We also set $t_{\circ} = -\infty$, $t_{N+1} = \infty$, $\Omega_j = \Omega_t_j$ and $Z_j = Z_t_j$. Then by Proposition 3.1, we have $H^k(\Omega_{j+1}; F) \cong H^k(\Omega_t; F)$ for $t_{j+1} \ge t > t_j$ and $0 \leq j \leq N$. Taking the inductive limit with respect to t we obtain (5.2.4) $H^k(\Omega_{j+1}; F) \xrightarrow{\sim} H^k(Z_j; F)$ Then by the following well-known lemma, we have $\dim H^k(\Omega_{j+1}; F) = \dim H^k(Z_j; F) < \infty$

LEMMA - If K is a compact set and if U is an open neighborhood of K , then the image of $H^{k}(U;F) \longrightarrow H^{k}(K;F)$ is finite-dimensional.

Since
$$\Omega_{N+1} = X$$
 and $Z_{\circ} = \emptyset$, (5.2.4) implies
(5.2.5) $\chi(X;F) = \sum_{j=1}^{N} (\chi(Z_j;F) - \chi(\Omega_j;F))$.

Now we have a distinguished triangle

$$\mathbb{R}\Gamma(\mathbb{Z}_{j} \setminus \Omega_{j} ; \mathbb{R}T_{\mathbb{X} \setminus \Omega_{j}}(F)) \to \mathbb{R}\Gamma(\mathbb{Z}_{j} ; F) \to \mathbb{R}\Gamma(\Omega_{j} ; F)$$

Hence we obtain

(5.2.6)
$$\chi(\mathbb{Z}_{j};F) - \chi(\Omega_{j};F) = \chi(\mathbb{R}\Gamma(\mathbb{Z}_{j} \setminus \Omega_{j};\mathbb{R}\Gamma_{\chi \setminus \Omega_{j}}(F)))$$

By the definition of the micro-support, we have

$$\sup \mathbb{R}^{\Gamma}_{X \setminus \Omega_{j}} (F)|_{\varphi^{-1}(t_{j})} \subset \pi(Y_{\varphi} \cap SSF) .$$

Hence we obtain

(5.2.7)
$$\mathbb{R}\Gamma(\mathbb{Z}_{j} \setminus \Omega_{j} ; \mathbb{R}\Gamma_{X \setminus \Omega_{j}}(F)) =$$

$$\bigoplus \mathbb{R}\Gamma_{X \setminus \Omega_{j}}(F)_{X} \cdot$$

$$x \in \pi(Y_{\varphi} \cap SSF) \cap \varphi^{-1}(t_{j})$$
The identities (5.2.5), (5.2.6) and (5.2.7) imply

$$\chi(X;F) = \sum_{\substack{x \in \pi(Y_{\varphi} \cap SSF) \\ \varphi(x) = t_{j}}} \chi(\mathbb{R}T_{X \setminus \Omega_{j}}(F)x) .$$

Thus Proposition 5.3 follows from Proposition 5.1. Q.E.D.

§6 - PROOF OF MAIN THEOREMS (II)

6.1. We shall prove Theorem 4.1. We give only an outline of the proof. Since $\widetilde{SS}(F \otimes k_{\{0\}}) = \widetilde{SS}(F) \times T_{\{0\}}^{*} \mathbb{R}$, it is sufficient to show that $\widetilde{SS}(F)$ is a cycle outside the zero section. The support of $\beta = \partial \widetilde{SS}(F)$ is an (n-1)-dimensional subanalytic subset contained in $\bigcup_{n} \partial \Lambda_{n}$. Taking a smooth point p of supp $\beta \langle T_{\chi}^{k} \chi$, we shall derive the contradiction by the use of Lemma 1.1 and Proposition 5.3 . 6.2. Let us take a local coordinate system (x_1, \ldots, x_n) of X such that $p = (0,\xi_0)$ and that the map $(x,\xi) \mapsto \xi$ from T^*X to \mathbb{R}^n gives a local embedding from supp β into \mathbb{R}^n and a finite map from SSF into \mathbb{R}^n . Set $\varphi(x,y) = \frac{1}{2}x^2 + xy$ and $\varphi_y(x) = \varphi(x,y)$. Then we have
$$\begin{split} & \text{SSF} \cap Y_{\ensuremath{\varphi}_y} \cap \{x; \ |x| = \varepsilon \} = \varnothing \ \text{for} \ |y| \leq \varepsilon \ \text{and} \ 0 < \varepsilon << 1 \ . \\ & \text{Therefore, if} \ |y| << \varepsilon \ \text{and} \ \text{if} \ Y_{\ensuremath{\varphi}_v} \ \text{satisfies the conditions} \end{split}$$
(5.2.1) - (5.2.3), then we have, by Proposition 5.3 $\chi(\{x ; |x| < \epsilon\}; F) = (-1)^{n(n+1)/2} \widetilde{SS}(F) \cdot Y_{\varphi_{Y}}$ In particular, $\widetilde{SS}(F)$. Y does not depend on y . The relation $\xi = \operatorname{grad}_{x} \varphi_{y} = x + y$ gives the projection g: $T^*X \rightarrow \mathbb{R}^n$ by $g(x,\xi) = \xi - x$. Since $g^{-1}(y) = Y_{\varphi_y}$, $g^{-1}(y)$.SS(F) is constant in y. Therefore We can apply Lemma 1.1 to see $\partial SS(F) = 0$.

§7 - PROOF OF MAIN THEOREMS (III)

7.1. In order to prove Theorem 4.2, we shall note the following

LEMMA 7.1. (i) Let Λ be an n-dimensional subanalytic conic real analytic submanifold of T^*X . Then { φ ; Y_{φ} and Λ intersect transversally } is dense in the space $C^{\infty}(X)$ of C^{∞} -functions on X with respect to the C^2 -topology.

(ii) Let Z be an (n-1)-dimensional subanalytic conic subset of $T^{\star}X.$ Then { Ψ ; $Y_{\Psi}\cap Z=\varnothing$ } is a dense subset of $C^{\infty}(X)$.

They can be shown by using Baire's category theorem similarly to the proof of the existence theorem of Morse's function.

Let φ and F satisfy the conditions in Theorem 4.2. Then there exists a function φ' close to φ which satisfies the conditions (5.2.1) - (5.2.3). Hence Proposition 5.3 can be applied to see $\chi(X;F) = (-1)^{n(n+1)/2} \sum_{SS(F),Y_{\varphi'}} SS(F) \cdot Y_{\varphi'}$. Since Y_{φ} and $Y_{\varphi'}$ are homotopic, we have

Since $I\varphi$ and $I\varphi$, are homotopic, we have $\widetilde{SS}(F).Y\varphi = \widetilde{SS}(F).Y\varphi$, .

This shows Theorem 4.2.

7.2. Theorem 4.3 can be proven in a similar argument or by reducing to Theorem 4.2 by the use of the Poincaré duality and the following proposition, which can be shown easily.

PROPOSITION 7.2 - For $F \in Ob(D_c^b(X))$, we have $\widetilde{SS}(\mathbb{R}\underline{\mathcal{H}om}_k(F,k_X)) = a^*(\widetilde{SS}(F))$,

where a is the antipodal map of $T^{\bigstar}X$.

§8 - APPLICATIONS

8.1. The following theorem follows immediately from Theorem 4.2.

THEOREM 8.1 - Let X be a compact complex manifold, and $F \in Ob(D_c^b(X))$. Then $\chi(X;F) = (-1)^{n(n+1)/2} \widetilde{SS}(F) \cdot T_v^* X$.

8.2. When X is a complex manifold and $\underline{\mathcal{M}}$ is a holonomic module over the ring $\underline{\mathcal{D}}_X$ of differential operators. Then $SS(DR(\underline{\mathcal{M}}))$ coincides with the characteristic variety $Ch(\underline{\mathcal{M}})$ of $\underline{\mathcal{M}}$ and $\widetilde{SS}(DR(\underline{\mathcal{M}}))$ coincides with the characteristic cycle $\underline{Ch}(\underline{\mathcal{M}})$ of $\underline{\mathcal{M}}$. Hence the results in this paper can be easily applied to holonomic modules.

8.3. Let φ be a real -valued real analytic function defined on X and $x_{\circ} \in X$. (8.3.1) $\varphi(x) > 0$ for $x \in X \setminus \{x_{\circ}\}$.

LEMMA 8.2. For any subanalytic closed conic Lagrangian set Λ , $d\Psi(x_o)$ is an isolated point of $\Lambda \cap Y_{\mathbf{G}}$.

PROOF - Otherwise there exists a real analytic path x = x(t) such that $x(0) = x_0$; $x(t) \neq x_0$ for $t \neq 0$ and $d\varphi(x(t)) \in \Lambda$. Since Λ is Lagrangian, $\theta = d\varphi(x(t)) = 0$. Hence $\varphi(x(t))$ is a constant function, which is a contradiction. Q.E.D.

Along with this lemma, the following theorem follows immediately from Theorems 8.2 and 8.3.

THEOREM 8.3 - Let F \in Ob $(D^{\rm b}_{\rm c}({\rm X}))$ and let ϕ satisfy (8.3.1). Then we have

(8.3.1) $\chi(F_{\chi_{\alpha}}) = (-1)^{n(n+1)/2} (\widetilde{SS}(F).Y_{\varphi})_{\chi_{\alpha}},$

(8.3.2) $\chi(\Re\Gamma_{\{x_{o}\}}(X;F)) = (-1)^{n(n+1)/2} (\widetilde{SS}(F).Y_{\varphi}^{a})_{x_{o}}$

Here (.) means the intersection number of two cycles at $x_{\circ}~ \in~ T_X^{\star}X \ \stackrel{\simeq}{=}\ X \ C \ T^{\star}X$.

8.4. A Z-valued function φ on X is called *constructible* if there exists a subanalytic stratification $X = \bigcup X_{\alpha}$ of X such that $\varphi|_{X_{\alpha}}$ is constant. We define the $\pi^{-1}\omega_X$ -valued n-cycle (8.4.1) $c(\varphi) = \sum_{\alpha} \varphi(X_{\alpha}) \widetilde{SS}(Q_{X_{\alpha}})$. Then it is immediate that this does not depend on the choice of stratification.

Let us denote by C(X) the space of Z-valued constructible functions on X. Let $K(D_c^b(X))$ be the additive group generated by $Ob(D_c^b(X))$ with the relation

$$[F] = [F'] + [F'']$$

for distinguished triangles $F' \rightarrow F \rightarrow F'' \rightarrow F'[1]$.

For $F \in Ob(D_c^b(X))$ we define the constructible function $\chi(F)$ by $X \ni x \mapsto \chi(F_x)$. Then this passes through the quotient and we obtain the commutative diagram

(8.4.2)
$$\begin{array}{c} K(D_{c}^{b}(X)) \xrightarrow{X} C(X) \\ \widetilde{SS} \xrightarrow{\chi} c \\ Z_{n}(T^{*}X ; \pi^{-1}\omega_{\chi}) \end{array}$$

Here $Z_n(T^*X \ ; \ \pi^{-1}\omega_{\chi})$ denotes the space of $\pi^{-1}\omega_{\chi}\text{-valued}$ subanalytic n-cycles.

EXAMPLE 8.5.

(i) Let Y be a closed r-codimensional submanifold of X and $\chi_{\rm Y}$ the characteristic function of Y . Then

 $c(\chi_{Y}) = [T_{Y}^{\star}X]$

(ii) Set X = R , Z_{\pm} = {x ; $\pm x > 0$ } , Z_o = {0} . We define the 1-cycles α_+ and β_+ by

 $\alpha_{\pm} = \{ (\mathbf{x}, \xi) ; \xi = 0, \pm \mathbf{x} > 0 \} \text{ with sgn } d\mathbf{x} \otimes \text{sgn } d\mathbf{x} ,$ $\beta_{\pm} = \{ (\mathbf{x}, \xi) ; \mathbf{x} = 0, \pm \xi > 0 \} \text{ with sgn } d\xi \otimes \text{sgn } d\mathbf{x} .$

$$\begin{array}{l} c(\chi_{Z_{+}}) = \alpha_{+} + \beta_{-} ,\\ c(\chi_{Z_{-}}) = \alpha_{-} + \beta_{+} \text{ and}\\ c(\chi_{Z_{0}}) = - \beta_{+} - \beta_{-} \end{array}$$
(iii) Set X = Rⁿ, q(x) = $x_{1}^{2} - x_{2}^{2} - \ldots - x_{n}^{2}$ (n > 2),

$$dx' = dx_2^{\Lambda} \dots^{\Lambda} dx_n , dx = dx_1^{\Lambda} dx' ,$$

$$Z_{\pm} = \{x \in X ; q(x) \ge 0, \pm x_1 \ge 0\} ,$$

$$Z_{\circ} = \{x \in X ; q(x) \le 0\} ,$$
and $U_{\varepsilon} = \text{Int } Z_{\varepsilon} \quad (\varepsilon = \pm , 0) .$
We define the n-cycles in T^*X by
$$\alpha_{\varepsilon} = \{(x,\xi) ; x \in U_{\varepsilon}, \xi = 0\} \text{ with } \text{sgn } dx \otimes \text{sgn } dx ,$$

$$\beta_{\varepsilon} = \{(x,\xi) ; x = 0, \xi \in U_{\varepsilon}\} \text{ with } \text{sgn } d\xi \otimes \text{sgn } dx ,$$
for $\varepsilon = \pm , 0$, and
$$\gamma_{\varepsilon_1}, \varepsilon_2 = \{(x,\xi) ; \varepsilon_1 x_1 > 0, \varepsilon_2 \xi_1 > 0, \xi_j / x_j = -\xi_1 / x_1$$
for $j \ge 2, q(x) = 0\}$
with $\text{sgn}(d\xi_1 \wedge dx') \otimes \text{sgn } dx , \text{ for } \varepsilon_1 , \varepsilon_2 = \pm 1 .$

Then we have

$$\begin{split} c(\chi_{Z_{\pm}}) &= \alpha_{\pm} - \gamma_{\pm,\pm} + (-)^{n}\beta_{\pm} , \\ c(\chi_{U_{\pm}}) &= \alpha_{\pm} + \gamma_{\pm,\mp} + \beta_{\mp} , \\ c(\chi_{Z_{\circ}}) &= \alpha_{\circ} - \gamma_{+,-} - \gamma_{-,+} - \beta_{+} - \beta_{-} \text{ and} \\ c(\chi_{U_{\circ}}) &= \alpha_{\circ} + \gamma_{+,+} + \gamma_{-,-} - (-)^{n} \beta_{+} - (-)^{n} \beta_{-} . \end{split}$$

§9 - VARIATIONS OF MAIN THEOREMS

9.1. Let f be a real analytic function on X . We define, for $F \in Ob\left(D\left(X\right)\right)$,

$$(9.1.1) \qquad \qquad \mu_{f}(F) = \Re \Gamma_{f}^{-1}(\mathbb{R}^{+})(F) |_{f}^{-1}(0)$$

Let $F \in Ob(D_c^b(X))$ and Ω an open subset of $f^{-1}(0)$. We assume

(9.1.2) $\Omega \cap \text{supp F}$ is relatively compact.

$$(9.1.3) \quad \text{SSF} \cap Y_f \cap \pi^{-1}(\partial \Omega) = \emptyset .$$

Then we have the following

THEOREM 9.1 - Under these conditions we have dim $H^{k}(\Omega ; \mu_{f}(F)) < \infty$

and

and

$$\chi(\Omega; \mu_{f}(F)) = (-1)^{n(n+1)/2} (\widetilde{SSF} \cap \Omega) \cdot (Y_{f} \cap \Omega)$$

This theorem can be shown by deforming f to a generic position with respect to $\ensuremath{\mathsf{SSF}}$.

9.2. Let F and F' be two objects of $D_c^b(X)$ and φ a C¹-function on T^{*}X. We assume the following (9.2.1) $\Omega = \{p \in T^*X; \varphi(p) < 0\}$ is relatively compact in T^{*}X. (9.2.2) $C_p(SS(F'), SS(F)) \not \Rightarrow -H_{\varphi}(p)$ for any $p \in \varphi^{-1}(0)$.

Here C _ means the normal cone (see [4]), and H $_\phi$ means the Hamiltonian vector field of ϕ . We set

$$SS(F) \stackrel{\varepsilon}{=} e^{-\varepsilon H} \varphi(SSF)$$

and
$$SS(F) \stackrel{\varepsilon}{=} e^{-\varepsilon H} \varphi(SSF)$$

Then (8.6.2) implies for $0 < \varepsilon << 1$
$$(SS(F) \stackrel{\varepsilon}{\cap} \Omega) \bigcap (SS(F') \bigcap \Omega) = \emptyset$$

THEOREM 9.2 - Under these conditions we have

$$\begin{split} & \dim \, \mathrm{H}^k(\Omega \ ; \ \mu \mathrm{hom}(\mathrm{F},\mathrm{F}^{\,\prime})) \ < \ \infty \\ & \chi(\Omega \ ; \ \mu \mathrm{hom}(\mathrm{F},\mathrm{F}^{\,\prime})) \ = \ (-1)^{n \ (n+1)/2} \ (\widetilde{\mathrm{SS}}(\mathrm{F}^{\,\prime}) \ \Omega) \ . \ (\widetilde{\mathrm{SS}}(\mathrm{F}) \ ^{\varepsilon} \cap \Omega) \ . \end{split}$$

For the definition of $\ \mu hom$, we refer to [4] . This theorem can be shown by reducing to Theorem 9.1 with the aid of contact transformations.

If we assume instead of (9.2.2)

```
(9.2.3) C_{p}(SS(F'),SSF) \Rightarrow H_{\varphi}(p) for any p \in \varphi^{-1}(0).
```

Then we have

THEOREM 9.3 - Under (9.2.1) and (9.2.3) we have

$$\dim H^k_c(\Omega \ ; \ \mu hom(F,F')) < \infty$$
and

$$\chi_c(\Omega \ ; \ \mu hom \ (F,F')) = (-1)^{n \ (n+1)/2} \ (\widetilde{SS}(F') \cap \Omega) . \ (\widetilde{SS}(F)^{-\epsilon} \cap \Omega).$$
Remark that if we take as F the constant sheaf k_{χ} , then
we can recover Theorems 4.2 and 4.3.

REFERENCES

- J. L. BRYLINSKI, A. DUBSON, M. KASHIWARA, Formule de l'indice pour les modules holonomes et obstruction d'Euler locale, C.R. Acad. Sci. 293, Série A, 573-576 (1981).
- [2] A. DUBSON, Formule pour l'indice des complexes constructibles et D-modules holonomes, C.R. Acad. Sci. 298, Série A, 6, 113-164 (1984).
- [3] M. KASHIWARA, Index theorem for maximally overdetermined systems, Proc. Japan Acad. 49, 803-804 (1973).
- [4] M. KASHIWARA and P. SCHAPIRA, Micro-local study of sheaves, RIMS-469 (1984), Astérisque n° 128, (1985).

Corrections to "Microlocal study of Sheaves", M.Kashiwara, P.Schapira. Astérisque 128, 1985. 1)p.48, 1.-6; p.85, 1.-8, -9; p.86, 1.-2; p.191, 1.-8, -5: read "... $\overleftarrow{\Theta} \ensuremath{\square}^2 \ensuremath{\underline{Z}}_T^*_M \ensuremath{\mathbb{X}}^W$ 2)p.40, 1.-3: p.47, 1.-9: read "... convex proper cone of..." 3)p.40, 1.-2: read "... $\ensuremath{\mathbb{I}}^{(\operatorname{Int}(A^{\operatorname{Oa}}), \underline{F}) \dots}$ 4)p.47, 1.-6: read "... $\ensuremath{\operatorname{Int}} \ensuremath{\mathbb{Z}}^{\operatorname{Oa}} \dots$ 5)p.189, 1.4: read "... is punctually endowed..." 6)p.119, 1.4, 1.6: read " $\ensuremath{\alpha \ge 3}$ ", " a C²-function"