Astérisque

Masaki Kashiwara
 Index theorem for constructible sheaves

Astérisque, tome 130 (1985), p. 193-209
http://www.numdam.org/item?id=AST_1985__130__193_0
© Société mathématique de France, 1985, tous droits réservés.
L'accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Article numérisé dans le cadre du programme

INDEX THEOREM FOR
CONSTRUCTIBLE SHEAVES
by
Masaki KASHIWARA

R I M S, Kyoto University
and
1'Université de Paris VI.

§0 - INTRODUCTION

0.1 . Let X be a complex manifold of dimension n and let $\underline{m}_{\mathrm{G}}$ be a holonomic module over the ring D_{X} of differential operators on X. Then the Rham complex $\operatorname{DR}(\underline{m})$ of $\underline{\pi}$ has constructible sheaves as its cohomology groups, and its local index $\sum(-1)^{i}{ }^{\text {dim }} \underline{H}^{i}(D R(\underline{n t}))_{x}$ at a point x can be expressed in terms of the characteristic cycle $\underline{C h}(\underline{m})$ of \underline{m} (Kashiwara [3], Brylinski-Dubson-Kashiwara [1]). Recently Dubson [2] found a beautiful formula to describe this.

THEOREM - If X is a compact complex manifold, we have

$$
\sum(-1)^{\mathrm{i}} \operatorname{dim} H^{\mathrm{i}}(\mathrm{X} ; \mathrm{DR}(\underline{m}))=(-1)^{\mathrm{n}} \underline{\mathrm{Ch}}(\underline{m}) \cdot \mathrm{T}_{\mathrm{X}}^{*} \mathrm{X} .
$$

Here the last term means the intersection number of two n -cycles in $\mathrm{T}^{*} \mathrm{X}$.
0.2. The purpose of this lecture is to generalize his result to the real case.

Let X be a real analytic manifold of dimension n and F a constructible sheaf on X. First we shall define the characteris tic cycle $\widetilde{S S}(F)$ of F as a $\pi^{-1} \omega_{X}$-valued n-cycle in $T^{*} X$. Here ω_{X} denotes the orientation sheaf of X and $\pi: T^{*} X \rightarrow X$ is the cotangent bundle to X. In order to define this, we use the micro-local theory of sheaves developped in Kashiwara-Schapira [4].

Secondly we prove the index theorem.
THEOREM - Let F be a constructible sheaf, and $\varphi: X \rightarrow \mathbb{R}$ a C^{2}-function. Set $\mathrm{Y}_{\varphi}=\{\mathrm{d} \varphi(\mathrm{x}) ; \mathrm{x} \in \mathrm{X}\} \subset \mathrm{T}^{*} \mathrm{X}$. We assume that $\{\mathrm{x} \in \operatorname{supp} \mathrm{F}$; $\varphi(x) \leqq t$ \} is compact for any t and that ${\operatorname{SSF} \cap Y_{\varphi} \text { is compact. Then }}$ $\operatorname{dim} H^{j}(X ; F)<\infty$ for any j and we have

$$
\sum(-1)^{j} \operatorname{dim} H^{j}(X ; F)=(-1)^{n(n+1) / 2} \widetilde{S S}(F) \cdot Y_{\varphi}
$$

The proof uses the micro-local version of Morse's theory. Similarly to the Morse function, we deform φ a little in a generic position so that Y_{φ} intersects SSF transversally. Then we consider $H^{j}(\{x ; \varphi(x)<t\} ; F)$ and vary t. Then the cohomology groups change at points $t \in \varphi(\pi(Y \varphi \cap S S F))$, and the obstruction can be calculated locally and coincides with the intersection number of $\mathrm{Y}_{\boldsymbol{\varphi}}$
and $\widetilde{S S}(F)$ at $p \in \operatorname{SSF} \cap Y_{\varphi}$ with $t=\varphi \pi(p)$.
§1 - SUBANALYTIC CHAINS
1.1. For a topological manifold X, let us denote by ω_{X} the orientation sheaf of X. If X is oriented then $\omega_{X} \cong Z_{X}$ and this isomorphism changes the signature when we take the opposite orientation of X.
1.2. If X is a differentiable manifold of dimension n and if θ is a nowhere vanishing n-form on X, then we shall denote by $\operatorname{sgn} \theta$ the section of ω_{X} given by the orientation that θ determines. Hence we have
(1.2.1) $\operatorname{sgn} \varphi \theta=\operatorname{sgn} \varphi \operatorname{sgn} \theta$
where $\operatorname{sgn} \varphi= \pm 1$ if $\pm \varphi>0$.
1.3. From now on, we assume that X is a real analytic manifold. For an integer r, let us denote by $E_{r}(X)$ the set of pairs (Y,s) of a subanalytic locally closed r-dimensional real analytic submanifold Y of X and a section s of ω_{Y}. We define the equivalence relation \sim on $\mathrm{E}_{\mathrm{r}}(\mathrm{X})$ as follows : $\left(\mathrm{Y}_{1}, \mathrm{~s}_{1}\right) \sim\left(\mathrm{Y}_{2}, \mathrm{~s}_{2}\right)$ if and only if there exists a subanalytic locally closed r-dimensional real analytic submanifold Y such that $Y \subset Y_{1} \cap Y_{2},\left.s_{1}\right|_{Y}=\left.s_{2}\right|_{Y}$ and $\overline{\operatorname{supp}} s_{1}=$ $\overline{\operatorname{supp} s_{2}}=\overline{\operatorname{supp} s_{1} \cap \bar{Y}}$.

We denote by $\mathrm{C}_{\mathrm{r}}(\mathrm{X})$ the set of equivalence classes in $\mathrm{E}_{\mathrm{r}}(\mathrm{X})$ and an equivalence class is called subanalytic r-chain. Remark that its support is not assumed to be compact.

We can define the boundary operator

$$
\partial: C_{r}(X) \longrightarrow C_{r-1}(X),
$$

so that $\partial \partial=0$.
1.4. One can see easily that $C_{r}: U \mapsto C_{r}(U)$ is a fine sheaf on X and we have the exact sequence

$$
\begin{equation*}
0 \rightarrow \omega_{X} \rightarrow C_{n} \xrightarrow{\partial} C_{n-1} \rightarrow \cdots \rightarrow C_{0} \rightarrow 0 \tag{1.4.1}
\end{equation*}
$$

This follows for example from the fact that any subanalytic set admits a subanalytic triangulation.
1.5. For a sheaf F on X, we set $C_{r}(F)=C_{r} \otimes F$. By (1.4.1), $\omega_{X} \otimes F$ is quasi-isomorphic to the complex of soft sheaves

$$
\begin{equation*}
\mathrm{C}_{\mathrm{n}}(\mathrm{~F}) \rightarrow \mathrm{C}_{\mathrm{n}-1}(\mathrm{~F}) \rightarrow \cdots \rightarrow \mathrm{C}_{0}(\mathrm{~F}) . \tag{1.5.1}
\end{equation*}
$$

We set
(1.5.2)

$$
C_{r}(X ; F)=\Gamma\left(X ; C_{r}(F)\right)
$$

and call its elements F-valued subanalytic r-chains. We have isomorphisms

$$
\begin{align*}
& H_{r}^{i n f}(X ; F) d \overline{\bar{e}}_{f} H_{r}(C \cdot(X ; F))=H^{n-r}\left(X ; F \otimes \omega_{X}\right) . \tag{1.5.3}\\
& H_{r}(X ; F) d \bar{e}_{f} H_{r}\left(\Gamma_{C}(X ; C \cdot(F))\right)=H_{C}^{n-r}\left(X ; F \otimes \omega_{X}\right) . \tag{1.5.4}
\end{align*}
$$

1.6. Assume further that F is locally constant. For a subanalytic r-dimensional real analytic submanifold Y of X and for a section s of $F \otimes \omega_{Y}$ over Y, the pair (Y, s) determines an F-valued subanalytic r-chain.
1.7. The following criterion for a chain to be a cycle is evident.

LEMMA 1.1 - Let α be a subanalytic r-chain, $\varphi: X \rightarrow \mathbb{R}^{r}$ be a real analytic map. We assume that
(i) Supp $\alpha \rightarrow \mathbb{R}^{r}$ is a finite map,
(ii) Suppd $\alpha \rightarrow \mathbb{R}^{r}$ is an immersion,
(iii) the intersection number of α and $\varphi^{-1}(t)$ is constant in $t \in \mathbb{R}^{\mathrm{r}} \backslash \varphi(\operatorname{Supp} \partial \alpha)$.

Then α is a cycle, i.e. $\partial \alpha=0$.

§2 - SYMPLECTIC GEOMETRY

2.1. Let X be an n-dimensional real analytic manifold of dimension n and $\pi: T^{*} X \rightarrow X$ the cotangent bundle to X. Let θ_{X} denote the canonical 1 -form on $T^{*} X$. Then $\left(d \theta_{X}\right)^{n}$ is nowhere vanishing and this gives the orientation of $T^{*} X$.
2.2. Now, let Y be a real analytic submanifold of X. Let $T_{Y}^{*} X$ be the conormal bundle to Y. Then we have the canonical isomorphism

$$
\begin{equation*}
\omega_{\mathrm{T}_{\mathrm{Y}}^{*}}^{*} \otimes \pi^{-1} \omega_{\mathrm{X}} \cong \mathbb{Z}_{\mathrm{T}_{\mathrm{Y}}^{*} \mathrm{X}} . \tag{2.2.1}
\end{equation*}
$$

Since the choice of signature is important in the future arguments, we shall write this explicitely. Let (x_{1}, \ldots, x_{n}) be a local coordinate system of X such that Y is given by $x_{1}=\ldots$ $=x_{r}=0$, and let $\left(x_{1}, \ldots, x_{n}, \xi_{1}, \ldots, \xi_{n}\right)$ be the coordinates of $T^{*} X$ such that $\theta_{X}=\sum \xi_{j} d x_{j}$. Then the $\operatorname{section}(-1)^{r} \operatorname{sgn}\left(d \xi_{1} \ldots\right.$ $\left.d \xi_{r} d x_{r+1} \ldots d x_{n}\right) \otimes \operatorname{sgn}\left(d x_{1} \ldots d x_{n}\right)$ of $\omega_{T_{Y}^{*} X} \otimes \pi^{-1} \omega_{X}$ does not depend on the choice of coordinates and it determines the isomorphism (2.2.1).
2.3. Let Λ be a subanalytic conic locally closed Lagrangian subvariety of $T^{*} X$ such that the projection $\Lambda \rightarrow X$ has a constant rank. Then we have $\omega_{\Lambda} \otimes \pi^{-1} \omega_{X} \cong \mathbb{Z}_{\Lambda}$. In fact, locally, Λ is an open subset of $T_{Y}^{*} X$ for a real analytic submanifold Y of X and we can apply 2.2 . Therefore Λ defines the $\pi^{-1} \omega_{X}$-valued n-chain in $T^{*} X$ (see 1.6), which we shall denote by [Λ].

§3 - CHARACTERISTIC CYCLE

3.1. Let us fix a commutative field k once for all, and vector spaces mean vector spaces over k. Let X be a real analytic manifold of dimension n. Let $D(X)$ be the derived category of the abelian category of sheaves of vector spaces on X.

An object F of $D(X)$ is called constructible if the following conditions are satisfied.
(3.1.1) $H^{j}(F)=0$ except for finitely many $j^{\prime} s$.
(3.1.2) There exists a subanalytic locally finite decomposition $X=U X_{\alpha}$ of X such that $\left.H^{j}(F)\right|_{X_{\alpha}}$ is a locally constant sheaf of finite rank for any j and any α.

We denote by $D_{c}^{b}(X)$ the full subcategory of $D(X)$ consisting of constructible complexes.
3.2. For the notion of micro-support and its properties, we refer to [4]. We just mention the following properties.

For $F \in O b\left(D^{+}(X)\right)$, we can define the micro-support $S S(F)$ of F as a closed conic subset of $T^{*} X$.

PROPOSITION 3.1 - Let $F \in O b\left(D^{+}(X)\right), \varphi$ a C^{1} - function on X and let $\mathrm{t}_{1} \leqq \mathrm{t}_{2}$ be two real numbers. Assume that $\varphi \operatorname{Supp} \mathrm{F} \rightarrow \mathbb{R}$ is proper and that $\mathrm{d} \varphi(\mathrm{x}) \notin \mathrm{SSF}$ for any $\mathrm{x} \in \mathrm{X}$ with $\mathrm{t}_{1} \leqq \varphi(\mathrm{x})<\mathrm{t}_{2}$. Then the restriction homomorphism

$$
H^{j}\left(\left\{x ; \varphi(x)<t_{2}\right\} ; F\right) \rightarrow H^{j}\left(\left\{x ; \varphi(x)<t_{1}\right\} ; F\right)
$$

is an isomorphism for any j.
PROPOSITION 3.2. - If $F \in O b\left(D_{c}^{b}(X)\right)$, then SSF is a closed subanalytic Lagrangian subset of $T^{*} X$.
3.3. A morphism $u: F \rightarrow F^{\prime}$ in $D^{+}(X)$ is called an isomorphism at $p \in T^{*} X$, if, for a distinguished triangle $F \xrightarrow{u} F^{\prime} \rightarrow F^{\prime \prime} \rightarrow F[1]$, we have $p \notin S S F "$. We denote by $D^{+}(X ; p)$ the category obtained by localizing $D^{+}(X)$ by the isomorphisms at p (see [4]).

In particular, if φ is a C^{1}-function such that $d \varphi(\pi(p))=p$ $\varphi(\pi(p))=0$, then $F \mapsto \mathbb{R} \Gamma \varphi^{-1}\left(\mathbb{R}^{+}\right)(F) \pi(p)$ is a functor from $D^{+}(X ; p)$. Here \mathbb{R}^{+}signifies the set of non-negative numbers.

PROPOSITION 3.3 - Let $F \in O b\left(D_{C}^{b}(X)\right)$ and Y a real analytic submanifold. If SSF $\subset \mathrm{T}_{\mathrm{Y}}^{*} \mathrm{X}$ on a neighborhood of $\mathrm{p} \in \mathrm{T}_{\mathrm{Y}}^{*} \mathrm{X}$, then we have

$$
\mathrm{F} \cong \underline{\mathrm{~V}}_{\mathrm{Y}} \quad \text { in } \mathrm{D}^{+}(\mathrm{X} ; \mathrm{p})
$$

where V is a bounded complex of finite-dimensional vector spaces and V_{Y} is the constant sheaf on Y with V as fiber.
3.4 Let F be an object of $D_{c}^{b}(X)$. Then $\Lambda=\operatorname{SSF}$ is a subanalytic Lagrangian subvariety. Hence there exists a locally finite family $\left\{\Lambda_{\alpha}\right\}$ of real analytic subsets of $T^{*} X$ satisfying the following conditions.
(3.3.1) Λ_{α} is subanalytic and connected.
(3.3.2) There exists a real analytic submanifold Y_{α} of X such that
Λ_{α} is an open subset of $\mathrm{T}_{\mathrm{Y}_{\alpha}}^{*} \mathrm{X}$.
(3.3.3) $\wedge \subset \bigcup_{\alpha} \pi_{\alpha}$.
(3.3.4) $\Lambda_{\alpha} \cap \pi_{\beta}=\phi$ if $\alpha \neq \beta$.

Then by proposition 3.3 , for $p \in \Lambda_{\alpha}$ there exists a bounded
complex V_{α} of finite-dimensional vector spaces such that $F \cong V_{\alpha} r_{\alpha}$ in $D^{+}(X ; p)$. Then $X\left(V_{\alpha}\right)=\Sigma(-1)^{j} \operatorname{dim} H^{j}\left(V_{\alpha}\right)$ is locally constant in p and hence determined by α. We set $m_{\alpha}=x\left(V_{\alpha}\right)$.

DEFINITION 3.4 - we define the $\pi^{-1} \omega_{X}$-valued n-chain $\widetilde{S S}(F)$ by (3.3.5)

$$
\widetilde{\mathrm{SS}}(\mathrm{~F})=\sum_{\alpha} \mathrm{m}_{\alpha}\left[\Lambda_{\alpha}\right]
$$

It is almost obvious that this chain does not depend on the choice of $\left\{\Lambda_{\alpha}\right\}$. We shall call this the characteristic cycle of F. Later we shall show that $\widetilde{S S}(F)$ is in fact an n-cycle.
§4. INDEX THEOREM
4.1. Let X be a real analytic manifold of dimension n. For a real valued C^{2}-function φ on X we set

$$
\begin{array}{ll}
(4.1 .1) & Y_{\varphi}=\{d \varphi(x) ; x \in X\} \subset T^{*} X \quad \text { and } \\
(4.1 .2) & Y_{\varphi}^{\mathrm{a}}=\{-d \varphi(x) ; x \in X\} \subset T^{*} X
\end{array}
$$

Then Y_{φ} and Y_{φ}^{a} are isomorphic to X and hence we can regard them as $\pi^{-1} \omega_{X}$-valued n-cycles in $T^{*} X$.
4.2. Now, we state the following three main theorems, whose proof is given in the next three sections.

THEOREM 4.1 -For $F \in O b\left(D_{c}^{b}(X)\right), \widetilde{S S}(F)$ is an $n-c y c l e, i . e ., \quad \partial \widetilde{S S}(F)$ $=0$.

THEOREM 4.2 - Let φ be a C^{2}-function and $F \in O b\left(D_{c}^{b}(X)\right)$. We assume (4.2.1) For any $t \in \mathbb{R},\{x \in \operatorname{Supp} F ; \varphi(x) \leqq t\}$ is compact.
(4.2.2) $\mathrm{Y}_{\varphi} \cap \operatorname{SSF}$ is compact.

Then, dim $\mathrm{H}^{j}(\mathrm{X} ; \mathrm{F})<\infty$ for any j and we have

$$
x(X ; F)_{\operatorname{de}}=\sum(-1)^{j} \operatorname{dim} H^{j}(X ; F)=(-1)^{n(n+1) / 2} \widetilde{S S}(F) \cdot Y_{\varphi}
$$

THEOREM 4.3 - Let φ and F be as in the preceding. We assume (4.2.1) and the following condition.

$$
\begin{equation*}
\mathrm{Y}_{\varphi}^{\mathrm{a}} \cap \mathrm{SSF} \text { is compact. } \tag{4.2.3}
\end{equation*}
$$

Then $\operatorname{dim} H_{C}^{j}(X ; F)<\infty$ for any j and we have

$$
\begin{aligned}
x_{c}(X ; F) & d \overline{\bar{e}}{ }_{f} \Sigma(-1)^{j} \operatorname{dim} H_{c}^{j}(X ; F) \\
& =(-1)^{n(n+1) / 2} \widetilde{S S}(F) \cdot Y_{\varphi}^{a}
\end{aligned}
$$

Remark that Theorem 4.1, $\pi^{-1}\left(\omega_{\mathrm{X}}\right) \otimes \pi^{-1}\left(\omega_{\mathrm{X}}\right) \cong \mathbb{Z}_{\mathrm{T}^{*} \mathrm{X}}$ and the condition (4.2.2) or (4.2.3) permit us to define the intersection number $\widetilde{S S}(F) \cdot Y_{\varphi}$ or $\widetilde{S S}(F) \cdot Y_{\varphi}^{a}$.

§5 - PROOF OF MAIN THEOREMS (I)

5.1 We shall prove first the local version of Theorem 4.2 in a generic case. Let F be an object of $D_{c}^{b}(X)$, and we choose $\left\{\Lambda_{\alpha}\right\}$ and $\left\{Y_{\alpha}\right\}$ as in 3.4. Let x o be a point of X and φ a C^{2}-function on X such that
(5.1.1) $\varphi\left(x_{0}\right)=0$,
(5.1.2) $d \varphi\left(x_{0}\right) \in \Lambda_{\alpha}$ and Y_{φ} intersects transversally Λ_{α} at $p=d \varphi\left(x_{0}\right)$.

PROPOSITION 5.1 - Under these conditions we have

$$
\left.x \mathbb{R}^{\Gamma_{\varphi-1}} \mathbb{R}^{+}\right)\left({ }^{\left.(F)_{x_{0}}\right)}=(-1)^{n(n+1) / 2}\left(\widetilde{S S}(F) \cdot Y_{\varphi}\right)_{p} .\right.
$$

Here the last term means the intersection number of $\widetilde{S S}(F)$ and Y_{φ} at $\mathrm{p}=\mathrm{d} \varphi\left(\mathrm{x}_{0}\right)$.

PROOF - We shall take a local coordinate system (x_{1}, \ldots, x_{n}) of X such that Y_{α} is given by $x_{1}=\ldots=x_{r}=0$ and $x_{0}=0$. Then we have
and

$$
\mathrm{T}_{\mathrm{p}}\left(\mathrm{~T}_{\mathrm{Y}_{\alpha}^{*}}^{*} \mathrm{X}\right)=\left\{(\mathrm{x}, \xi) ; \mathrm{x}_{1}=\ldots=\mathrm{x}_{\mathrm{r}}=\xi_{\mathrm{r}+1}=\ldots=\xi_{\mathrm{n}}\right\}
$$

$$
T_{p}(Y \varphi)=\left\{(x, \xi) ; \xi_{j}=\sum_{k} \frac{\partial^{2} \varphi}{\partial x_{j} \partial x_{k}}(0) x_{k}\right\}
$$

The transversality condition (5.1.2) implies that the Hessian matrix $\left(\frac{\partial^{2} \varphi}{\partial x_{j} \partial x_{k}}(0)\right)_{r<j, k \leqq n}$ is non-degenerate. Hence by Morse's lemma, after a change of local coordinates, we may assume that

$$
\left.\varphi\right|_{Y_{\alpha}}=\sum_{j>r} a_{j} x_{j}^{2} \quad \text { for } \quad a_{j} \in \mathbb{R} \backslash\{0\}
$$

Let V be a bounded complex of vector spaces such that $\mathrm{F} \cong \underline{\mathrm{V}}_{\mathrm{Y}}$ in $\mathrm{D}^{+}(\mathrm{X} ; \mathrm{p})$. Then as stated in 3.3 , we have

$$
\begin{equation*}
\mathbb{R}_{\varphi_{\varphi}^{-1} \mathbb{R}^{+}}(\mathrm{F}) \mathrm{x}_{0} \stackrel{\approx}{=} \mathbb{R}_{\varphi_{\varphi}-1_{R^{+}}}\left(\underline{\mathrm{V}}_{Y_{\alpha}}\right) \mathrm{x}_{0} \tag{5.1.3}
\end{equation*}
$$

Let us note the following lemma.
LEMMA 5.2 - Let $Q(x)$ be a non-degenerate quadratic form on \mathbb{R}^{n}, q the number of negative eigenvalues of Q. Then for any vector spaces V, we have

$$
\begin{aligned}
& H^{j} Q^{-1}\left(\mathbb{R}^{+}\right)\left(\mathbb{R}^{n} ; V_{\mathbb{R}^{n}}\right) \\
& =\underline{H}_{Q^{-1}}\left(\mathbb{R}^{+}\right)\left(V_{\mathbb{R}^{n}}\right) 。= \begin{cases}V & \text { for } j=q \\
0 & \text { for } j \neq q\end{cases}
\end{aligned}
$$

Hence we have, by denoting $q=\#\left\{j ; a_{j}<0\right\}$,

$$
H^{k}\left(\mathbb{R} \Gamma \varphi^{-1} \mathbb{R}^{+}(F)_{x_{0}}\right) \xlongequal{\cong} \underline{H}_{\varphi^{-1}}^{k} \mathbb{R}^{+}\left(\underline{V}_{Y_{\alpha}}\right)_{x_{0}}=H^{k-q}(V)
$$

Therefore we obtain
(5.1.4)

$$
x\left(\mathbb{R} \Gamma_{\varphi-1_{\mathbb{R}^{+}}}(F)_{x_{0}}\right)=(-1)^{q^{x}}(V)=(-1)^{q} m_{\alpha}
$$

On the other hand, we have

$$
\left(\widetilde{S S}(F) \cdot Y_{\varphi}\right)_{p}=m_{\alpha}\left(\left[T_{Y_{\alpha}^{*}}^{X}\right] \cdot Y_{\varphi}\right)_{p}
$$

and we can easily verify

$$
\left(\left[\mathrm{T}_{Y_{\alpha}^{*}}^{\mathrm{X}}\right]_{\mathrm{p}} \cdot \mathrm{Y}_{\varphi}\right)_{\mathrm{p}}=(-1)^{\mathrm{n}(\mathrm{n}+1) / 2+\mathrm{q}}
$$

This completes the proof of Proposition 5.1.
Q.E.D.
5.2. Now we assume the condition (4.2.1) and the following conditions :

(5.2.1)	$\operatorname{SSF} \cap Y_{\varphi} \subset \bigcup_{\alpha} \Lambda_{\alpha}$
(5.2.2)	SSF and Y_{φ} intersect transversally.

(5.2.3) \# $\left.\operatorname{SSF} \cap Y_{\varphi}\right)<\infty$

PROPOSITION 5.3 - Under these conditions we have $\operatorname{dim~}_{H^{k}}(X ; F)<\infty$
and

$$
X(X ; F)=(-1)^{n(n+1) / 2} \widetilde{S S F} \cdot Y_{\varphi}
$$

PROOF - Set $\Omega_{t}=\{x ; \varphi(x)<t\}$ and $z_{t}=\{x ; \varphi(x) \leqq t\}$, and $\varphi \pi\left(Y_{\varphi} \cap\right.$ SSF $)=\left\{t_{1}, \ldots, t_{N}\right\}$ with $t_{1}<\ldots<t_{N}$. We also set $\mathrm{t}_{0}=-\infty, \quad \mathrm{t}_{\mathrm{N}+1}=\infty, \Omega_{\mathrm{j}}=\Omega_{\mathrm{t}} \mathrm{t}_{\mathrm{j}}$ and $\mathrm{z}_{\mathrm{j}}=\mathrm{Z}_{\mathrm{t}_{\mathrm{j}}}$. Then by Proposi-
tion 3.1 , we have

$$
H^{k}\left(\Omega_{j+1} ; F\right) \cong H^{k}\left(\Omega_{t} ; F\right) \text { for } t_{j+1} \geqslant t>t_{j} \text { and } 0 \leqq j \leqq N .
$$

Taking the inductive limit with respect to t we obtain

$$
\begin{equation*}
H^{\mathrm{k}}\left(\Omega_{j+1} ; F\right) \xrightarrow{\sim} H^{\mathrm{k}}\left(Z_{j} ; F\right) \tag{5.2.4}
\end{equation*}
$$

Then by the following well-known lemma, we have

$$
\operatorname{dim} H^{k}\left(\Omega_{j+1} ; F\right)=\operatorname{dim~H}^{k}\left(Z_{j} ; F\right)<\infty
$$

LEMMA - If K is a compact set and if U is an open neighborhood of K, then the image of $H^{k}(U ; F) \rightarrow H^{k}(K ; F)$ is finite-dimensional.

Since $\Omega_{\mathrm{N}+1}=\mathrm{X}$ and $Z_{0}=\varnothing$, (5.2.4) implies

$$
\begin{equation*}
x(X ; F)=\sum_{j=1}^{N}\left(x\left(Z_{j} ; F\right)-x\left(\Omega_{j} ; F\right)\right) . \tag{5.2.5}
\end{equation*}
$$

Now we have a distinguished triangle

$$
\mathbb{R} \Gamma\left(z_{j} \backslash \Omega_{j} ; \mathbb{R T}_{X \backslash \Omega_{j}}(F)\right) \rightarrow \mathbb{R} \Gamma\left(z_{j} ; F\right) \rightarrow \mathbb{R} \Gamma\left(\Omega_{j} ; F\right)
$$

Hence we obtain

$$
\begin{equation*}
x\left(Z_{j} ; F\right)-x\left(\Omega_{j} ; F\right)=x\left(\mathbb{R} \Gamma\left(Z_{j} \backslash \Omega_{j} ; \mathbb{R} \Gamma_{X \backslash \Omega_{j}}(F)\right)\right) \tag{5.2.6}
\end{equation*}
$$

By the definition of the micro-support, we have

$$
\operatorname{supp} \mathbb{R} \Gamma_{X \backslash \Omega_{j}}{ }^{\left.(F)\right|_{\varphi^{-1}\left(t_{j}\right)} \subset \pi(Y \varphi \cap S S F)}
$$

Hence we obtain
(5.2.7)

$$
\begin{aligned}
& \mathbb{R} \Gamma\left(Z_{j} \backslash \Omega_{j} ; \mathbb{R}_{\mathrm{X}}{ }_{X \backslash \Omega_{j}}(F)\right)= \\
& \oplus \mathbb{R}_{\mathrm{X} \backslash \Omega_{j}}(F)_{\mathrm{X}} \\
& x \in \pi\left(Y_{\varphi} \cap \operatorname{SSF}\right) \cap \varphi^{-1}\left(\mathrm{t}_{\mathrm{j}}\right)
\end{aligned}
$$

The identities (5.2.5), (5.2.6) and (5.2.7) imply

$$
\begin{aligned}
x(\mathrm{X} ; \mathrm{F})= & \sum_{x \in \pi\left(\mathbb{R T}_{\mathrm{X} \backslash \Omega_{j}}(\mathrm{~F}) \mathrm{x}\right)} \\
& \left.x(\mathrm{X})=\mathrm{t}_{\mathrm{j}} \cap \mathrm{SSF}\right)
\end{aligned}
$$

Thus Proposition 5.3 follows from Proposition 5.1. Q.E.D.

$\S 6-$ PROOF OF MAIN THEOREMS (II)

6.1. We shall prove Theorem 4.1. We give only an outline of the proof.
Since $\widetilde{S S}\left(F \otimes k_{\{0\}}\right)=\widetilde{S S}(F) \times T_{\{0\}}^{*} \mathbb{R}$, it is sufficient to show that $\widetilde{S S}(F)$ is a cycle outside the zero section.

The support of $\beta=\partial \widetilde{S S}(F)$ is an ($n-1$)-dimensional subanalytic
 we shall derive the contradiction by the use of Lemma 1.1 and Proposition 5.3 .
6.2. Let us take a local coordinate system (x_{1}, \ldots, x_{n}) of X such that $p=\left(0, \xi_{0}\right)$ and that the map $(x, \xi) \longmapsto \xi$ from $T^{*} X$ to \mathbb{R}^{n} gives a local embedding from supp β into \mathbb{R}^{n} and a finite map from SSF into \mathbb{R}^{n}.

Set $\varphi(x, y)=\frac{1}{2} x^{2}+x y$ and $\varphi_{y}(x)=\varphi(x, y)$.
Then we have
$\operatorname{SSF} \cap Y_{\varphi_{y}} \cap\{x ;|x|=\varepsilon\}=\varnothing$ for $|y| \leqq \varepsilon$ and $0<\varepsilon \ll 1$.
Therefore, if $|y| \ll \varepsilon$ and if $Y_{\varphi_{y}}$ satisfies the conditions
(5.2.1) - (5.2.3), then we have, by Proposition 5.3

$$
x(\{x ;|x|<\varepsilon\} ; F)=(-1)^{n(n+1) / 2} \widetilde{S S}(F) \cdot Y_{\varphi_{y}}
$$

In particular, $\widetilde{S S}(F) \cdot Y_{\varphi_{y}}$ does not depend on y.
The relation $\xi=\operatorname{grad}_{x} \varphi_{y}=x+y$ gives the projection
$g: T^{*} X \rightarrow \mathbb{R}^{n}$ by $g(x, \xi)=\xi-x$. Since $g^{-1}(y)=Y_{\varphi_{y}}$,
$g^{-1}(y) . \widetilde{S S}(F)$ is constant in y.
Therefore we can apply Lemma 1.1 to see $\partial \widetilde{S S}(F)=0$.

M. KASHIWARA

$\S 7$ - PROOF OF MAIN THEOREMS (III)
7.1. In order to prove Theorem 4.2, we shall note the following

LEMMA 7.1. (i) Let Λ be an n-dimensional subanalytic conic real analytic submanifold of $T^{*} X$. Then $\left\{\varphi ; Y_{\varphi}\right.$ and Λ intersect transversally $\}$ is dense in the space $C^{\infty}(X)$ of C^{∞}-functions on X with respect to the C^{2}-topology.
(ii) Let Z be an ($n-1$)-dimensional subanalytic conic subset of $T^{*} X$. Then $\left\{\varphi ; Y_{i} \cap Z=\varnothing\right\}$ is a dense subset of $C^{\infty}(X)$.

They can be shown by using Baire's category theorem similarly to the proof of the existence theorem of Morse's function.

Let φ and F satisfy the conditions in Theorem 4.2. Then there exists a function φ^{\prime} close to φ which satisfies the conditions (5.2.1) - (5.2.3). Hence Proposition 5.3 can be applied to see $X(X ; F)=(-1)^{n(n+1) / 2} \widetilde{S S}(F) \cdot Y_{\varphi^{\prime}}$.

Since Y_{φ} and $Y^{\prime} \varphi^{\prime}$ are homotopic, we have

$$
\widetilde{S S}(F) \cdot Y_{\varphi}=\widetilde{S S}(F) \cdot Y_{\varphi}
$$

This shows Theorem 4.2.
7.2. Theorem 4.3 can be proven in a similar argument or by reducing to Theorem 4.2 by the use of the Poincare duality and the following proposition, which can be shown easily.

PROPOSITION 7.2 - For $F \in O b\left(D_{c}^{b}(X)\right)$, we have

$$
\widetilde{S S}(\mathbb{R})+\left(o m_{k}\left(F, k_{X}\right)\right)=a^{*}(\widetilde{S S}(F))
$$

where a is the antipodal map of $\mathrm{T}^{*} \mathrm{X}$.

§8 - APPLICATIONS

8.1. The following theorem follows immediately from Theorem 4.2.

THEOREM 8.1 - Let X be a compact complex manifold, and $F \in O b\left(D_{C}^{b}(X)\right)$. Then

$$
x(X ; F)=(-1)^{n(n+1) / 2} \widetilde{S S}(F) \cdot T_{X}^{*} X .
$$

8.2. When X is a complex manifold and \underline{m} is a holonomic module over the ring \underline{D}_{X} of differential operators. Then $\operatorname{SS}(D R(\underset{\sim}{(\mathcal{m})})$ coincides with the characteristic variety $C h(\underline{m})$ of \underline{m} and $\widetilde{S S}(D R(\underline{m}))$ coincides with the characteristic cycle $\underline{C h}(\underline{M})$ of $\underline{\pi}$. Hence the results in this paper can be easily applied to holonomic modules.
8.3. Let φ be a real -valued real analytic function defined on X and x 。 EX.

```
(8.3.1)
\[
\varphi(x)>0 \text { for } x \in X \backslash\left\{x_{0}\right\}
\]
```

LEMMA 8.2. For any subanalytic closed conic Lagrangian set Λ, $\mathrm{d} \varphi\left(\mathrm{x}_{0}\right)$ is an isolated point of $\Lambda \cap \mathrm{Y}_{\varphi}$.

PROOF - Otherwise there exists a real analytic path $x=x(t)$ such that $x(0)=x 。 ; x(t) \neq x$ for $t \neq 0$ and $d \varphi(x(t)) \in \Lambda$. Since Λ is Lagrangian, $\theta=\mathrm{d} \varphi(x(t))=0$. Hence $\varphi(x(t))$ is a constant function, which is a contradiction. Q.E.D.

Along with this lemma, the following theorem follows immediately from Theorems 8.2 and 8.3.

THEOREM 8.3 - Let $F \in O b\left(D_{c}^{b}(X)\right)$ and let φ satis $6 y$ (8.3.1). Then we have

$$
\begin{align*}
& x\left(F_{x_{0}}\right)=(-1)^{n(n+1) / 2}\left(\widetilde{S S}(F) \cdot Y_{\varphi}\right) x_{0} \tag{8.3.1}\\
& x\left(\mathbb{R} \Gamma_{\left\{x_{0}\right\}}(x ; F)\right)=(-1)^{n(n+1) / 2}\left(\widetilde{S S}(F) \cdot Y_{\varphi}^{a}\right)_{x_{0}} \tag{8.3.2}
\end{align*}
$$

Here (.) means the intersection number of two cycles at $\mathrm{x} \circ \in \mathrm{T}_{\mathrm{X}}^{*} \mathrm{X} \cong \mathrm{X} \subset \mathrm{T}^{*} \mathrm{X}$.
8.4. A \mathbb{Z}-valued function φ on X is called constructible if there exists a subanalytic stratification $X=U X_{\alpha}$ of X such that $\left.\varphi\right|_{X_{\alpha}}$ is constant. We define the $\pi^{-1} \omega_{X}$-valued n-cycle (8.4.1)

$$
c(\varphi)=\sum_{\alpha} \varphi\left(X_{\alpha}\right) \widetilde{\mathrm{SS}}\left(\mathrm{Q}_{\mathrm{X}_{\alpha}}\right)
$$

Then it is immediate that this does not depend on the choice of stratification.

Let us denote by $C(X)$ the space of Z-valued constructible functions on X. Let $K\left(D_{C}^{b}(X)\right)$ be the additive group generated by $O b\left(D_{c}^{b}(X)\right)$ with the relation

$$
[F]=\left[F^{\prime}\right]+\left[F^{\prime}\right]
$$

for distinguished triangles $F^{\prime} \rightarrow F \rightarrow F^{\prime} \rightarrow F^{\prime}[1]$.
For $F \in O b\left(D_{C}^{b}(X)\right.$ we define the constructible function $\chi(F)$ by $X \ni x \mapsto \chi\left(F_{x}\right)$. Then this passes through the quotient and we obtain the commutative diagram

Here $Z_{n}\left(T^{*} X ; \pi^{-1} \omega_{X}\right)$ denotes the space of $\pi^{-1} \omega_{X}$-valued subanalytic n-cycles.

EXAMPLE 8.5.
(i) Let Y be a closed r-codimensional submanifold of X and X_{Y} the characteristic function of Y. Then

$$
c\left(X_{Y}\right)=\left[T_{Y}^{*} X\right]
$$

(ii) Set $X=\mathbb{R}, Z_{ \pm}=\{x ; \pm x>0\}, Z_{0}=\{0\}$.

We define the 1 -cycles $\alpha_{ \pm}$and $\beta_{ \pm}$by

$$
\begin{aligned}
& \alpha_{ \pm}=\{(x, \xi) ; \xi=0, \pm x>0\} \text { with } \operatorname{sgn} d x \otimes \operatorname{sgn} d x \\
& \beta_{ \pm}=\{(x, \xi) ; x=0, \pm \xi>0\} \text { with } \operatorname{sgn} d \xi \otimes \operatorname{sgn} d x
\end{aligned}
$$

Then we have

$$
\begin{gathered}
c\left(x_{Z_{+}}\right)=\alpha_{+}+\beta_{-}, \\
c\left(x_{Z_{-}}\right)=\alpha_{-}+\beta_{+} \text {and } \\
c\left(x_{Z_{0}}\right)=-\beta_{+}-\beta_{-} . \\
\text {(iii) Set } X=\mathbb{R}^{n}, q(x)=x_{1}^{2}-x_{2}^{2}-\ldots-x_{n}^{2} \quad(n \geqslant 2),
\end{gathered}
$$

$$
\begin{aligned}
& d x^{\prime}=d x_{2} \wedge \ldots \wedge d_{n}, d x=d x_{1} \wedge d x^{\prime}, \\
& Z_{ \pm}=\left\{x \in X ; q(x) \geqq 0, \pm x_{1} \geqslant 0\right\}, \\
& Z_{0}=\{x \in X ; q(x) \leqq 0\}, \\
& \text { and } U_{\varepsilon}=\operatorname{Int} Z_{\varepsilon}(\varepsilon= \pm, 0) .
\end{aligned}
$$

We define the n -cycles in $\mathrm{T}^{*} \mathrm{X}$ by

$$
\begin{gathered}
\alpha_{\varepsilon}=\left\{(x, \xi) ; x \in U_{\varepsilon}, \xi=0\right\} \text { with } \operatorname{sgn} d x \otimes \operatorname{sgn} d x, \\
\beta_{\varepsilon}=\left\{(x, \xi) ; x=0, \xi \in U U_{\varepsilon}\right\} \text { with } \operatorname{sgn} d \xi \otimes \operatorname{sgn} d x, \\
\text { for } \varepsilon= \pm, 0, \text { and } \\
\gamma_{\varepsilon_{1}, \varepsilon_{2}}=\left\{(x, \xi) ; \varepsilon_{1} x_{1}>0, \varepsilon_{2} \xi_{1}>0, \xi_{j} / x_{j}=-\xi_{1} / x_{1}\right. \\
\text { for } j \geqslant 2, q(x)=0\} \\
\text { with } \operatorname{sgn}\left(d \xi_{1} \wedge d x^{\prime}\right) \otimes \operatorname{sgn} d x, \text { for } \varepsilon_{1}, \varepsilon_{2}= \pm 1 .
\end{gathered}
$$

Then we have

$$
\begin{aligned}
& c\left(x_{Z_{ \pm}}\right)=\alpha_{ \pm}-\gamma_{ \pm, \pm}+(-)^{n} \beta_{ \pm}, \\
& c\left(x_{U_{ \pm}}\right)=\alpha_{ \pm}+\gamma_{ \pm, \mp}+\beta_{\mp}, \\
& c\left(x_{Z_{0}}\right)=\alpha_{0}-\gamma_{+,-}-\gamma_{-,+}-\beta_{+}-\beta_{-} \text {and } \\
& c\left(x_{U_{0}}\right)=\alpha_{0}+\gamma_{+,+}+\gamma_{-,-}-(-)^{n} \beta_{+}-(-)^{n} \beta_{-} .
\end{aligned}
$$

9.1. Let f be a real analytic function on X. We define, for $F \in O b(D(X))$,

$$
\begin{equation*}
\mu_{f}(F)=\left.\mathbb{R} \Gamma_{f}^{-1}\left(\mathbb{R}^{+}\right)(F)\right|_{f} ^{-1}(0) \tag{9.1.1}
\end{equation*}
$$

Let $F \in O b\left(D_{C}^{b}(X)\right)$ and Ω an open subset of $f^{-1}(0)$.
We assume
(9.1.2) $\Omega \cap$ supp F is relatively compact.
(9.1.3) $\quad \operatorname{SSF} \cap \mathrm{Y}_{\mathrm{f}} \cap \pi^{-1}(\partial \Omega)=\varnothing$.

Then we have the following
THEOREM 9.1 - Under these conditions we have $\operatorname{dim} H^{k}\left(\Omega ; \mu_{f}(F)\right)<\infty$
and

$$
x\left(\Omega ; \mu_{f}(F)\right)=(-1)^{n(n+1) / 2}(\widetilde{S S F} \cap \Omega) \cdot\left(Y_{\mathrm{f}} \cap \Omega\right)
$$

This theorem can be shown by deforming f to a generic position with respect to SSF .
9.2. Let F and F^{\prime} be two objects of $D_{C}^{b}(X)$ and φ a C^{1}-function on $T^{*} X$. We assume the following
(9.2.1) $\Omega=\left\{p \in T^{*} X ; \varphi(p)<0\right\}$ is relatively compact in $T^{*} X$. (9.2.2) $C_{p}\left(S S\left(F^{\prime}\right), S S(F)\right) \nRightarrow-H_{\varphi}(p)$ for any $p \in \varphi^{-1}(0)$.

Here C_{p} means the normal cone (see [4]), and H_{φ} means the Hamiltonian vector field of φ. We set

$$
\begin{aligned}
\text { SS }(F)^{\varepsilon} & =e^{-\varepsilon H_{\varphi}}\left(\begin{array}{l}
\text { SSF }) \\
\text { and } \quad \widetilde{S S}(F)^{\varepsilon}
\end{array}=e^{-\varepsilon H_{\varphi}(\widetilde{S S F})}\right.
\end{aligned}
$$

Then (8.6.2) implies for $0<\varepsilon \ll 1$

$$
\left(S S(F){ }^{\varepsilon} \cap \Omega\right) \cap\left(S S\left(F^{\prime}\right) \cap \Omega\right)=\phi
$$

THEOREM 9.2 - under these conditions we have

$$
\operatorname{dim} H^{\mathrm{k}}\left(\Omega ; \mu \operatorname{hom}\left(\mathrm{F}, \mathrm{~F}^{\prime}\right)\right)<\infty
$$

and

$$
x\left(\Omega ; \mu \operatorname{hom}\left(\mathrm{F}, \mathrm{~F}^{\prime}\right)\right)=(-1)^{\mathrm{n}(\mathrm{n}+1) / 2}\left(\widetilde{\mathrm{SS}}\left(\mathrm{~F}^{\prime}\right) \cap \Omega\right) \cdot\left(\widetilde{\mathrm{SS}}(\mathrm{~F})^{\varepsilon} \cap \Omega\right)
$$

For the definition of μ hom, we refer to [4]. This theorem can be shown by reducing to Theorem 9.1 with the aid of contact transformations.

If we assume instead of (9.2.2)
(9.2.3) $C_{p}\left(S S\left(F^{\prime}\right), S S F\right) \nRightarrow H_{\varphi}(p)$ for any $p \in \varphi^{-1}(0)$.

Then we have

THEOREM 9.3 - under (9.2.1) and (9.2.3) we have
and

$$
\operatorname{dim} H_{\mathrm{C}}^{\mathrm{k}}\left(\Omega ; \mu \operatorname{hom}\left(\mathrm{F}, \mathrm{~F}^{\prime}\right)\right)<\infty
$$

$X_{C}\left(\Omega ; \mu \operatorname{hom}\left(F, F^{\prime}\right)\right)=(-1)^{n(n+1) / 2}\left(\widetilde{S S}\left(F^{\prime}\right) \cap \Omega\right) \cdot\left(\widetilde{S S}(F)^{-\varepsilon} \cap \Omega\right)$.
Remark that if we take as F the constant sheaf k_{X}, then we can recover Theorems 4.2 and 4.3 .

REFERENCES

[1] J. L. BRYLINSKI, A. DUBSON, M. KASHIWARA, Formule de l'indice pour les modules holonomes et obstruction d'Euler locale, C.R. Acad. Sci. 293, Série A, 573-576 (1981).
[2] A. DUBSON, Formule pour l'indice des complexes constructibles et \mathbb{D}-modules holonomes, C.R. Acad. Sci. 298, Série A, 6, 113-164 (1984).
[3] M. KASHIWARA, Index theorem for maximally overdetermined systems, Proc. Japan Acad. 49, 803-804 (1973).
[4] M. KASHIWARA and P. SCHAPIRA, Micro-local study of sheaves, RIMS-469 (1984), Astérisque n° 128, (1985).

Corrections to "Microlocal study of Sheaves", M. Kashiwara, P. Schapira. Astérisque 128, 1985 .

2) p. 40, 1.-3: $: ~$. 47, 1.-9 :
read "... convex proper cone of..."

4) p.47,1.-6 : read "... NInt $Z^{\text {oa } . . . " ~}$
5) p.l89,1.4 : read "... is punctually endowed..."
6) p.119,1. 4, $1.6:$ read " $\alpha \geqslant 3 ", " a C^{2}$-function"

