ROBERT A. BLUMENTHAL

Transverse curvature of foliated manifolds

<http://www.numdam.org/item?id=AST_1984__116__25_0>
Let M be a smooth manifold and let ∇ be a linear connection on M. A fundamental problem in differential geometry is to find relations between the curvature of ∇ and the topology of M. We consider the analogue of this fundamental problem for foliated manifolds and basic connections.

Let (M,\mathcal{F}) be a foliated manifold. Let \mathcal{F} be the normal bundle of \mathcal{F} and let ∇ be a basic connection on \mathcal{F}. Our fundamental problem is then to study the relationship between the curvature of ∇ and the structure of the foliated manifold (M,\mathcal{F}).

We recall a few basic concepts. Let $T(M)$ be the tangent bundle of M and let $E \subset T(M)$ be the subbundle tangent to the leaves of \mathcal{F}. Let $\mathcal{Q} = T(M)/E$ be the normal bundle. Let $\pi:T(M) \rightarrow \mathcal{Q}$ be the natural projection and let $\chi(M), \Gamma(E), \Gamma(\mathcal{Q})$ denote the sections of $T(M), E, \mathcal{Q}$ respectively. A connection $\nabla:\chi(M) \times \Gamma(\mathcal{Q}) \rightarrow \Gamma(\mathcal{Q})$ is basic [3], transverse [9], adapted [7] if $\nabla^Y_X = \pi([X,Y])$ for all $X \in \Gamma(E), Y \in \Gamma(\mathcal{Q})$ where $\bar{Y} \in \chi(M)$ satisfies $\pi(\bar{Y}) = Y$. The parallel transport which ∇ induces along a curve lying in a leaf of \mathcal{F} coincides with the natural parallel transport along the leaves. Let $R:\chi(M) \times \chi(M) \times \Gamma(\mathcal{Q}) \rightarrow \Gamma(\mathcal{Q})$, $R(X,Y)Z = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]}Z$ be the curvature of ∇.

Question. **What influence does R exert on the structure of (M,\mathcal{F})?**

We consider this question in the particular case where \mathcal{F} is Riemannian and ∇ is the unique torsion-free metric-preserving basic connection on \mathcal{Q}.

Let M be a compact manifold and let \mathcal{F} be a codimension-q Riemannian foliation of M. There is a metric g on \mathcal{Q} such that the natural parallel transport along a curve lying in a leaf of \mathcal{F} is an isometry. This is equivalent to the existence of a bundle-like metric in the sense of Reinhart [11].
Lemma [9]. There is a unique metric-preserving basic connection \(\nabla \) on \(Q \) with zero torsion \(T(X,Y) = \nabla_X Y - \nabla_Y X - \pi [X,Y] = 0 \) for all \(X, Y \in \chi(M) \).

Remark. \(\nabla \) is transversely projectable [9], basic [7] \((R(X,Y) = 0 \) for all \(X \in \Gamma(E), Y \in \chi(M) \)).

Let \(p \in M \). Let \(\pi_p \) be a two-dimensional subspace of \(Q_p \) and let \(\{ X, Y \} \) be an orthonormal basis of \(\pi_p \). The transverse sectional curvature of \(\pi_p \) is defined by \(K(\pi_p) = -g_p(R(X,Y)X,Y) \) where \(X, Y \in T_p(M) \) satisfy \(\pi(X) = X, \pi(Y) = Y \).

Let \(\tilde{\mathcal{F}} \) be the universal cover of \(M \) and let \(\tilde{\mathcal{F}} \) be the lift of \(\mathcal{F} \) to \(\tilde{\mathcal{F}} \).

Theorem A [2]. If \(VR = 0 \) and \(K \leq 0 \), then \(\tilde{M} \) is diffeomorphic to a product \(\tilde{L} \times \tilde{\mathcal{F}} \) where \(\tilde{L} \) is the common universal cover of the leaves of \(\mathcal{F} \) and \(\tilde{\mathcal{F}} \) is the product foliation.

Application to Reeb's structure theorem [10] for codimension-one foliations defined by a closed one-form: Let \(M \) be a compact manifold and let \(\mathcal{F} \) be a codimension-one foliation of \(M \) defined by a nonsingular closed one-form \(\omega \). Then \(E = \ker(\omega) \). Let \(\bar{Y} \in \chi(M) \) be such that \(\omega(Y) = 1 \). Then \(Y = \pi(\bar{Y}) \in \Gamma(Q) \).

Define a metric \(g \) on \(Q \) by requiring \(g(Y,Y) = 1 \). Define a connection \(\nabla \) on \(Q \) by requiring \(\nabla_X Y = 0 \) for all \(X \in \chi(M) \).

Lemma. \(g \) is parallel along the leaves of \(\mathcal{F} \) and \(\nabla \) is the unique torsion-free metric-preserving basic connection on \(Q \).

Proof: Let \(X \in \Gamma(E) \). Then \(0 = d\omega(X,\bar{Y}) = Xu(\bar{Y}) - \bar{Y}u(X) - u[X,Y] \) and so \([X,\bar{Y}] \in \Gamma(E) \). Let \(f \in C^\infty(M) \). Then \(\nabla_X fy = f\nabla_X y + (xf)Y = (xf)Y = \pi((xf)\bar{Y}) = \pi([X,f\bar{Y}] - f[X,\bar{Y}]) = \pi([X,f\bar{Y}]) - \pi([X,\bar{Y}]) \) is basic.

Clearly \(\nabla \) preserves \(g \) and so \(g \) is parallel along the leaves. Let \(Z_1, Z_2 \in \chi(M) \). Then \(T(Z_1, Z_2) = T(h\bar{Y}, k\bar{Y}) \) where \(h, k \in C^\infty(M) \) and so \(T(Z_1, Z_2) = hkT(\bar{Y}, \bar{Y}) = 0 \) proving the lemma.

Since \(Y \) is a nowhere zero parallel section, it follows that \(R = 0 \). Hence \(VR = 0 \).
and $K = 0$. Thus Theorem A implies that $\mathbb{R} = \mathbb{L} \times \mathbb{R}$ and \mathbb{F} is the product foliation which is Reeb's result.

Remark. We may rephrase Theorem A in terms of foliages [8]: If the foliage $\mathcal{W} = \mathcal{M}/\mathcal{F}$ admits a Riemannian structure with parallel curvature and non-positive sectional curvature, then \mathcal{W} will have (in terms of foliages) a "covering" which will be a smooth manifold diffeomorphic to \mathbb{R}^q.

We now consider the relationship between curvature and cohomology. The relevant cohomology theory here is base-like cohomology [11], [12]. A differential r-form ω on \mathcal{M} is called base-like if on each coordinate neighborhood U with coordinates $(x^1, \ldots, x^k, y^1, \ldots, y^q)$ respecting the foliation \mathcal{F}, the local expression of ω is of the form

$$
\sum_{1 \leq i_1 < \ldots < i_r \leq q} a_{i_1 \ldots i_r} (y^1, \ldots, y^q) dy^{i_1} \wedge \ldots \wedge dy^{i_r}.
$$

Equivalently, $i_X \omega = i_X dw = 0$ for all $X \in \Gamma(E)$ [13]. Since d preserves such forms, we obtain the base-like cohomology algebra $H^*_\text{bas} (\mathcal{M}) = \bigoplus_{r=0}^q H^r_\text{bas} (\mathcal{M})$.

Theorem B. If $\nabla R = 0$ and $K > 0$, then $H^*_\text{bas} (\mathcal{M})$ is finite dimensional and $H^1_\text{bas} (\mathcal{M}) = 0$.

Remark. We may rephrase Theorem B in terms of foliages [8]. Let $\mathcal{W} = \mathcal{M}/\mathcal{F}$ be the space of leaves (a foliage). We can think of $H^*_\text{bas} (\mathcal{M})$ as the "De Rham cohomology" of \mathcal{W}, $H^*_\text{De R} (\mathcal{W})$. Of course, if \mathcal{W} is a smooth manifold, this agrees with the De Rham cohomology algebra of \mathcal{W}. In this terminology, Theorem B states: If \mathcal{W} admits a Riemannian structure with parallel curvature and positive sectional curvature, then $H^*_\text{De R} (\mathcal{W})$ is finite dimensional and $H^1_\text{De R} (\mathcal{W}) = 0$.

Example. Let G be a compact connected Lie group of dimension q and let g
be the Lie algebra of G. Let M be a compact manifold and suppose w is a
smooth q-valued one-form of rank q on M satisfying $d w + \frac{1}{2} [w, w] = 0$. Then
w defines a smooth codimension-q foliation \mathcal{F} on M which is a Lie foliation
modeled on G [5]. Let \langle , \rangle be a bi-invariant Riemannian metric on G. Then
\langle , \rangle induces a holonomy-invariant metric on Q with parallel curvature and
$K > 0$. For example, if $G = S^1$ then \mathcal{F} is a codimension-one foliation defined
by a nonsingular closed one-form. If $\pi_1(G)$ is finite (e.g., if G is semi-
simple), then $H^*_\text{bas}(M) \cong H^*(G)$ [1].

Example. This example uses the suspension construction of Haefliger [6].
Define a left action of $\pi_1(S^1) = Z$ on S^2 by

$$
1 \mapsto \begin{pmatrix}
\cos 2\pi \alpha & \sin 2\pi \alpha & 0 \\
-\sin 2\pi \alpha & \cos 2\pi \alpha & 0 \\
0 & 0 & 1
\end{pmatrix} \in SO(3)
$$

where $0 < \alpha < 1$ is irrational. Let $M = \mathbb{R} \times Z S^2$ be the associated bundle over
S^1 with fiber S^2. The foliation of $\mathbb{R} \times S^2$ whose leaves are the sets $\mathbb{R} \times \{x\}$,
$x \in S^2$ passes to a foliation \mathcal{F} of M. Since Z acts on S^2 by isometries,
the normal bundle of (M, \mathcal{F}) admits a transverse metric with $K = 1$. There are
exactly two compact leaves. If L is a non-compact leaf, then \overline{L} is diffeomor-
phic to the two-dimensional torus and the foliation of \overline{L} by the leaves of \mathcal{F} is
Riemannian with $K = 0$.

We now prove Theorem B. Since $\nabla R = 0$, we have that $N = \overline{\mathbb{R}}/\mathcal{F}$ is a complete,
Riemannian, Hausdorff manifold and the natural map $f:\overline{\mathbb{R}} \to N$ is a fiber bundle [2].
Each covering transformation σ of $\overline{\mathbb{R}}$ induces an isometry $\Upsilon(\sigma)$. We thus obtain
a homomorphism $\Upsilon: \pi_1(M) \to I(N)$ such that $f \circ \sigma = \Upsilon(\sigma) \circ f$ for all $\sigma \in \pi_1(M)$
where $I(N)$ denotes the isometry group of N. Let $\Sigma = \text{image } (\Upsilon)$ and let
$K = \overline{\Sigma} \subseteq I(N)$. Let $A^r_K(N)$ be the space of K-invariant r-forms on N and let
$A^r_{\text{bas}}(M)$ be the space of base-like r-forms on M.

28
TRANSVERSE CURVATURE

Lemma. There is an isomorphism of cochain complexes

\[\cdots \to A^r_{\text{bas}}(M) \overset{d}{\to} \cdots \]

\[\cdots \to A^r_K(N) \overset{d}{\to} \cdots . \]

Thus \(H^*_\text{bas}(M) = H^*_K(N) \).

Proof: Let \(p: \tilde{M} \to M \) be the covering projection. Let \(\omega \in A^r_{\text{bas}}(M) \). Then \(p^*\omega = f^*\eta \) for a unique \(r \)-form \(\eta \) on \(N \). Since \(p^*\omega \) is \(\pi_1(M) \)-invariant, it follows that \(\eta \) is \(\Sigma \)-invariant and hence \(K \)-invariant. Conversely, let \(\eta \in A^r_K(N) \). Then \(f^*\eta \in A^r_{\text{bas}}(\tilde{M}) \). Since \(\eta \) is \(\Sigma \)-invariant, it follows that \(f^*\eta \) is \(\pi_1(M) \)-invariant and hence \(f^*\eta = p^*\omega \) for a unique \(\omega \in A^r_{\text{bas}}(M) \) proving the lemma.

Lemma. \(N \) and \(K \) are compact.

Proof: Let \(Q \) be the normal bundle of \(\tilde{F} \) and let \(\bar{g} \) be the lift of \(g \) to \(\tilde{G} \). The Riemannian metric on \(N \) is the one induced by \(\bar{g} \). Since \(\nabla R = 0 \), it follows that \(N \) has parallel curvature. Thus \(N \) is a complete, simply connected, Riemannian locally symmetric space and hence \(N \) is Riemannian symmetric. Since \(K > 0 \), it follows that \(N \) has positive sectional curvature. Thus \(N \) is compact [14] and \(K \) is compact proving the lemma.

Since \(K \) is compact, the inclusion \(A^*_K(N) \to A^*(N) \) induces an injection \(H^*_K(N) \to H^*(N) \) [4]. Since \(N \) is compact, \(H^*(N) \) is finite dimensional and hence \(H^*_\text{bas}(N) \) is finite dimensional. Since \(\pi_1(N) = 0 \), we have that \(H^1_{\text{bas}}(M) = 0 \).

References

Robert A. Blumenthal
Department of Mathematics
St. Louis University
St. Louis, Missouri 63103