T. Józefiak
P. Pragacz
J. Weyman

Resolutions of determinantal varieties and tensor complexes associated with symmetric and antisymmetric matrices

<http://www.numdam.org/item?id=AST_1981__87-88__109_0>
RESOLUTIONS OF DETERMINANTAL VARIETIES AND TENSOR COMPLEXES
ASSOCIATED WITH SYMMETRIC AND ANTISYMMETRIC MATRICES

T. Józefiak, P. Pragacz, J. Weyman

Contents

1. Introduction
2. Preliminaries
3. Components of minimal free resolutions
 A. Antisymmetric matrices
 B. Symmetric matrices
4. Symplectic and orthogonal Schur complexes
5. Explicit description of minimal free resolutions
 in low codimension
1. INTRODUCTION

Let K be a commutative ring and fix an integer $n \geq 1$. The polynomial ring $K[\{T_{ij}\}]$, $1 \leq i \leq j \leq n$, in $n(n+1)/2$ variables T_{ij} can be treated as a coordinate ring \mathcal{O}_X of the affine space $X = \text{Sym}_n(K)$ of all n by n symmetric matrices. For a given $r < n$ let Y_r be the subvariety of X of all matrices of rank at most r. The determinantal varieties Y_r have been the classical object of intensive study. Let us recall here their relationship with classical invariant theory in case K is a field of characteristic 0.

Let $Z = (Z_{ij})$ be an $r \times n$ matrix of indeterminates. The orthogonal group $O(r)$ acts on the polynomial ring $S = K[\{Z_{ij}\}]$ by the formula

$$Z_{ij} \mapsto (BZ)_{ij}, \quad B \in O(r),$$

and the ring of invariants $S^0(r)$ of this action is equal to $K[\{(tZZ)_{ij}\}]$. Consider a map $K[\{T_{ij}\}] \to S^0(r)$ sending T_{ij} into $(tZZ)_{ij}$. The second fundamental theorem of invariant theory, [Weyl], tells us that the kernel of this map is equal to the ideal $I_{r+1}(T)$ generated by all the $(r+1)$-order minors of $T = (T_{ij})$, where $T_{ij} = T_{ji}$ for $i > j$. Therefore $S^0(r)$ can be identified with the coordinate ring of Y_r.

This paper can be considered as a continuation of those classical results because it is devoted to explicit descriptions of a minimal free resolution (i.e. all the higher syzygies) of $S^0(r) = \mathcal{O}_Y = \mathcal{O}_X/I_{r+1}(T)$ over \mathcal{O}_X when \mathcal{O}_X contains the field of rational integers.
Simultaneously we treat the corresponding problem for antisymmetric (= alternating) matrices. To be precise, let $K[T_{ij}]$, $1 \leq i < j \leq n$, be the polynomial ring in $(n-1)n/2$ variables T_{ij}. It can be considered as the coordinate ring \mathcal{O}_X of the affine space $X = \text{Alt}_n(K)$ of all n by n antisymmetric matrices. If Y_{2p} is the subvariety of X of all matrices of rank at most $2p$, then the ideal $\text{Pf}_{2p+2}(T)$ of functions on X vanishing on Y_{2p} is generated by all the $(2p+2)$-order pfaffians of $T = (T_{ij})$, where $T_{ij} = - T_{ij}$ for $i > j$, $T_{ii} = 0$ (see [De Concini-Procesi]).

Pfaffians appear also in invariant theory. Let $Z = (Z_{ij})$ be a $2p \times n$ matrix of indeterminates, $2p + 2 \leq n$. The symplectic group $\text{Sp}(2p)$ acts on the polynomial ring $S = K[Z_{ij}]$ by the same formula as in the case of the orthogonal group. However in this case the ring of invariants $S^{\text{Sp}(2p)}$ is equal to $K[(\mathbf{t}^T \mathbf{J}^T Z \mathbf{J} Z)_{ij}]$ where \mathbf{J} is the standard antisymmetric matrix: $\mathbf{J} = \begin{pmatrix} 0 & \mathbf{I} \\ -\mathbf{I} & 0 \end{pmatrix}$, $\mathbf{I} = \begin{pmatrix} 0 & \cdots & 1 \\ \cdots & \cdots & \cdots \\ 1 & \cdots & 0 \end{pmatrix}$. Mapping $K[T_{ij}]$ onto $S^{\text{Sp}(2p)}$ by sending T_{ij} to $(\mathbf{t}^T \mathbf{J}^T Z \mathbf{J} Z)_{ij}$ one can identify $S^{\text{Sp}(2p)}$ with $K[T_{ij}]/\text{Pf}_{2p+2}(T)$ [De Concini-Procesi]. This is the second fundamental theorem of invariant theory for the given action of $\text{Sp}(2p)$.

We also present in this paper our description of a minimal free resolution of $S^{\text{Sp}(2p)} = \mathcal{O}_{Y_{2p}}^{-} = \mathcal{O}_X / \text{Pf}_{2p+2}(T)$ over \mathcal{O}_X when \mathcal{O}_X contains the field of rational integers.

An analogous problem for minors of a general generic matrix is treated in [Lascoux] and [Roberts] (see also [Nielsen]).

We recall that in both the symmetric and antisymmetric cases Y_r is a Cohen-Macaulay variety; see [Kutz],
[Kleppe-Laksov] and comments in [Laksov]. Therefore the length of a minimal free resolution of \(O_{Y_r} \) over \(O_X \) is equal to the depth of the ideal of functions vanishing on \(Y_r \). This number is \((n-r)(n-r+1)/2 \) in the symmetric case, [Kutz], and \((n-2p-1)(n-2p)/2 \) in the antisymmetric case, [Józefiak-Pragacz], \(r = 2p \).

To describe our results we need a basis free point of view. Instead of speaking of \(T \) we consider a map (symmetric or antisymmetric) \(\varphi : E^* \to E \), where \(E \) is a free \(O_X \)-module of rank \(n \) and \(T \) is the matrix of \(\varphi \) in a basis of \(E \) and its dual basis of \(E^* \). We also write \(I_{r+1}(\varphi), Pf_{2p+2}(\varphi) \) instead of \(I_{r+1}(T), Pf_{2p+2}(T) \), respectively.

In section 3 we compute components of minimal free resolutions of \(I_{r+1}(\varphi) \) and \(Pf_{2p+2}(\varphi) \) in terms of the Schur modules of \(E \). We apply a method which comes essentially from [Kempf] and was developed and used in [Lascoux] for solving an analogous problem for minors of a general matrix. We will illustrate the method for antisymmetric matrices.

Treating \(E \) as a trivial vector bundle over \(X \), let us consider a grassmannian \(G = G_{n-p}(E^*) \) parameterizing subbundles of \(E^* \) of rank \(n-p \). Let \(\pi : G \to X \) be the canonical projection and \(0 \to F \xrightarrow{\eta} E^* \to Q \to 0 \) the tautological exact sequence on \(G \) (where we write \(E^* \) instead of \(\pi^*E^* \) for short). Since the composition

\[\widetilde{\varphi} : F \xrightarrow{\eta} E^* \xrightarrow{\varphi} E \xrightarrow{\eta^*} F^* \]

is again antisymmetric it induces a cosection \(\Lambda^2 F \to O_G \) and we define a subvariety \(W \subset G \) by putting \(O_W = \text{Coker} (\Lambda^2 F \to O_G) \).
We have $\pi(W) \subseteq Y_{2p}$ (Lemma 3.1) and hence a commutative diagram

$$
\begin{array}{ccc}
W & \hookrightarrow & G \\
\downarrow & & \downarrow \pi \\
Y_{2p} & \hookrightarrow & X
\end{array}
$$

We study syzygies of $\mathcal{O}_{Y_{2p}}$ over \mathcal{O}_X by analyzing a spectral sequence of hypercohomology associated with π and the Koszul complex of \mathcal{O}_W over \mathcal{O}_G, W being locally a complete intersection in G.

Although π does not induce a birational isomorphism of W and Y (as in [Kempf] and [Lascoux]) we obtain complete knowledge of the higher syzygies in the antisymmetric case (Theorem 3.14) by using an explicit π^*-acyclic resolution of the Koszul complex of \mathcal{O}_W over \mathcal{O}_G.

In the symmetric case we also apply variant of this method to get the final result (Theorem 3.19).

The main results of section 3 were announced without proofs in [Lascoux] and [Józefiak-Pragacz].

It seems to be rather difficult to define differentials explicitly and to prove the exactness of the complex with the above mentioned description in terms of the Schur modules. However some examples of another approach are already known for determinantal varieties of low codimension (see [Józefiak], [Józefiak-Pragacz]). One uses both E and E^* to describe components and this makes it easier to define differentials by means of φ.

These examples lead to a discovery of a very fruitful characterization of symmetric and antisymmetric maps which we exploit in the remaining sections of the paper.
With an arbitrary map $\varphi : E^* \to E$ treated as a complex and given a partition I, one can associate a complex $S_I \varphi$ (the so-called Schur complex of φ) in a similar manner as for modules (see [Nielsen], [Akin-Buchsbaum-Weyman]). In particular $S_{(1,1)} \varphi = \Lambda^2 \varphi$ is a complex $S_2 E^* \to E^* \otimes E \to \Lambda^2 E$ and $S_2 \varphi$ is a complex $\Lambda^2 E^* \to E^* \otimes E \to S_2 E$, where morphisms are induced by φ. A map $\varphi : E^* \to E$ is antisymmetric if and only if the map

$$
\begin{align*}
\Lambda^2 E & \to 0 \\
\uparrow & \\
E^* \otimes E & \to \mathcal{O}_X \\
\uparrow & \\
S_2 E^* & \to 0
\end{align*}
$$

is a map of complexes where the only non-zero horizontal map is the evaluation map. Therefore an antisymmetric φ (i.e. a map $\Lambda^2 E^* \to \mathcal{O}_X$) induces a map of complexes $\Lambda^2 \varphi \to \mathcal{O}_X$ [1]. Taking this as a starting point, in section 4 we study an analogue of the Brauer-Weyl algebra of the symplectic group for complexes, and those complexes which correspond to the irreducible representations of the symplectic group.

Similar results also hold for a symmetric map φ (which induces a map of complexes $S_2 \varphi \to \mathcal{O}_X$ [1]); these find their source in the analogy with the orthogonal group.

In section 5 we use ideas and results from section 4 to construct explicit minimal free resolutions of \mathcal{O}_Y over \mathcal{O}_X (including differentials) for $r+1 = n-1$, $n-2$ in the symmetric case and for $r+2 = n-1$, $n-2$, $n-3$ in the antisymmetric case.

Some of the above results are contained in the doctoral
dissertation, [Pragacz], of the second named author.

We would like to thank A. Lascoux and M. Miller for a very careful reading of the manuscript and for their valuable comments. Thanks are also due to J.-E. Roos for arranging for the typing of this manuscript.

2. PRELIMINARIES

Partitions

By a partition I we mean a weakly decreasing sequence of non-negative integers \((i_1, i_2, ..., i_m)\). The non-zero numbers \(i_k\) are called the parts of I. We think of I as a sequence of squares of lengths \(i_1, i_2, ...\) and express it pictorially in the plane by its diagram. For example,

\[
\begin{array}{cccc}
\square & \square & \square & \square \\
\square & \square & \square & \square \\
\end{array}
\]

is the diagram of the partition \((4,3,1)\).

If \(i_m \neq 0\) then \(m\) is called the length of I, \(m = \lg I\), and \(|I| = \sum_{k=1}^{m} i_k\) its weight. The length of the diagonal of I is called the rank of I. For example, the diagonal of the partition \((4,3,1)\) is shaded in (2.1) and is of length 2.

Sometimes we use a notation for I which indicates the number of times each integer occurs as a part:

\[
I = (\underbrace{1^{n_1}}, \underbrace{2^{n_2}}, \ldots, \underbrace{k^{n_k}}, \ldots)
\]

means that exactly \(n_k\) of the parts of I are equal to \(k\).

To each square of a partition one can associate its
arm which is a set of all squares in the same row lying to the right of the given square, and its neck which is formed by all squares lying in the same column above the given square.

Still another notation for a partition I is occasionally useful. If a_k is the length of the arm of the k-th diagonal square of I and b_k is the length of its neck then we write (after Frobenius) $I = (a_1, \ldots, a_r | b_1, \ldots, b_r)$ where $r = \text{rank } I$. For example, $(4,3,1) = (3,1|2,0)$.

For two partitions I, J we write $I \succ J$ if $i_k \geq j_k$ for all k. If the columns of the diagram of I are of lengths j_1, \ldots, j_q (in a weakly decreasing order) then the partition J is called the conjugate of I and denoted by I^\sim.

For two partitions I, J such that $I \succ J$ we write I/J for a corresponding skew partition. Its diagram is obtained as a set-theoretic difference of the diagrams of I and J. For example

```
    |   |
---+---
    |   |
---+---
    |   
```

is the diagram of the skew partition $(4,3,1)/(2,1)$. The diagram of I/J has rows of lengths i_1-j_1, i_2-j_2, \ldots. The weight $|I/J|$ of I/J is defined as the difference $|I| - |J|$. We denote $(I/J)^\sim = I^\sim/J^\sim$ and call it the conjugate of I/J.

We identify a partition I with a skew partition $I/(0,0,\ldots)$.
Schur modules

Let R be a commutative \mathbb{Q}-algebra, E an R-module and I/J a skew partition.

We write $S_{I/J}E$ for the Schur module of E associated with I/J (see [Lascoux], [Nielsen], [Towber]). We also use the notation $\Lambda_{I/J}E = S_{(I/J)}E$. The module $S_{I/J}E$ depends functorially on E and the corresponding covariant functor is denoted by $S_{I/J}$.

We will need the following formulas involving Schur modules in the sequel. Let E,F denote free R-modules of finite rank.

The linearity formula

(2.2) \[S_I(E \otimes F) = \bigoplus_J S_{I/J}E \otimes S_JF \]

where the sum ranges over all partitions J contained in I.

Plethysm formulas

(2.3) \[S_m(S^2E) = \bigoplus I S^I_I E \]

summed over all partitions I of weight $2m$ with even parts and $lg I \leq \text{rank } E$;

(2.4) \[S_m(\Lambda^2E) = \bigoplus I \Lambda^I_I E \]

summed over the same set of partitions as in (2.3);

(2.5) \[\Lambda^m(\Lambda^2E) = \bigoplus I S^I_I E \]

summed over all partitions I of weight $2m$ of the form $(a_1, \ldots, a_p | a_1+1, \ldots, a_p+1)$ and $lg I \leq \text{rank } E$;
(2.6) \[\Lambda^m(S_2E) = \bullet \Lambda^E \]
summed over the same set of partitions as in (2.5).

The Cauchy formula

(2.7) \[S_m(E \bullet F) = \bullet S^E \bullet S^F \]
summed over all partitions I of m.

The Littlewood-Richardson rule

(2.8) \[S_I^E \bullet S_J^E = \bullet (I,J;L) S^E \]
where the multiplicities \((I,J;L) \) have a combinatorial interpretation in terms of lattice permutations, e.g.
\((I,J;L) = 0 \) if \(I \not\subset L \) or \(J \not\subset L \) and if \(|I| + |J| = |L| \).

A special case of (2.8) is known as the Pieri formula

(2.9) \[S_I^E \bullet S_J^E = \bullet S^E \]
summed over all partitions L containing J such that
\(|L| = |J| + r \) and \(L/J \) has at most one square in each column.

(2.10) \[S_{I/\{1^r\}}^E = \bullet S_J^E \]
summed over all partitions J contained in I such that
\(|I| = |J| + r \) and \(I/J \) has at most one square in each column.

(2.11) \[S_{I/\{1^r\}}^E = \bullet S_J^E \]
summed over all partitions J contained in I such that
\(|I| = |J| + r \) and \(I/J \) has at most one square in each row.

We refer to [Macdonald] for all these formulas in terms of Schur functions. Moreover the Littlewood-Richardson rule
is treated in detail in [Schützenberger] and [Thomas], and
a more general approach in terms of shuffles of words can
be found in [Lascoux–Schützenberger]

(2.12) If \(E \) is a free \(R \)-module of finite rank then \(S_I E \)
is again free and its rank is equal to the number
of standard Young tableaux of shape \(I \) filled out
by elements of a fixed basis of \(E \) (see [Towber]).

Schur complexes

If \(C = \{C^k\} \) is a module graded by the ring of integers,
then we adopt standard convention and write \(C[n] \) for the
module \(C \) shifted by \(n \), i.e. \(C[n]^k = C^{n+k} \). In particular
this applies to complexes. We often write \(C_{-k} \) instead of
\(C^k \) if \(k \leq 0 \). For a complex \(C' \) let \(C'^{\otimes m} \) be its \(m \)-th tensor
product. The symmetric group \(\Sigma_m \) acts on \(C'^{\otimes m} \) by permuting
factors (up to a sign). For a partition \(I \) of \(m \) let \(e(I) \) be
a primitive idempotent in the group algebra of \(\Sigma_m \) corre-
sponding to \(I \). We define \(S_I C' \) to be \(e(I)C'^{\otimes m} \) and call it
the **Schur complex** of \(C' \) associated with \(I \). For other de-
finitions of Schur complexes, see [Nielsen] and [Akin-
Buchsbaum–Weyman]. As for modules we also write \(A_I C' \) instead
of \(S_I C' \). If \(C' : \ldots \rightarrow 0 \rightarrow C^0 \rightarrow C^1 \rightarrow 0 \rightarrow \ldots \), then the
components of \(S_I C' \) can be described in terms of the Schur
modules of \(C^0 \) and \(C^1 \) in the following way, [Nielsen].

\[
(2.13) \quad \Lambda_I C^0 \rightarrow \bigoplus \Lambda_{I'} C^0 \otimes C^1 \rightarrow \ldots \rightarrow \bigoplus_{|J|=k} \Lambda_{I/J} C^0 \otimes S_J C^1 \\
\rightarrow \ldots \rightarrow S_I C^1
\]

In particular
Moreover, it follows from [Nielsen] that

\begin{align}
(2.15) \quad S_m C^i : & \quad A^m C^0 \to \ldots \to S_i C^0 \otimes A^{m-i} C^1 \to \ldots \\
& \quad \to C^0 \otimes A^{m-1} C^1 \to A^m C^1
\end{align}

and the sum ranges over all triples of integers \(a, b, c\) such that \(a+b+c = m\), \(b+2c = t\).

In section 3 we will need the following

Lemma (2.17) If \(C^i : 0 \to C^0 \to C^1 \to \ldots \to C^n \to 0\) is an exact sequence of vector spaces, then the complex

\[0 \to A^m C^0 \to A^m (C^1 \to \ldots \to C^n) \to 0 \]

is exact.

Proof Using the formula \(A^m (C^i \oplus D^i) = \bigoplus_{i=0}^{m} A^{m-i} C^i \oplus A^i D^i\) (see [Nielsen]) one easily checks that any complex of the type \(A^m (\ldots \to 0 \to M \to M \to 0 \to \ldots)\) is exact. Now write \(C^i\) as a direct sum

\[(C^0 \to \ldots \to C^n) = (C^0 \to \ldots \to C_{n-1}^0 \to 0) \oplus (0 \to \ldots \to C_{2}^{n-1} \oplus C^n) \]

Once again applying the above mentioned formula we get our claim by induction on \(n\).
The Bott theorem

Definition (2.18) We define a map $P : \mathbb{N}^k \cup \{\text{partitions}\} \cup \phi$ where \mathbb{N} is the set of natural numbers, $k \geq 2$, and ϕ denotes the empty set. We put $P(\phi) = \phi$ and for $k = 2$

$$P(a,b) = \begin{cases} (a,b) & \text{if } a \geq b, \\ (b-1,a+1) & \text{if } a < b-1, \\ \phi & \text{if } a = b-1. \end{cases}$$

We call $P(a,b)$ the elementary rectification of (a,b).

Let $k > 2$ and $(a_1, \ldots, a_k) \in \mathbb{N}^k$. We define a sequence $(s_1, \ldots, s_k) \in \mathbb{N}^k$ as follows: $P(a_1, a_2) = (s_1, b_2)$, $P(b_2, a_3) = (s_2, b_3)$, $P(b_3, a_4) = (s_3, b_4)$, \ldots, $P(b_{k-2}, a_{k-1}) = (s_{k-2}, b_{k-1})$, $P(b_{k-1}, a_k) = (s_{k-1}, s_k)$. If for some i $P(b_i, a_{i+1}) = \phi$ (where we put $b_1 = a_1$) we define $P(a_1, \ldots, a_k) = \phi$. When this is not the case we put

$$P(a_1, \ldots, a_k) = \begin{cases} (c_1, \ldots, c_{k-1}, s_k) & \text{if } P(s_1, \ldots, s_{k-1}) = (c_1, \ldots, c_{k-1}), \\ \phi & \text{if } P(s_1, \ldots, s_{k-1}) = \phi. \end{cases}$$

It follows from [Lascoux] that $P(a_1, \ldots, a_k)$ (if non-empty) is a partition. We call $P(a_1, \ldots, a_k)$ the rectification of (a_1, \ldots, a_k).

We write $m(a_1, \ldots, a_k)$ for the minimal number of elementary rectifications needed to pass from (a_1, \ldots, a_k) to $P(a_1, \ldots, a_k)$ and different from the identity. For example, $P(1,3,6) = (4,3,3)$, $m(1,3,6) = 3$.

Let X be a variety defined over a field of characteristic 0. For a vector bundle E of rank n over X and a fixed number $r < n$ consider a grassmannian $G_r(E)$ parameterizing subbundles of E of rank r. Let $\pi : G_r(E) \to X$ be the canonical
projection and $0 \to R \to E \to Q \to 0$ the tautological exact sequence on $G^r(E)$ (we write E instead of π^*E) so that rank $R = r$, rank $Q = q$, $r + q = n$. For a partition I of length $\leq r$ we write

$$I' = \left\langle 0, \ldots, 0, i_1, \ldots, i_p, q \right\rangle, \quad n(I) = \left\langle m(0, \ldots, 0, i_1, \ldots, i_p) \right\rangle.$$

Now we are ready to recall the Bott theorem as stated in [Lascoux].

Theorem (2.19) If $R^i\pi_*$ are higher direct images of π, then

1) $R^0\pi_*(S_{I\rho}Q) = S_{I\rho}E$ for $\lg I \leq q$,

$$R^k\pi_*(S_{I\rho}Q) = 0 \quad \text{for } k \geq 1.$$

Moreover

$$R^0\pi_*(S_I\rho) : S_I E \to S_I Q) = S_I E \xrightarrow{\text{Id}} S_I E$$

if $\lg I \leq q$.

2) $R^k\pi_*(S_I\rho) = \begin{cases} 0 & \text{if } k \neq n(I), \\ S_I E & \text{if } k = n(I), \end{cases}$

and $n(I) = q \cdot \text{rank } I$.

122
3. COMPONENTS OF MINIMAL FREE RESOLUTIONS

A. Antisymmetric matrices

We assume throughout this section that the coefficient field K has characteristic zero. From the point of view of the final description of minimal free resolutions it is not restrictive to assume also that K is algebraically closed.

We identify the affine space $X = \text{Alt}_n(K)$ of all $n \times n$ antisymmetric matrices over K with $\Lambda^2 V$, where V is a vector space of dimension n over K. For $U = V^*$ the symmetric algebra $S_*(\Lambda^2 U)$ can be treated as the coordinate ring \mathcal{O}_X of X.

Let E be a trivial vector bundle over X. The canonical section of $\Lambda^2 E$ induces a generic antisymmetric morphism $\varphi : E^* \to E$. If $\{v_i\}$ is a basis of V; $\{v^*_i\}$ the dual basis of U and $T_{ij} = v^*_i \wedge v^*_j$, then $T = (T_{ij})$ is the matrix of φ with respect to $\{v^*_i\}$ and $\{v_j\}$. It follows from the plethysm formula for $S_m(\Lambda^2 U)$ (see (2.4)) that there exists only one (up to a scalar) natural map $\Lambda^{2m} U \to S_m(\Lambda^2 U)$. For instance

$$\alpha : u_1 \wedge \ldots \wedge u_{2m} \mapsto \sum_{\sigma \in \Sigma_{2m}} \text{sign} \sigma (u_{\sigma(1)} \wedge u_{\sigma(2)}) \ldots (u_{\sigma(2m-1)} \wedge u_{\sigma(2m)})$$

is such a map where the sum ranges over the symmetric group Σ_{2m} on $2m$ letters. We define

$$\text{Pf} = (2^m m!)^{-1} \alpha$$

and call it the pfaffian map. Explicitly:

$$\text{Pf}(u_1 \wedge \ldots \wedge u_{2m}) = \sum_{\sigma \in \Sigma_{2m}/\Gamma_m} \text{sign} \sigma \prod_{k=1}^{m} (u_{\sigma(2k-1)} \wedge u_{\sigma(2k)})$$

where Γ_m is the subgroup of Σ_{2m} (of order $2^m m!$) consisting of those permutations which leave the set of sets
\{\{1,2\}, \{3,4\}, \ldots, \{2m-1,2m\}\} invariant. For example, for \(m = 2\)

\[
Pf(u_1 \wedge u_2 \wedge u_3 \wedge u_4) = (u_1 \wedge u_2)(u_3 \wedge u_4) - (u_1 \wedge u_3)(u_2 \wedge u_4) + (u_1 \wedge u_4)(u_2 \wedge u_3).
\]

The idea in \(\mathcal{O}_X\) generated by the image of \(Pf\) is called the ideal of \(2m\)-order pfaffians of \(\varphi\) and will be denoted by \(Pf_{2m}(\varphi)\). A more familiar description of \(Pf_{2m}\) is in terms of the matrix \(T\) mentioned above. For a subset \(\{i_1, \ldots, i_{2m}\}\) of \(\{1, \ldots, n\}\), \(Pf(v_{i_1}^\top \wedge \ldots \wedge v_{i_{2m}}^\top)\) is usually called the \(2m\)-order pfaffian of \(T\) determined by rows and columns \(i_1, \ldots, i_{2m}\) of \(T\). Therefore \(Pf_{2m}(\varphi)\) is generated by all the \(2m\)-order pfaffians of \(T\).

We write \(Y_{2m}\) for the subvariety of \(X\) of all matrices of rank at most \(2m\); by [De Concini-Procesi] \(\mathcal{O}_{Y_{2m}} = \mathcal{O}_X/Pf_{2m+2}(\varphi)\).

Main geometric construction

For a fixed natural number \(p\) such that \(2p+2 \leq n\) let us consider a relative grassmannian \(G = G_{n-p}(E^*)\) which parameterizes subbundles of \(E^*\) of rank \(n-p\) and let \(\pi : G \to X\) be the canonical projection. There is a tautological exact sequence

\[
0 \to F \xrightarrow{\eta} E^* \xrightarrow{\varphi} Q \to 0
\]

of vector bundles over \(G\). Consider the following antisymmetric morphism:

\[
\tilde{\varphi} : F \xrightarrow{\eta} E^* \xrightarrow{\varphi} E \xrightarrow{\eta^*} F^*
\]

We define a subvariety \(W\) of \(G\) as the subvariety of zeros of the associated cosection \(\Lambda^2 F \to \mathcal{O}_G\), i.e. \(\mathcal{O}_W = \text{Coker}(\Lambda^2 F \to \mathcal{O}_G)\).
A point g of G is a pair (x,F_x) where $x \in X$ and F_x is a subspace of E_x^* of dimension $n-p$. Observe that φ induces an alternating form on each fibre E_x^*. Therefore $g = (x,F_x)$ is in W iff F_x is an isotropic subspace of E_x^* with respect to that form. Basic properties of W are contained in Lemma 3.1

(a) $\pi(W) \subseteq Y_{2p}$

(b) W is locally a complete intersection in G of codimension $(n-p)$.

Proof (a) In view of the remark preceding the lemma it is enough to prove that the existence of an isotropic subspace F_x of E_x^* of dimension $n-p$ implies that $\text{rk } x < 2p+2$. By assumption a matrix of φ_x has the form

$$
\begin{bmatrix}
0 \\
n-p
\end{bmatrix}
$$

in some basis of E_x^*. By the Laplace expansion it follows easily that every $(2p+1)$-order minor of such a matrix is equal to zero.

(b) We restrict ourselves to a standard affine open subset Γ of G, say, determined by the sequence $(1,2,\ldots,n-p)$. A point $g = (x,F_x)$ belongs to Γ if F_x is generated by rows of a matrix of the form
Hence g is in W if and only if BT^tB evaluated at g is zero, where

$$B = \begin{bmatrix}
1 & 0 & y_1,1 & \cdots & y_{1,p} \\
\vdots & \ddots & \vdots & & \vdots \\
0 & 1 & y_{n-p,1} & \cdots & y_{n-p,p}
\end{bmatrix}$$

and \{y_{ij}\} are affine coordinates in T. A straightforward calculation shows that $BT^tB = (c_{ij})$ is an antisymmetric matrix such that

$$c_{ij} = T_{ij} + f_{ij} \quad 1 \leq i < j \leq n-p$$

where f_{ij} is a polynomial (of degree 3) depending only on \{T_{kl}\} for $l > n-p$ and \{y_{kl}\}. This means that c_{ij} are algebraically independent.

Corollary 3.2 The Koszul complex associated with the co-section $\Lambda^2F \to 0_G$

$$L^*: 0 \to \Lambda^N(\Lambda^2F) \to \ldots \to \Lambda^2(\Lambda^2F) \to \Lambda^2F \to 0_G$$

is locally a free resolution of 0_W over 0_G, where $N = \binom{n-p}{2}$.

Remark We consider the complex L^* to be graded by non-positive integers, i.e. $L^m = \Lambda^{-m}(\Lambda^2F)$ for $m \leq 0$, $L^m = 0$ for $m > 0$.

126
A spectral sequence of hypercohomology associated with \(\pi \) and \(L^* \)

Since \(L^* \) is a (locally free) resolution of \(\mathcal{O}_W \) over \(\mathcal{O}_G \) one of the spectral sequences of hypercohomology of \(\pi \) and \(L^* \) collapses so that the other spectral sequence converges to \(R^n\pi_*\mathcal{O}_W \):

\[
E_1^{m,k} = R^k\pi_*L^m \Rightarrow R^{m+k}\pi_*\mathcal{O}_W \tag{2}
\]

We are going to compute the \(E_1 \) term of this spectral sequence in terms of the Schur modules \(S_I E^* \).

Theorem 3.3 If \(E_1^{m,k} = R^k\pi_*L^m \) then

\[
E_1^{m,k} = \begin{cases}
0, & \text{if } k \neq pt, \ t \in \mathbb{Z} \\
\star S_I E^*, & \text{if } k = pt, \ t > 0
\end{cases}
\]

where the summation runs over all partitions \(I \) satisfying

1) \(m = -|I|/2 \)

2) there exists a partition \(J = (j_1, \ldots, j_t) \) s.t.

\[
I = (t+j_1, t+j_2, \ldots, t+j_t, t, \ldots, t, k_1, \ldots, k_s) \quad \text{where} \quad 2p+1
\]

\(K = J^\sim = (k_1, \ldots, k_s) \) is the conjugate partition of \(J \).

Remark The diagrams of the partitions \(I \) described above look like:

```
 J
  \\
2p+1
  \\
  t
  \\
  t
  \\
J
```
Non-zero modules $E_{m,k}^n$ lie in the second quadrant, and the first non-zero term (looking from the right) in the row pt corresponds to a rectangular partition $(t, \ldots, t)_{2p+t+1}$.

A proof of the theorem will use the Bott theorem and depends heavily on the following combinatorial lemma.

Lemma 3.4 Let I be a partition

$$(t+j_1, \ldots, t+j_t, t, \ldots, t, k_1, \ldots, k_s)$$

for some partition $J = (j_1, \ldots, j_t)$ and $K = J^\sim = (k_1, \ldots, k_s)$; i.e. the diagram of I looks like

![Diagram](image)

If $P(0, I)$ is the rectification of the sequence $(0, i_1, i_2, \ldots)$ (see 2.18) then $P(0, I) = \phi$ for $j_t = 0$. If $j_t \neq 0$ then the diagram of $P(0, I)$ has the form:

![Diagram](image)

where $H = (j_1-1, \ldots, j_t-1)$.

128
Proof. Observe that for $j_t = 0$ the process of rectification of the sequence $(0, i_1, i_2, \ldots)$ leads after $t-1$ steps to a sequence

$$t+j_1-1, \ldots, t+j_{t-1}-1, t-1, t, \ldots,$$

which cannot be further rectified because of the interval $(t-1,t)$. Therefore by definition $P(0,I) = \phi$.

Suppose $j_t \neq 0$; in this case the rectification is possible and a simple calculation shows that the resulting partition is equal to the one described in the lemma.

Proof of Theorem 3.3 It follows from (2.5) that

$$L^m = \Lambda^{-m}(\Lambda^2 F) = \bigoplus S_J F$$

where the sum ranges over all partitions of weight $-2m$ having diagrams of the form:

![Diagram](image)

for all possible choices of a natural number t and a partition J. To calculate $R^k \pi_*(S_J F)$ for such I we use the Bott theorem (2.19) applied to the grassmannian $G_{n-p}(E^*)$. This means that we have to compute $P(0, \ldots, 0, I)$. By iterated use of Lemma 3.4 we get the required result.

Examples 3.5 We illustrate the geography of E_1 for low values of the difference $n-2p$. These examples will be treated in more detail in section 5.
Instead of $S_i \sim E^*$ we write I for short.

\[n-2p = 3 \]

\[(n,n) \]

\[(n,1) (n-1) \]

\[-2p-3 -p-2 -p-1 \]

\[n-2p = 4 \]

\[(n,n,n) \]

\[(n,n,2) (n,n-1,1) (n-1,n-1) \]

\[(n,1,1) (n-1,1) (n-2) \]

\[-3p-6 -2p-5 -2p-4 -2p-3 -p-3 -p-2 -p-1 \]

Remark 3.6 The same argument leads to the obvious generalization of Theorem 3.3 for an arbitrary variety X (over a field of characteristic 0), a vector bundle E over X, and an antisymmetric map $\varphi : E^* \rightarrow E$, the only hypothesis being that the counterpart of the Koszul complex in Corollary 3.2 be acyclic.

Corollary 3.7 $R^i\pi_* Q_W = 0$ for $i > 0$.

Proof. In view of (2) it suffices to show that $E_1^{m,k} = 0$ for $m+k > 0$. As we noticed in the remark following Theorem 3.3 the first non-zero term (from the right) in the row pt corresponds to the partition (t, \ldots, t) and its coordinates are $2p+t+1$.
k = pt, m = -t(2p+t+1)/2. Hence m+k = -(t^2+t)/2 < 0 for t > 0.

A π^*_*-acyclic resolution of L^*

We construct here an explicit π^*_*-acyclic resolution of L^* which leads directly to the main result of this section.

Consider the map $E^* \to Q$ appearing in (1) as a complex with E^* in degree 0 and Q in degree 1. Then by Lemma (2.17) we have an exact sequence

$$0 \to \Lambda^2 F \to \Lambda^2 (E^* \to Q) \to 0$$

which looks like

(3) $0 \to \Lambda^2 F \to \Lambda^2 E^* \to E^* \to Q \to S_2 Q \to 0$.

Applying Lemma (2.17) once again to (3) we get an exact sequence

(4) $0 \to \Lambda^i(\Lambda^2 F) \to \Lambda^i[\Lambda^2(E^* \to Q)] \to 0$.

We are going to define a π^*_*-acyclic resolution D^* of L^*; to this end we take the complexes (4) as columns, i.e.

$D^{m,*} = \Lambda^{-m}[\Lambda^2(E^* \to Q)]$, m ≤ 0. Pictorially:

$$D^{**} \quad \ldots \to \Lambda^{-m}[\Lambda^2(E^* \to Q)] \to \ldots$$

$$\uparrow \quad \uparrow$$

$$L^* \quad \ldots \to \Lambda^{-m}(\Lambda^2 F) \to \ldots$$

To define maps between columns of D^{**} we consider the more general situation of a complex $A^* : A^0 \to A^1 \to A^2$ of \mathcal{O}_G-modules and a cosection $s : A^0 \to \mathcal{O}_G$. We define a map of complexes
\[d_i : \Lambda^{i}A^* \to \Lambda^{i-1}A^* \]
as the composition of diagonalisation \(\Lambda^{i}A^* \to \Lambda^{i-1}A^* \otimes A^* \)
(see [Akin - Buchsbaum - Weyman]) and the map \(\text{id}_{\Lambda^{i-1}A^*} \otimes t \),
where \(t \) is following map of complexes:

\[
\begin{array}{cccc}
A^* & A^0 & A^1 & A^2 \\
\downarrow t & \downarrow s & \downarrow & \\
0 & 0 & 0 & 0
\end{array}
\]

Lemma 3.8 \(d_i \circ d_{i+1} = 0 \)

Proof. The map \(d_i \circ d_{i+1} \) can be treated as the composition of the natural injection

\[\Lambda^{i+1}A^* \to \Lambda^{i-1}A^* \otimes A^* \otimes A^* \]
and the map \(A^* \otimes A^* \otimes 0_G \to 0_G \otimes 0_G = 0_G \) tensored by the identity on \(\Lambda^{i-1}A^* \). Using the Littlewood - Richardson rule (or by a straightforward computation) we obtain that the image of \(\Lambda^{i-1}A^* \) under the above mentioned injection is contained in \(\Lambda^{i-1}A^* \otimes \Lambda^2A^* \). Since the composition \(\Lambda^2A^* \to A^* \otimes A^* \otimes 0_G \) is zero, we are done.

Applying this construction to the complex

\[A^* : \Lambda^2E^* \to E^* \otimes Q \to S_2Q \]
and the cosection \(\phi : \Lambda^2E^* \to 0_G \), we get a double complex \(D^{**} \).

Corollary 3.9 The complex \(D^{**} \) is a \(\pi_* \)-acyclic resolution of \(L^* \).
Proof. Each column $D^{m,*}$ of D^{**} is a resolution of L^m in view of the exactness of (3). Moreover each component of $D^{m,*}$ is a direct sum of modules of the form $S^*_I E^* \otimes S^*_J Q$ for some partitions I, J. Since $S^*_J Q$ are π^*_*-acyclic by the Bott theorem (2.19) we infer that $D^{m,*}$ is a π^*_*-acyclic resolution.

Corollary 3.10 The only non-zero homology of the complex $D^* = \text{tot } D^{**}$ is in degree zero and equals \mathcal{O}_W^\star.

Proof This follows from 3.9 and the fact that L^* is a resolution of \mathcal{O}_W^\star over \mathcal{O}_G^\star.

A resolution of \mathcal{O}_Y^{2p} over \mathcal{O}_X^\star

We define $C^{**} = \pi^*_*(D^{**})$; C^{**} is a double complex of free \mathcal{O}_X^\star-modules.

Corollary 3.11 The only non-zero homology of $C^* = \text{tot } C^{**}$ is in degree zero and is equal to $R^0\pi^*_*\mathcal{O}_W^\star$.

Proof We get the required result by standard arguments with spectral sequences using 3.10 and π^*_*-acyclicity of D^{**}.

From the definition of D^{**} and the Bott theorem it follows that each component of C^{**} is a direct sum of tensor products of Schur modules on E^\star.

Lemma 3.12 For each m the differentials of the complex $C^{m,*}$ are natural with respect to E^\star. In particular they are morphisms of $\text{GL}(U)^\star$-modules.
Proof A commutative diagram of O_G-modules

\[
\begin{array}{ccc}
E^* & \xrightarrow{\text{id}} & E^* \\
\downarrow \text{id} & & \downarrow \rho \\
E^* & \subseteq & Q
\end{array}
\]

(see (1) for the definition of ρ) induces a surjective morphism of complexes

\[
\Lambda^m[\Lambda^2(E^* \to E^*)] \\
\downarrow \\
\Lambda^m[\Lambda^2(E^* \to Q)]
\]

Using (2.16) and (2.7), the plethysm formulas (2.3 - 2.6) and the Littlewood-Richardson rule, one can write (5) in the form

\[
\ldots \to \otimes S_I E^* \otimes S_J E^* \to \ldots
\]

\[
\downarrow \text{id} \otimes S_J(\rho)
\]

\[
\ldots \to \otimes S_I E^* \otimes S_J Q \to \ldots
\]

Recall (2.19) that

\[
\pi_*(S_J(\rho)) = \begin{cases}
S_J(E^*) \otimes \text{id} & \text{if } \lg(J) \leq p \\
0 & \text{if } \lg(J) > p
\end{cases}
\]

Hence by applying π_* to (6) we get a surjective map of complexes

\[
\Lambda^m(\Lambda^2(E^* \to E^*)) \\
\downarrow \text{id} \\
C^m, \ldots \to \otimes S_I E^* \otimes S_J E^* \to \ldots
\]

\[
\downarrow \text{lgJ} \leq p
\]

Therefore C^m, \ldots has a natural differential as a quotient of $\Lambda^m(\Lambda^2(E^* \to E^*))$.

134
Now we are going to compute $R^0\pi_*\mathfrak{O}_W$ by using a spectral sequence associated with the double complex \mathbb{C}'. Since D^m is a π_*-acyclic resolution of L^m we have $R^k\pi_*(L^m) = H^k(C^m)$. Therefore the first term of such a spectral sequence is equal to that of the spectral sequence (2) of hypercohomology. From Theorem 3.3 it follows that there is exactly one non-zero term on each of the lines $m+k = 0,-1,-2$ as indicated on the picture below.

Therefore

$$E_2^{-(p+1),p} = A^{2p+2}E^*/\text{Im}(A_{2p+3,1}E^* \to A^{2p+2}E^*)$$

and $E_2^{-(p+1),p} = \ldots = E_2^{-(p+1),p}$. Since $E_{\infty}^{-(p+1),p} = 0$, in view of Corollary 3.7, we infer that:

$$E_{p+1}^{-(p+1),p} \xrightarrow{d} E_{p+1}^{0,0} = \mathfrak{O}_X$$

is an injection. Observe that $S_1E = S_1U \otimes K \mathfrak{O}_X$ and $\mathfrak{O}_X = \mathfrak{O}(\mathfrak{O}_X)_i$ is a graded ring where $(\mathfrak{O}_X)_i = S_1(A^2U)$. Therefore S_1E is a graded module over \mathfrak{O}_X and the differentials of $C^{''}$ (both vertical and horizontal) are maps of graded \mathfrak{O}_X-modules and are
natural with respect to U. Moreover the horizontal differentials are homogeneous \mathcal{O}_X-homomorphisms of degree 1. All this implies that $E_{p+1}^{-(p+1)}$, p is generated by $\Lambda^{2p+2}U$ over \mathcal{O}_X and therefore the zero component of $d_{p+1} : E_{p+1}^{-(p+1)}$, $p \to \mathcal{O}_X$ is, up to a scalar, defined by the map $P f$. This scalar must be non-zero since d_{p+1} is injective. Hence $\text{Im} \ d_{p+1} = Pf_{2p+2}(\varphi)$ and $R_0^{\pi_\star} \mathcal{O}_W = E_\infty^{0,0} = \mathcal{O}_{Y_{2p}}$. This together with Corollary 3.7 gives us

Proposition 3.13 $R^i \pi_\star \mathcal{O}_W = 0$ for $i > 0$, $R^0 \pi_\star \mathcal{O}_W = \mathcal{O}_{Y_{2p}}$.

Therefore by [Kempf] Y is a normal, Cohen-Macaulay variety.

Now we are ready to prove the main theorem of this section.

Theorem 3.14 The i-th component of a minimal free resolution of $\mathcal{O}_{Y_{2p}}$ over \mathcal{O}_X is equal to

$$S_I^i E^*$$

where the sum ranges over all partitions I satisfying 1), 2) of Theorem 3.3 with $m+k = i$, $m = -|I|/2$, and $k = p \cdot \text{rank} \ (I)$.

Proof Recall that the i-th component F^i of a minimal free resolution is isomorphic to $\text{Tor}_{-i}^X(\mathcal{O}_{Y_{2p}}, \mathcal{O}_X/(\mathcal{O}_X)^+) \otimes \mathcal{O}_X$, where $(\mathcal{O}_X)^+$ is the ideal in \mathcal{O}_X generated by the elements of positive degree. Since C^* is an acyclic complex of free \mathcal{O}_X-modules with $H^0(C^*) = \mathcal{O}_{Y_{2p}}$ by 3.13 and 3.11 we have

$$F^i = H^i(C^* \otimes_{\mathcal{O}_X} \mathcal{O}_X/(\mathcal{O}_X)^+) \otimes \mathcal{O}_X$$

However $C^* = \text{tot} C^{**}$ and horizontal differentials in C^{**} are \mathcal{O}_X-homomorphisms of degree 1. Therefore $H^i(C^* \otimes \mathcal{O}_X/(\mathcal{O}_X)^+)$ is
a sum of the corresponding homology of columns $C^m \cdot \otimes \mathcal{O}_X/(\mathcal{O}_X)_+,\n$ which were computed in Theorem 3.3 (see Remark 3.6).

Corollary 3.15 Y_{2p} is a Gorenstein variety.

Proof The last non-zero component in 3.14 is $\Lambda_{n, \ldots, n} E^*$, which is of rank 1.

Corollary 3.16 Since Y_2 is a cone over a grassmannian $G_2(n)$, Theorem 3.14 gives all components of a minimal free resolution of $G_2(n)$ in this case (via the Plücker embedding).

Now we are going to discuss differentials in a minimal resolution of $\mathcal{O}_{Y_{2p}}$ over \mathcal{O}_X.

Lemma 3.17 Let $S_i E^*, S_{i+1} E^*$ be direct summands of F^i and F^{i+1}, respectively, and $I \supset L$. If the diagrams of I and L are as in the picture below

```
         J~
         2p+1
           t

I   t
  t

         H~
         2p+1
           s

L   s
  s
```

then either

1° $t = s$, $|J| = |H| + 1$

or

2° $t = s + 1$, $|H| = |J| + t - 1$ and $h_k = j_{k+1}$

for $1 \leq k \leq s$, $j_t = 0$.

137
Proof It follows from $I \supset L$ that $s \leq t$ and $h_k \leq j_k + x$
where $x = t - s$. Therefore $|H| \leq |J| + sx$. Since $|J| + t(t+1)/2$
$= |H| + s(s+1)/2 + 1$ we find that $x^2 + x - 2 \leq 0$. We have therefore
the following two possibilities: $x = 0$, $x = 1$ which correspond to 1^0
and 2^0 of the lemma.

Remark 3.18 In the case 2^0 I and L differ in one column
only by $2p + 2$ squares.

Let $d_1 : F^i \to F^{i+1}$ be the differentials in our minimal re-
solution. These are \mathcal{O}_X morphisms which are natural with
respect to U. This together with the Littlewood - Richardson
rule implies that the restriction $S_k E^* \to S_k E^*$ of d_1 is zero
if $I \not\supset L$. If $I \supset L$ then $S_k E^* \to S_k E^*$ (if non-zero) is an
\mathcal{O}_X-map of degree 1 in the case 1^0 of Lemma 3.17 and of de-
gree $p+1$ in the case 2^0. Moreover in the latter case it is
described by $2p+2$-pfaffians of φ (in view of Remark 3.18).

B. Symmetric matrices

From now on let $X = \text{Sym}_n K$ be the affine space of all
symmetric $n \times n$ matrices over a field K. We can identify X
with $S_2 V$ where V is a vector space of dimension n over K.
For $U = V^*$ the symmetric algebra $S_*(S_2 U)$ can be treated as
the coordinate ring \mathcal{O}_X of X.

Let E be a trivial vector bundle on X. The canonical
section of $S_2 E$ induces a generic symmetric morphism
$\varphi : E^* \to E$. If $\{v_i\}$ is a basis of V, $\{v^*_i\}$ its dual basis
of U and $T_{ij} = v^*_i v^*_j \in S_2 U$, then $T = (T_{ij})$ is the matrix of
φ with respect to $\{v^*_i\}$ and $\{v_i\}$. The ideal $I_{p+1}(\varphi)$ generated
by all the $(r+1)$-order minors of T is equal to the ideal
generated in $S_r(S_2 U)$ by $\Lambda_{r+1,r+1} U$. Observe that $\Lambda_{r+1,r+1} U$ is contained in $S_{r+1}(S_2 U)$ in view of (2.3). We write Y_r for the subvariety of X corresponding to $I_{r+1}(\varphi)$.

The main result of this section is

Theorem 3.19 The i-th component of a minimal free resolution \mathcal{O}_{Y_r} over \mathcal{O}_X is equal to

$$\bigoplus_{m+k=i} S_{I_{r+1}} E^*$$

where the sum ranges over all partitions I of the following shape:

![Diagram](image)

and $m = -|I|/2$, $k = (r/2) \text{rk}(I)$.

This means that there exists a partition $J = (j_1, \ldots, j_{2t})$, $K = J^\sim = (k_1, \ldots, k_s)$ such that

$$I = (2t+j_1, \ldots, 2t+j_{2t}, 2t, \ldots, 2t, k_1, \ldots, k_s).$$

In particular the first component of the resolution is equal to $\Lambda_{r+1,r+1} E^*$.

At first we will study the ideals of odd order minors, say, $r = 2p$.

139
Consider a relative Grassmannian $G = G_{n-p}(E^*) \to X$ with a tautological sequence $0 \to F \to E^* \to Q \to 0$ on G. We have the following symmetric morphism

$$\tilde{\varphi} : F \to E^* \to E \to F^*$$

which induces a cosection $S_2 F \to \mathcal{O}_G$. Let W be the subvariety of zeros of this cosection, i.e.

$$\mathcal{O}_W = \text{Coker} (S_2 F \to \mathcal{O}_G)$$

Similarly as in Lemma 3.1 we prove that $\pi(W) \subset Y$, and W is locally a complete intersection in G of codimension $(n-p+1)$. Therefore the Koszul complex

$$L^* : \ldots \to \Lambda^2(S_2 F) \to S_2 F \to \mathcal{O}_G \to 0$$

is locally a free \mathcal{O}_G-resolution of \mathcal{O}_W. Let D'' denote a π_*-acyclic resolution of the Koszul complex L^*:

$$D'' : \ldots \to \Lambda^m[S_2(E^* \to Q)] \to \ldots$$

$$L^* : \ldots \to \Lambda^m(S_2 F) \to \ldots$$

defined by exactly the same method as in part A. As in A, the total complex D' of D'' has only one non-zero homology $H^0(D') = \mathcal{O}_W$. Let $C'' = \pi_*(D'')$ and let C^* be a total complex of C''.

Using the Bott theorem we are able to compute the cohomology of columns in C''.

Theorem 3.20 The first term $E^m_{1,k} = R^k\pi_*(L^m)$ of a spectral sequence of hypercohomology associated with L'' and π_* can be described as follows:
RESOLUTIONS OF DETERMINANTAL VARIETIES

\[E^m, k = \begin{cases} 0 & \text{if } k \neq pt, \\
\ast S \ast E^* & \text{if } k = pt, \ t > 0 , \end{cases} \]

where the sum runs over all partitions \(I \) satisfying

1) \(m = -|I|/2 \)

2) There exists a partition \(J = (j_1, \ldots, j_t) \), such that

\[I = (t+j_1, \ldots, t+j_t, t, \ldots, t, k_1, \ldots, k_s) \]

where \(K = J^\ast = (k_1, \ldots, k_s) \) is the conjugate partition of \(J \).

Remark The diagrams of the partitions I described above look like:

To prove this theorem we use the plethysm formula (see (2.6)) \(\Lambda^{-m}(S_2 F) = \ast S I F \), where I runs over the set of all partitions of weight \(-2m\), rank \(t \), and the following shape
and we proceed exactly as in Lemma 3.4.

By analyzing the geography of $E_1^{m,k}$ similarly as in Corollary 3.7 we get:

Corollary 3.21 $R^i\pi_*\mathcal{O}_W = 0$ for $i > 0$.

To compute $R^0\pi_*\mathcal{O}_W$ observe that (by Theorem 3.20) the only non-zero terms on the lines $m+k = 0$, $m+k = -1$, $m+k = -2$ are $\mathcal{O}_X, \Lambda^p E^*$; $\Lambda_{r+1,1} E^*, \Lambda_{r+1,r+1} E^*$; $\Lambda_{r+2,1,r+1} E^*$, $\Lambda_{r+2,r+1,1} E^*$, respectively (see the picture below).

Therefore

$$E_\infty = E_\infty^0 \star E_\infty^{-P,P}$$

Using the naturality of the differentials (with respect to U) and the fact that $\Lambda_{r+1,r+1} U$ doesn't appear as a summand in $\Lambda^p U \otimes S_{p+1}(S_2 U)$ (by the Littlewood - Richardson rule) we conclude that the differential d_{p+1} marked on the picture vanishes. Therefore $E_\infty^{-P,P} = E_1^{-P,P} = \text{Coker}(\Lambda_{r+1,1} E^* \xrightarrow{d_1} \Lambda^p E^*)$ where d_1 is the first differential of the spectral sequence.

The above remark shows that:

$$E_\infty^{(r+1),r} = \text{Ker}(E_\infty^{-(r+1),r} \xrightarrow{d_{r+1}} \mathcal{O}_X)$$
RESOLUTIONS OF DETERMINANTAL VARIETIES

where \(E_{r+1}^{-}(r+1) \), \(r = \text{Coker} (\Lambda_{r+2,r+1,1}^{E_1} \rightarrow \Lambda_{r+1,r+1}^{E_1}) \). But \(E_{\infty}^{-}(r+1), r = 0 \) so that \(d_{r+1} \) is an injection. Note that \(E_{r+1}^{-}(r+1), r \) is generated as a graded \(O_X \)-module by the 0-th component \(\Lambda_{r+1,r+1}^{U} \). Since every natural map \(\Lambda_{r+1,r+1}^{U} \rightarrow S_{r+1}(S_{2}U) \) is up to a scalar determined by \((r+1)\)-order minors of \(\varphi \), we obtain \(E_{\infty}^{0,0} = 0 \) and hence:

Lemma 3.22 \(R^{0} \pi_{\ast}O_{W} = O_{Y_{r}} \star M \), where \(M = E_{\infty}^{-P,P} \)

Corollary 3.23 The only non-zero homology of \(C^{\ast} \) appears in degree zero and is equal to \(O_{Y_{r}} \star M \).

Recall that our main aim is to compute

\[
P^{i} = \text{Tor}_{-i}^{O_{Y_{r}}}(O_{Y_{r}}/(O_{X})_{+}) \star_{K} O_{X} \text{ where } (O_{X})_{+} \text{ is the ideal of } O_{X} \text{ generated by homogenous elements of positive degree. By Theorem 3.20 and Corollary 3.23 we infer that}
\]

\[
(8) \quad P^{i} \star \text{Tor}_{-i}^{O_{X}}(M,O_{X}/(O_{X})_{+}) = \star S_{I}U
\]

where \(I \) runs over all partitions satisfying 1), 2) of Theorem 3.20 such that \(m+k = i, m = -|I|/2, k = p \text{ rk}(I) \). Observe that the partitions (7) are among those specified above. Hence to prove Theorem 3.19 it suffices to show that all the partitions (7) really do appear in the decomposition of \(P^{i} \) and none of the remaining summands of (8) can appear in \(F^{\ast} \). To achieve this goal we construct another free \(O_{X} \)-resolution of \(O_{Y_{r}} \) (it appears already in [Lascoux]) by a method similar to that used in the construction of \(C^{\ast} \).

Recall that \(X = S_{2}V \) where \(V \) is a vector space over \(K \) of dimension \(n \). Let \(V' \) be a subspace of \(V \) of dimension \(r \)
and denote by \(P \) the parabolic subgroup of \(\text{GL}(V) \) stabilizing \(V' \) in \(V \). We have a diagram (see [Kempf]):

\[
Z = \text{GL}(V) \times^P S_2 V' \overset{\tau}{\rightarrow} S_2 V
\]

\[
\downarrow \quad \text{GL}(V)/P
\]

where \(Z \) is a homogenous bundle on \(G_r(V) = \text{GL}(V)/P \) and \(\tau \) is defined by \(\tau(g, v_1, v_2) = (gv_1)(gv_2) \). It is easy to show that \(\tau(Z) = Y \) (in fact \(\tau \) is a birational morphism). If we consider a relative grassmannian \(G_r(E) \) and a tautological subbundle \(R \), then \(Z \) is isomorphic to the subvariety of \(G_r(E) \) which is locally a complete intersection defined by the section \(\mathcal{O}_{G_r(E)} \to N = \text{Coker}(S_2 R \to S_2 E) \) or equivalently by a cosection \(N^* \to \mathcal{O}_{G_r(E)} \). Hence the Koszul complex of \(N^* \to \mathcal{O}_{G_r(E)} \) is locally a free resolution of \(\mathcal{O}_Z \) over \(\mathcal{O}_{G_r(E)} \). We define its \(\pi_- \)-acyclic resolution \(B'' \) by putting

\[
B^m,\tau = \Lambda^{-m}(S_2 E^* \to S_2 R^*) \quad \text{for} \quad m \leq 0 \quad \text{and defining horizontal differentials} \quad B^m,\tau \to B^{m+1},\tau \quad \text{in an obvious way.} \]

By similar arguments as before with respect to \(C'' \) we infer that the total complex of \(A'' = \tau_*(B'') \) is a free \(\mathcal{O}_Y \)-resolution of \(\mathcal{O}_Y \).

Since by the Bott theorem

\[
R^0 \tau^* S_I R^* = S_I E^* \quad \text{if} \quad \log I \leq r
\]

and zero otherwise, we can write explicitly:

\[
A^m,\kappa = \bigoplus_{L} S_L E^* \otimes S_H E^* \quad m \leq 0 \quad , \quad k \geq 0
\]

where the sum ranges over \(L \in L_{-m-k}, H \in H_{\kappa} \). Here \(L_{\kappa} \) denotes the set of partitions \(L \) appearing in the plethysm formula \(\Lambda^i(S_2) = \bigoplus_{L} S_L \) (see (2.6)) and \(H_{\kappa} \) is a set of partitions \(H \) with the following properties

(a) \(|H| = 2i \)

(b) The length of each part of \(H \) is even.

(c) The length of \(H \) is at most \(r \).
Remark The fact that the Schur functors occurring in the resolution of \mathcal{O}_{Y_r} over \mathcal{O}_X are the ones occurring in the cohomology of the column $A^{m\cdot r}$ can be shown in another way. Recall that the i-th module in the minimal free resolution of \mathcal{O}_{Y_r} over \mathcal{O}_X is just

$$\text{Tor}_i^\mathcal{O}_X(\mathcal{O}_{Y_r}, \mathcal{O}_X/(\mathcal{O}_X)^*) \otimes_k \mathcal{O}_X$$

Observe that the Tor written above is just a K-vector space. But $\text{Tor}_i^\mathcal{O}_X(\mathcal{O}_{Y_r}, \mathcal{O}_X/(\mathcal{O}_X)^*)$ can be computed as the cohomology of the Koszul complex $\Lambda^r(S_2 E^*)$ tensored with \mathcal{O}_{Y_r} over \mathcal{O}_X. This cohomology is annihilated by $(\mathcal{O}_X)^*$, so we can compute it in each homogeneous component separately. We see that each homogeneous component is just a column of $A^{m\cdot r}$. It follows immediately from the decomposition

$$[S.(S_2 U)/I_{r+1}(\psi)]_t = \bigoplus_{|I|=2t} A_{I,U}$$

I has even rows

$$i_1 \leq r$$

In view of the previous remarks the following proposition allows us to complete the proof of Theorem 3.19.

Proposition 3.24 Let I be a partition of weight $-2m$, rank s and with a diagram of the form

```
\begin{array}{c}
\vdots \\
r-1 \\
\vdots \\

J^c \\
\end{array}
```

```
\begin{array}{c}
\vdots \\
s \\
\vdots \\

J \\
\end{array}
```

```
\begin{array}{c}
\vdots \\
s \\
\vdots \\

s \\
\end{array}
```
for some partition J. Then $S_t E^*$ appears in the cohomology of $A^m,^*$ if and only if s is even.

Remark The proposition is valid for arbitrary r (not necessarily even).

Before starting with a proof of 3.24 we state the following easy consequence of the Littlewood–Richardson rule.

Lemma 3.25 Let H, L be arbitrary partitions and let $P = (h_1 + l_1, h_2 + l_2, \ldots)$. Then Λ_P appears with multiplicity 1 in $\Lambda_H \ast \Lambda_L$.

In the sequel we write P for short instead of $S_P E$.

Proof of Proposition 3.24

1) $s = 2t$

First we treat the case when the length of the first column in J is equal to $2t$. Consider three components of the complex $A^m,^*$ involved in the proof

$A^m,2tr-1, A^m,2tr, A^m,2tr+1$

and write

$L_0 = (2t+1+j_1, 2t+1+j_2, \ldots, 2t+1+j_t, j_1^\sim, \ldots, j_q^\sim) \in L_{-m-tr}$

and $H_0 = (r, \ldots, r) \in H_{tr}$.
We are going to prove that I occurs in $A^{m,2tr}$ with multiplicity 1 as a summand in the product $L_0 \otimes H_0$ and I occurs with multiplicity 0 both in $A^{m,2tr-1}$ and $A^{m,2tr+1}$. Since $A^{m,\ast}$ is a complex of Schur modules with natural differentials this would imply that it occurs in $H^{2tr}(A^{m,\ast})$. It follows from Lemma 3.25 that I really appears in $L_0 \otimes H_0$ with multiplicity 1. Suppose I occurs as a summand of $L \otimes H$ where $(L,H) \in L_{-m-tr-1} \times H_{tr+1}$ or $(L',H) \in L_{-m-tr+1} \times H_{tr-1}$. Observe first that the length of the arm of any diagonal square of L can not be greater than the length of the arm of the corresponding diagonal square in I, if I really occurs in $L \otimes H$; therefore $L \subset L_0$, and $L \notin L_{-m-tr+1}$. Let us assume $L \in L_{-m-tr-1}$. Observe that to obtain I from L and H (using the Littlewood-Richardson rule) we must add a column of symbols to each of the first $2t$ columns in L. Since $|H| = 2tr+2$ and the length of each part of H is even we conclude that $H = (2t+2,2t,\ldots,2t)$. But L differs from L_0 by two squares of which at most one lies on the right of the $2t$-th column of L. To obtain I from L and H we must write the symbol 1 twice on the right of the $2t$-th column of L. Hence we cannot obtain I, and we are done.

If the length of the first column in J is less than $2t$ the argument is similar. In this case:

$$L_0 = (j_1+2t, \ldots, j_{2t-1}+2t, j_1, \ldots, j_q)$$
and \(H_0 = (r, \ldots, r) \).

2) Suppose now that the rank of \(I \) is odd, and \(I \) appears as a summand in the product \(L \ast H \) where \(L \in L_{-m-tr} \), \(H \in H_{tr} \) for some \(t \). Observe that for each diagonal square of \(I \) the difference between the length of its neck and arm is \(r-1 \) while for each diagonal square of \(L \) this difference equals \(-1\). Let a diagram of \(L \) be of the form

A moment of reflection shows that the only way to get \(I \) from \(L \) by adding numbered squares from some partition \(H \in H_{tr} \) in such a way that the resulting word is a lattice permutation, is for \(H = (m+1, \ldots, m+1) \). The resulting partition is therefore of the form
Since $H \in H_1$ the rank of the above partition is even. This gives us a contradiction because we assumed that the rank of I is odd.

Now let us treat $(r+1)$-order minors when $r+1$ is even. By Proposition 3.24 we know that also in this case all Schur modules S_1E^* corresponding to partitions (7) do appear as summands with multiplicity 1 in the minimal resolution of \mathcal{O}_{V-Y} over \mathcal{O}_X. We are going to show that these are the only summands.

Consider the affine space X' of all symmetric $n+1$ by $n+1$ matrices over K and its coordinate ring $\mathcal{O}_{X'} = K[T_{ij}^{1 \leq i \leq j \leq n+1}]$. Write E' for a trivial vector bundle of rank $n+1$ over X' and $\varphi' : E'^* \to E'$ for the generic symmetric morphism which in some basis of E' and its dual basis of E'^* is determined by the symmetric matrix (T_{ij}^1). By the previous considerations all components of the minimal resolution $F'(\varphi')$ of $\mathcal{O}_{X'}/I_{r+2}(\varphi')$ over $\mathcal{O}_{X'}$ are known.

Let G' be the complex $F'(\varphi')$ localised at the powers of $T_{n+1}^{1 \leq i \leq n+1}$. It is obvious that G' is a resolution of $\mathcal{O}/I_{r+2}(\varphi'')$ over \mathcal{O} where φ'' is the matrix:
and \(o = (\mathcal{O}_X, \{T_{n+1,n+1}\}) \). Consider the ring homomorphism:

\[
f: \mathcal{O}_X \to \mathcal{O}_X,
\]

\[
f(T_{i,j}) = \begin{cases}
T_{i,j} & \text{for } 1 \leq i \leq j \leq n \\
0 & \text{for } j = n+1, i=1, \ldots, n \\
1 & \text{for } i = j = n+1
\end{cases}
\]

Observe that \(f(I_{r+2}^+(\psi''')) = I_{r+1}^+(\psi) \) and length \(G^* = \text{length } F^*(\psi') \) is \(1/2[n+1-(r+2)+1][n+1-(r+2)+2] = 1/2[n-(r+1)+1][n-(r+1)+2] \) depth \((I_{r+1}^+(\psi), \mathcal{O}_X^+) \) by [Kutz]. In view of Corollary 8 in [Kempf-Laksov] we see that \(H = \mathcal{O}_X^* \) is a free resolution (non-minimal) of \(\mathcal{O}_X/I_{r+1}^+(\psi) \) over \(\mathcal{O}_X \). We are going to use this resolution to investigate

\[
\text{Tor}_{-i}(\mathcal{O}_X/I_{r+1}^+(\psi), \mathcal{O}_X/(\mathcal{O}_X^+)) \otimes \mathcal{O}_X^* \mathcal{O}_X
\]

Observe that the complex \(H^* = H* \otimes \mathcal{O}_X^* \mathcal{O}_X/(\mathcal{O}_X^+), \mathcal{O}_X^+ \) is a complex of \(\text{GL}(U) \)-modules and is equal to \(F^*(\psi) \otimes \mathcal{O}_X/(\mathcal{O}_X^+) \) where \(\psi \) is the following map of \(\mathcal{O}_X \)-modules:

\[
\psi: E^* \otimes \mathcal{O}_X^0 \otimes \text{id} E \otimes \mathcal{O}_X
\]

Observe that \(S_P E^* \) appears as a summand in (9) if and only if \(S_P U \) is a summand in the \(i \)-th cohomology of \(H^* \), and recall that \(S_P E^* \) appears in (9) if and only if \(S_P E^* \) is a summand in the cohomology of \(H^k(A^m, \psi) \) for \(m = -|P|/2, k = -m+i \).

Therefore it suffices to show that if \(S_P U \) appears in \(H^i \), and is not of the form (7), then \(S_P E^* \) cannot appear in \(A^m, k \).
Let I be a partition such that $S^{-E^*} \in F^I(\varphi')$. Since $r+2$ is odd we know already that I has a diagram of the form

\begin{equation}
\begin{array}{c}
\vdots \\
\hline \\
\hline \\
\hline \\
2t \\
\hline \\
\hline \\
2t \\
\hline \\
2t \\
\hline \\
2t \\
\hline \\
\vdots \\
\end{array}
\end{equation}

By the formula (2.10) and the linearity formula (2.2) we have

\begin{equation}
S_I (E^* \otimes \delta_X) = \bigoplus S_N E^*
\end{equation}

where the sum ranges over all partitions N contained in I such that I/N has at most one square in each column.

Removing one square from each of the first $2t$-columns of I we get a partition I_0 of the form (7). Therefore the following lemma completes our proof of Theorem 3.19 if $r+1$ is even.

Lemma 3.26 Let I be a partition with a diagram (10). Then among the partitions N occurring in the sum (11) I_0 is the only one occurring as a summand of a component of the double complex A^\ast.

Proof We are going to prove that if N appears in (11) and N occurs in $L \otimes H$ for $L \in L_{-m-i}$, $H \in H_i$ then $N = I_0$.

First observe that the largest difference between the length of the neck and the arm of any diagonal square of a
partition obtained as a result of tensoring two elements from L_{m-i} and H_i is equal $r-1$. This follows from the description of the Littlewood–Richardson rule in terms of lattice permutations.

On the other hand each $N \ast I_o$ occurring in (11) has the property that there exists a diagonal square in N having the difference between lengths of its neck and arm larger than r. Hence our claim follows.

Corollary 3.27 The determinantal variety Y_r is Gorenstein if and only if $n-r$ is odd.

Proof It follows from Theorem 3.19 that the last module in a minimal resolution of \mathcal{O}_{Y_r} over \mathcal{O}_X is equal to:

$$\begin{cases}
S ((E^*))^{(n-r+1)n}, & \text{if } n-r \text{ is odd} \\
S ((E^*))^{(n-r+1)n-r(n-r)r}, & \text{if } n-r \text{ is even}
\end{cases}$$

Since this module is of rank 1 if and only if $n-r$ is odd, we are done.

4. **SYMPLECTIC AND ORTHOGONAL SCHUR COMPLEXES**

Let E be a free module over a \mathbb{Q}-algebra R and $\varphi : E^* \to E$ an antisymmetric map. We will treat φ as a complex with the component E^* in degree -1 and E in degree 0. Let us consider the complex φ^m which is the m-th tensor power of φ. The symmetric group Σ_m acts on φ^m by permuting factors:

$$\sigma(x_1 \ast \ldots \ast x_m) = (-1)^F x_{\sigma^{-1}(1)} \ast \ldots \ast x_{\sigma^{-1}(m)}$$
where $\sigma \in \Sigma_m$, x_i belongs to E or E^*, and $r = \sum_{i<j} \deg x_i \deg x_j$. It is easy to show that σ defined in this way is a map of complexes and that these operators give a left action of Σ_m on φ^m.

We now define another family of operators on φ^m. Let us consider the map of complexes

$$\text{tr} : \mathbb{R}[1] \to \varphi \otimes \varphi,$$

defined by $\text{tr}(1) = \sum_i e_i \otimes e_i^* + \sum_i e_i^* \otimes e_i$ where $\{e_i\}$ is a basis of E and $\{e_i^*\}$ is the dual basis. We also have the dual map

$$\text{ev} : \varphi \otimes \varphi \to \mathbb{R}[1]$$

defined by $\text{ev}(x \otimes y^*) = y^*(x)$, $\text{ev}(y^* \otimes x) = -y^*(x)$ for $y^* \in E^*$, $x \in E$. We write in general $\text{ev}(x \otimes y) = \langle x, y \rangle$.

We define now the basic operator $\tau : \varphi \otimes \varphi \to \varphi \otimes \varphi$ as the composition $\tau = \text{tr} \cdot \text{ev}$.

For m bigger than 2 we define the operator τ_{12}

$$\tau_{12} : \varphi^m \to \varphi^m$$

as $\tau \otimes \varphi^{m-2}$. For arbitrary i, j, $1 \leq i \leq m$, $1 \leq j \leq m$, $i \neq j$, we define τ_{ij} as $\sigma_{12} \sigma^{-1}$ for $\sigma \in \Sigma_m$ such that $\sigma(1) = i$, $\sigma(2) = j$. One checks immediately that such a definition does not depend on the choice of σ. In this situation we have:

Proposition 4.1 The operators σ, τ_{ij} satisfy the following relations:

a) $\tau_{ij}^2 = 0$,
b) $\tau_{ij} = - \tau_{ji}$

c) $\sigma \tau_{ij} = \tau_{\sigma(i)\sigma(j)}$

d) $(i, j) \tau_{ij} = \tau_{ij}$ where (i, j) stands for the transposition of i and j.

e) $\tau_{ij} \tau_{ik} = (j, k) \tau_{ik} = \tau_{ij}(j, k)$ for different i, j, k.

f) $\tau_{ij} \tau_{kl} = \tau_{kl} \tau_{ij}$ for different i, j, k, l.

g) $\left(\begin{array}{cccc} i_1 & \cdots & i_s & j_1 & \cdots & j_s \\ a_1 & \cdots & a_s & j_1 & \cdots & j_s \end{array} \right) \tau_{i_1 j_1} \cdots \tau_{i_s j_s} = \text{sign} \tau_{i_1 j_1} \cdots \tau_{i_s j_s}$

for different $i_1, \ldots, i_s, j_1, \ldots, j_s$.

Proof We prove here only part a) of the proposition because this is the relation which does not hold in the case of the usual Brauer - Weyl algebras, and all the other identities can be proved by direct calculation. In order to prove $\tau_{ij}^2 = 0$ it suffices to show it for τ_{12}, so we can assume that we deal with ψ^2 and we want to prove that the composition

$$\psi^2 \mapsto \psi^2 \mapsto \psi^2$$

is zero. Since τ is zero in all degrees different than -1, it suffices to consider this composition on $E \otimes E^*$. For $x \in E$, $y^* \in E^*$ we have:

$$\tau^2(x \otimes y^*) = y^*(x) \tau[\Sigma e_i \otimes e_i^* + \Sigma e_i^* \otimes e_i]$$

$$= y^*(x) [\Sigma e_i^* (e_i) - \Sigma e_i^* (e_i)] \text{tr}(1) = 0$$

Definition 4.2 We define the algebra A_m to be the algebra generated over R by the operators σ, τ_{ij}.

154
Now we compute A_m as an R-module.

Proposition 4.3 A_m is a finite dimensional free R-module.

All the elements

$$(1) \quad \sigma \tau_{i_1 j_1} \tau_{i_2 j_2} \cdots \tau_{i_s j_s}$$

where $i_1, \ldots, i_s, j_1, \ldots, j_s$ are different, $i_k < j_k$ and

$\sigma(i_k) < \sigma(j_k)$ for arbitrary k, $i_1 < i_2 < \ldots < i_s$,

$\sigma(i_1) < \sigma(i_2) < \ldots < \sigma(i_s)$, and $s = 0, 1, \ldots, \lfloor m/2 \rfloor$, form a basis of A_m over R. A_m is a quotient of a free R-algebra generated by the symbols corresponding to σ, τ_{ij}, by the ideal determined by the relations $a) - g$.

Proof First we prove that the elements (1) generate A_m as an R-module. Using the relations $a) - f)$ we see immediately that the elements of form (1) generate A_m as an R-module, where $i_1, \ldots, i_s, j_1, \ldots, j_s$ are different, $i_1 < \ldots < i_s$, $i_k < j_k$ for all k and $s = 0, 1, \ldots, \lfloor m/2 \rfloor$. Now the relations $c), d)$ and g imply that for $\sigma', \sigma'' \in \Sigma_m$

$$\sigma' \tau_{i_1 j_1} \cdots \tau_{i_s j_s} = \pm \sigma'' \tau_{i_1 j_1} \cdots \tau_{i_s j_s}$$

whenever $\sigma'' = \sigma' \circ \sigma$,

where σ belongs to the subgroup of Σ_m generated by the elements $(i_1 \ldots i_s j_1 \ldots j_s)$ and the transpositions $(i_k j_k)$. This gives us the additional condition on σ in the formulation of the proposition.

Next we show that the elements (1) are linearly independent over R. We assume that $\dim E \geq m$ and we are going to show that the elements (1) treated as endomorphisms of φ^m are R-independent.

We notice that an element $\sigma \tau_{i_1 j_1} \cdots \tau_{i_s j_s}$ sends all
the components of ψ^m of degree $< s$ to 0. Hence it suffices to show that the elements (1) with fixed s act independently on ψ_s. Let us consider the following element in ψ_s:

$$x = f_1 \ast \ldots \ast f_{i_1-1} \ast e_{i_1} \ast \ldots \ast e_{i_s} \ast \ldots \ast e_s \ast \ldots \ast f_m$$

where $f_1, \ldots, f_{i_1}, \ldots, f_{i_s}, \ldots, f_m, e_1, \ldots, e_s$ are different basis elements in E. We see that an element $\sigma_{a_1} b_1 \ldots \tau_{a_s} b_s$ of form (1) sends x to 0 unless $(a_k, b_k) = (i_k, j_k)$ for all k.

The action of $\sigma_{i_1} j_1 \ldots \tau_{i_s} j_s$ on x gives

$$\sigma_{i_1} j_1 \ldots \tau_{i_s} j_s (x) = \pm \sum_{\beta_1, \ldots, \beta_s} f - \sigma^{-1}(1)$$

where $\Sigma \sigma_{i_1} j_1 \ldots \tau_{i_s} j_s (x)$ stands for the image of 1 under the map σ^{-1} mentioned above. Therefore we see that the groups of elements corresponding to different i_1, \ldots, j_s act in such a way that to prove their independence it is enough to show the independence of the elements $\sigma_{i_1} j_1 \ldots \tau_{i_s} j_s (x)$ of form (1) with fixed i_1, \ldots, j_s.

In order to do this we can, without loss of generality, forget about factors involving f's; i.e. we can assume that $m = 2s$, and we want to prove the independence of the elements $\sigma_{i_1} j_1 \ldots \tau_{i_s} j_s (x)$ of form (1) for $x = \ast e_{i_k} \ast \ldots \ast e_{i_k}$, with s, i_k, j_k, being fixed.

Let $\sigma_a b$ be $\sigma_{i_1} j_1 \ldots \tau_{i_s} j_s (x)$ for σ satisfying condition (1). Let us consider a vector $\ast e_{i_k} \ast \ldots \ast e_{i_k}$ in $\ast a_k b_k$.
for a fixed set a_1, \ldots, b_s of distinct numbers from $[1, 2s]$ such that $a_1 < a_2 < \ldots < a_s$, $a_k < b_k$ for all k. Look at the coefficient of a_σ with respect to this basis element. We know that in each summand of a_σ we have the same number of the basis vectors in the places i_k and j_k and that over exactly one of them there is a star. So it is clear, recalling condition (1) for σ, that our coefficient equals 0 unless $i_k = a_k$ and $j_k = b_k$ for all k, and that in this case our coefficient equals ± 1. Hence the independence of the elements (1) is proved.

Remark 4.4 We can push the permutations to the right of the τ's to obtain a basis consisting of the elements

$$\tau_{i_1 j_1} \cdots \tau_{i_s j_s} \sigma$$

for distinct i_1, \ldots, j_s, $i_1 < \ldots < i_s$, $\sigma^{-1}(i_1) < \ldots < \sigma^{-1}(i_s)$ and $i_k < j_k$, $\sigma^{-1}(i_k) < \sigma^{-1}(j_k)$ for all k.

Remark 4.5 The algebra A_m is very similar to the Brauer-Weyl algebra defined in [De Concini-Procesi]. The only difference is that the relation a) here is replaced by $\tau_{ij}^2 = n \tau_{ij}$, n being the dimension of the module in question. This difference turns out to be significant because our algebra is not semisimple.

Definition 4.6 We define an ideal J_s in A_m, $s > 0$, to be the two-sided ideal generated by all elements $\tau_{i_1 j_1} \cdots \tau_{i_s j_s}$ for distinct indices i_1, \ldots, j_s. Moreover we put $J_0 = A_m$.

Definition 4.7 Let

$$W_d \varphi = J_d \varphi^m / J_{d+1} \varphi^m$$

for $d \geq 0$.

157
An $R[\Sigma_m]$-module structure on $W_o \varphi$ comes from the embedding $R[\Sigma_m] \hookrightarrow A_m$. We define the symplectic Schur complex $A_I \varphi$ to be

$$\text{Hom}_{\Sigma_m}(S_I, W_o \varphi)$$

where S_I denotes here the Specht module corresponding to I (see e.g. [Nielsen] for a definition of the Specht module).

It follows directly from the definition that $W_o \varphi$ decomposes as an $R[\Sigma_m]$-module:

$$W_o \varphi = \sum_{|I|=m} S_I \otimes A_I \varphi$$

Remark 4.8 $A_I \varphi$ can be treated in a convenient way as a cokernel. We have an exact sequence of Σ_m-modules

$$\sum_{(i,j)} \varphi^{(m-2)}(i,j) \rightarrow \varphi^{m} \rightarrow W_o \varphi \rightarrow 0$$

where the module on the left is the module induced from $\Sigma_2 \times \Sigma_{m-2}$-module $S_2 \otimes \varphi^{(m-2)}$ over Σ_m. Applying $\text{Hom}_{\Sigma_m}(S_I, -)$ to this sequence we get the exact sequence

$$S_{I/2} \varphi[1] \xrightarrow{\eta_I} S_I \varphi \rightarrow A_I \varphi \rightarrow 0 .$$

The formula (2.10) is also valid for Schur complexes, [Nielsen], hence $S_{I/2} \varphi = \sum_J S_J \varphi$ where we sum over all J contained in I such that I/J has two squares and I/J has at most one square in each column. The map $\eta_I | S_J$ is the composition $S_J \varphi[1] \xrightarrow{\text{tr}} S_J \varphi \otimes S_2 \varphi \rightarrow S_I \varphi$, where the second map comes from the Pieri formula (2.9) which is also valid for Schur complexes.
Examples 4.9

a) If $I = (1^m)$ then the corresponding J's do not exist and we get $A_{1^m} \varphi = \Lambda^m \varphi$.

b) If $I = (m)$ then there is just one corresponding $J = m - 2$ and we have the exact sequence

$$S_{m-2} \varphi[1] \to S_m \varphi \to A_m \varphi \to 0.$$

Its i-th component, $i > 0$, looks like

$$\Lambda^{i-1} E^* \otimes S_{m-1} E \xrightarrow{\eta_{i-1}} \Lambda^i E^* \otimes S_m E \to (A_m \varphi)_i \to 0.$$

The map η_{i-1} is given by the trace. By duality $\Lambda^j E = \Lambda^{n-j} E^*$ so we conclude using the Pieri formula that

$$(A_m \varphi)_i = S_{(m+1-i,1^{m-i-1})}.$$

c) If $I = (2,2)$ then we get the exact sequence

$$S_2 \varphi[1] \to S_{2,2} \varphi \to A_{2,2} \varphi \to 0.$$

The components of this sequence look like

$$\begin{array}{c}
S_{2,2} E^* \\
\Lambda^2 E^* \to S_{2,1} E^* \otimes E \\
\downarrow \\
S_{2} E^* \otimes \Lambda^2 E \\
E \otimes E \to \Lambda^2 E^* \otimes S_2 E \\
\downarrow \\
S_2 E \to E^* \otimes S_{2,1} E \\
\downarrow \\
S_{2,2} E
\end{array}$$

and the horizontal maps come from the trace map. If $\dim E = n$, 159
then in terms of E the components of $A_{2,2}\varphi$ are:

\[
S_{2,2}E, S_{2,2,1}n^{-2}E + S_{3,2,1}n^{-3}E, S_{3,2,1}n^{-2}, S_{3,2,1}n^{-3}E +
\]
\[
+ S_{3,1}n^{-3}E, S_{2,1}n^{-1}E + S_{3,2,1}n^{-3}E, S_{2}n^{-2}E.
\]

One could make the degrees of the representations the same in each component by multiplying each representation by a suitable power of the determinant. Then the map in the complex $A_{2,2}\varphi$ would have degree 2 with respect to E. Observe that the kernel of the map $S_{2}\varphi[1] \to S_{2,2}\varphi$ is just a copy of R so we get an exact sequence:

\[
0 \to R[2] \to S_{2}\varphi[1] \to S_{2,2}\varphi \to A_{2,2}\varphi \to 0
\]

Definition 4.10 We define the dual complexes $B_i^\varphi = S_{i}^\varphi \cap \cap \ker \tau_{i,j}$.

It is obvious that $(B_i^\varphi)^* = A_i^\varphi$ because we have $(S_i^\varphi)^* = S_i^\varphi$.

Now we intend to show how the Schur complexes can be filtered in such a way that the associated graded object consists of the A_i's (B_i's). Unfortunately this can be done only under the additional assumption that $n = \dim E \geq m = |I|$.

We define a complex of complexes:

\[
K_{\varphi}(m): \ldots \delta \sum_{(i_1 j_1), \ldots, (i_s j_s)} \varphi^{(m-2s)}(i_1 j_1, \ldots, i_s j_s) \ldots \delta \sum_{(i_1 j_1), \ldots, (i_s j_s)} \varphi^{(m-2)}(i_1 j_1) \to \varphi^{m}
\]

where we label $\varphi^{(m-2s)}$ by the indices $(i_1 j_1), \ldots, (i_s j_s)$ with all numbers different, satisfying $i_1 < i_2 < \ldots < i_s$ and $i_k < j_k$ for all k. A map δ on the corresponding summand is
equal to

\[\text{tr}_{i_t j_t} : \phi(i_1 j_1) \cdots (i_s j_s) \to \phi(i_1 j_1) \cdots (i_t j_t) \cdots (i_s j_s) \]

which is defined to be the trace on the indicated copies of \(\phi \). On the other summands the map \(\delta \) is defined to be zero. It is easy to check that \(\text{tr}_{i_t j_t} \cdot \text{tr}_{u_t j_u} = -\text{tr}_{i_t j_t} \cdot \text{tr}_{i_t j_t} \) so that we have really a complex.

Lemma 4.11 The complex \(K_*(m) \) is acyclic with \(H_0(K_*(m)) = W_0 \phi \) provided \(\dim E = n \geq m \).

Proof We will show that the complex \(K_*(m) \) is acyclic even over the ring \(\mathbb{Z}_{(2)} \) the localization of \(\mathbb{Z} \) with respect to the ideal \((2) \). We proceed by induction on \(m \). We have an exact sequence of complexes

\[
0 \to \phi \circ K_*(m-1) \xrightarrow{\alpha} K_*(m) \xrightarrow{\beta} \sum_{j=2}^{m} K_*(m-2) \to 0
\]

where \(\alpha \) is an injection onto all \(\phi(i_1 j_1) \cdots (i_s j_s) \) such that \(1 \notin \{i_1, \ldots, j_s\} \). The \(j \)-th copy of \(K_*(m-2) \) corresponds to all \(\phi(i_1 j_1) \cdots (i_s j_s) \) and \(\beta \) is just the projection. From the long homology sequence we obtain

\[
0 \to H_1(K_*(m)) \to \sum_{j=2}^{m} W_0(m-2) \xrightarrow{\gamma} \phi \circ W_0(m-1) \to W_0(m) \to 0
\]

where \(W_0(j) \) stands for \(W_0 \phi \) determined by \(\phi^{\cdot j} \). It suffices to show that the map \(\gamma \) is injective. However we can dualize the complexes, and taking the cohomology groups we obtain the sequence

\[
0 \to V_0(m) \to \phi \circ V_0(m-1) \to \sum_{j=2}^{m} V_0(m-2)
\]

161
where

\[V_0(m) = \bigcap_{i,j} \ker \tau_{ij} . \]

We must show that the last map is surjective. The map from \(\varphi \ast V_0(m-1) \) to \(\sum_{j=2}^{m} V_0(m-2) \) is in fact given by \(\sum_{j=2}^{m} \tau_{ij} \). To prove the surjectivity of this map it is enough to do it over \(\mathbb{Z}/(2) = \mathbb{Z}/2\mathbb{Z} \). \(V_0(m-1) \), \(V_0(m-2) \) commute with this change of rings because they are free \(\mathbb{Z}/(2) \)-modules by induction hypothesis. However in characteristic 2 a permutation \(\sigma \) acts on \(\varphi^{\otimes m} \) just by \(\sigma(x_1 \ast \ldots \ast x_m) = x_{\sigma^{-1}(1)} \ast \ldots \ast x_{\sigma^{-1}(m)} \); hence it acts as a usual permutation on the module \(F = E \otimes E^* \) with the antisymmetric form \((, \) described above. Therefore we can use the characteristic - free results from [De Concini - Strickland]. Step 1 of their proof of Theorem 2.1 (p. 122), which is independent of the theory of symplectic standard tableaux, shows the surjectivity of our map. At this point we use that \(n \geq m \).

Corollary 4.12 For \(m \leq n = \dim E \) we have

\[W_d \varphi = \sum_{(i_1 j_1), \ldots, (i_d j_d)} \tau_{i_1 j_1} \ldots \tau_{i_d j_d} \frac{\varphi^{(m-2d)} / J_1 \varphi^{(m-2d)}}{\varphi^{(m-2d)}} = \frac{\varphi^{(m-2d)} / J_1 \varphi^{(m-2d)}}{\varphi^{(m-2d)}} \]

Proof The only thing to prove is that the sum is direct. Using the sequence (3) we compare the dimensions of \(\varphi^{\otimes m} \) and the sum of the dimensions of \(W_d \) obtained from the right side of the formula. The desired equality is

\[(2n)^m = \sum_{i=0}^{\infty} \frac{m!}{(m-2i)!2^i i!} \dim W_0(m-2i) = \]

\[= \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \frac{m!}{(m-2i)!2^i i!} (-1)^j (2n)^{m-2i-2j} \frac{(m-2i)!}{(m-2i-2j)!2^j j!} \]
We treat both sides as the polynomials in $2n$. To compute the coefficient of $(2n)^{m-2s}$ on the right we note that for $s = 0$ it is 1 and for $s > 0$ it is

$$\sum_{i+j=s} (-1)^j \frac{m!}{(m-2i)!2^i i!} \frac{(m-2i)!}{(m-2i-2j)!2^j j!} =$$

$$= \frac{m!}{(m-2s)!2^s s!} \sum_{i+j=s} (-1)^j \frac{s!}{i! j!}.$$

Since

$$\sum_{i+j=s} (-1)^j \frac{s!}{i! j!} = \sum_j (-1)^j \binom{s}{j} = 0$$

our coefficient is zero and the corollary is proved.

Now we want to analyse the structure of W_d as an Σ_m-module. For this purpose we introduce the following definition.

Definition 4.13 Let I be a partition of $m-2s$. We define the A_m-module A_I to be equal to

$$A_m^{\tau p_1 q_1 \ldots \tau p_s q_s} e(I)/J_{s+1} e(I) \cap A_m^{\tau p_1 q_1 \ldots \tau p_s q_s} e(I)$$

where $e(I)$ is the Young idempotent in $R[\Sigma_{m-2s}]$ associated to I and Σ_{m-2s} acts on the numbers complementary to p_1, \ldots, q_s.

From Corollary 4.12 it follows immediately

Proposition 4.14 If R is \mathbb{Q}-algebra and $m \leq n = \dim E$ then

$$W_d \varphi = \sum_{|J|=m-2d} A_J \otimes A_J \varphi$$

as a complex of A_m-modules.

We want to compute the decomposition (up to filtration) of the complexes $S_I \varphi$ into $A_J \varphi$. To do this we need
Proposition 4.15 Let \(J \) be a partition of \(m-2s \). Treating \(A_J \) as an \(\Sigma_m \)-module via the canonical embedding \(\mathbb{R}[\Sigma_m] \hookrightarrow A_m \) we have the following decomposition of \(\Sigma_m \)-modules:

\[
A_J = \sum_{I} (I,J;L) S_{I,L}
\]

where \((I,J;L)\) is the coefficient occurring in the Littlewood-Richardson rule (2.8) and the sum ranges over all partitions \(I \) of weight \(2s \) of the form \((a_1^+, \ldots, a_{r_1}^+, |a_0^+, \ldots, a_r^+)\) (compare (2.6)).

Proof Let us look at the \(\Sigma_m \)-module \(A_J \). It is induced from the representation \(P \otimes S_J \) of the subgroup \(\Sigma_2s \times \Sigma_{m-2s} \) (\(2s \) places correspond to the \(t \)'s, the others to the partition \(J \)). Here \(P \) is a representation with generators

\[
\{\tau_{i_1j_1} \ldots \tau_{i_sj_s} \mid \{i_1, \ldots, j_s\} = \{1, \ldots, 2s\}\} \text{ satisfying the relations } (i,j)\tau_{ij} = \tau_{ij}, (i,k)(j,l)\tau_{ij} = -\tau_{ij}\tau_{kl} \text{ and } \tau_{ij}\tau_{kl} = \tau_{kl}\tau_{ij}.
\]

One could construct \(P \) by taking a \(2s \)-dimensional free \(\mathbb{R} \)-module \(F \), and considering the elements in \(\Lambda^s(S_2F) \) of weight \((1,1,\ldots,1) \) with respect to the maximal torus in \(\text{GL}(F) \) with the obvious action of \(\Sigma_2s \) on it. The plethysm formulas (2.6) show that \(P = \sum_{I} S_{I} \) where \(I \) ranges over all partitions of weight \(2s \) of the form \((a_1^+, \ldots, a_{r_1}^+, |a_0^+, \ldots, a_r^+)\). Now the proposition follows from the Littlewood-Richardson rule.

We know (compare [Nielsen]) that

\[
\varphi^{\otimes m} = \sum_{|I|=m} S_{I} \otimes S_{I} \varphi \text{ as a } \Sigma_m \text{-module}.
\]

Let us define the complexes \(S^d_{I} \varphi \) by the formula

\[
W_d \varphi = \sum_{|I|=m} S_{I} \otimes S^{d}_{I} \varphi
\]
It is clear that there is a filtration on $S^d \varphi$ with the associated graded object equal to $\sum_{d \geq 0} S^d \varphi$. In this situation we get

Theorem 4.16 For $m \leq n = \dim E$

$$S^d \varphi = \sum_{|J|=m-2d} \sum_{I} (I,J;L) \alpha^I_j \varphi$$

where the inner summation runs over all $I = (a_1+1, \ldots, a_{r-1}+1, a_r \ldots a_{r+r})$ of weight $2d$.

Proof The conclusion of the theorem follows directly from Propositions 4.14 and 4.15.

The main application of the theorem just proved is the following

Theorem 4.17 Let $\varphi : E^* \to E$, $\psi : F^* \to F$ be two antisymmetric maps, I a partition of m and $m \leq n = \dim E$. Then

$$A^I_\varphi (\psi + \psi) = \sum_{J \subseteq I} A^J_\psi \circ S^{I/J}_{\psi}$$

up to filtration.

Proof By Remark 4.8 and the linearity formula for skew partitions we have the following diagram

$$S^{I/2}_{I/2}(\varphi + \psi)[1] \to S^{I}_{I}(\varphi + \psi) \to A^I_\varphi (\psi + \psi) \to 0$$

$$\Sigma \sum_{J} S^J_{J/2} \bullet S^{I/J}_{I/2}[1] \to \Sigma S^I_{J} \bullet S^I_{I/J}$$

Moreover, the map $\text{tr} \varphi$ acts from $S^J_{J/2} \bullet S^I_{I/J} \psi$ to $S^J \psi \bullet S^I_{I/J}$ and the map $\text{tr} \psi$ increases the number of squares in the partitions belonging to ψ by two.
Let us order the partitions \(J \subseteq I \) by saying that \(J_1 < J_2 \) if and only if \(|J_1| > |J_2| \) or \(|J_1| = |J_2| \) and \(J_1 \) is earlier than \(J_2 \) lexicographically. Let us define the filtration \(\{F_J\} \) on \(A_I(\varphi + \psi) \) by letting \(F_J \) be the image of \(\sum_{L \leq J} S_L \varphi \otimes S_{I/L} \psi \). We claim that \(F_J / \sum_{L < J} F_L \) is a factor of \(A_J \varphi \otimes S_{I/J} \psi \). Indeed, let us consider the relation coming from \(S_{J/2} \varphi \otimes S_{I/J} \psi \). It goes by \(\text{tr} \varphi \) to \(S_J \varphi \otimes S_{I/J} \psi \) and by \(\text{tr} \psi \) to the earlier piece of filtration. Therefore Remark 4.8 shows our claim.

To prove the equality it suffices now to compare the dimensions on both sides of the formula. Observe that the following equalities hold up to filtration
\[
\sum_J S_J \varphi \otimes S_{I/J} \psi = S_I(\varphi + \psi) = \sum_{J \subseteq I} A_J(\varphi + \psi)
\]
where the second sum ranges over all \(L = (a_1+1, \ldots, a_r+1|a_1, \ldots, a_r) \) of weight \(2d \). By induction we know the decompositions of \(A_J(\varphi + \psi) \) for \(J \nsubseteq I \). Using them we obtain the desired equality of dimensions.

A serious restriction of the theorems just proved is the assumption \(m < n \). Without this assumption the theorems are not true (see the example below) but there should exist a decomposition which differs from the given one only by a few exceptional terms. The key step in the proof is the understanding of the homology of \(K_*(m) \) in the general case.

Example 4.18 The decompositions mentioned above show that \(S_m \varphi = A_m \varphi + A_{m-2} \varphi \) up to filtration. If they were true in general the following sequence would have to be exact
\[
\ldots \rightarrow S_{r-2} \varphi \xrightarrow{\text{tr}} S_r \varphi \xrightarrow{\text{tr}} S_{r+2} \varphi \rightarrow \ldots
\]
If \(n = \dim E \) the \(n \)-th component of this complex looks like

\[0 \to \Lambda^n E^* \to \Lambda^{n+1} E^* \otimes E \to \ldots \]

Since \(\Lambda^{n+1} E^* = 0 \) we get the homology \(\Lambda^n E^* \). It is easy to show that in this case it is the only homology of the whole complex, so there is only one deviation from the decomposition established above.

We continue now with some remarks on the category of \(A_m \)-modules. Recall, (4.13), that we defined the family of \(A_m \)-modules \(A_I \) for \(|I| = m-2s \).

The modules \(A_I \) are not irreducible. We will show however that the irreducibles are in 1-1 correspondence with the partitions \(I \) of \(m-2s \), \(s = 0, 1, \ldots \lfloor m/2 \rfloor \).

Proposition 4.19 Let us assume that \(R \) is a field and \(C_I = \{ x \in A_I | J_s x = 0 \} \). Then the modules \(A_I/C_I \), \(|I| = m-2s \), \(s = 0, 1, \ldots \lfloor m/2 \rfloor \), form a complete set of irreducible \(A_m \)-modules.

Proof First we show that \(A_I/C_I \) are irreducible. Let \(0 \neq x \in A_I/C_I \); we will prove that \(x \) generates \(A_I/C_I \). We have \(J_s x \neq 0 \) because otherwise we get \(J_s^2 x = 0 \) in \(A_I \) and since \(J_s^2 = J_s \) we would have \(x \in C_I \), which is a contradiction. We infer that there exist \(\tau_{i_1 j_1}, \ldots, \tau_{i_s j_s} \) such that \(y = \tau_{i_1 j_1} \ldots \tau_{i_s j_s} x \) determines a non-zero element in \(A_I/C_I \). By Proposition 4.1 d) and e) we see that \(y \) is an element of the form \(\tau_{i_1 j_1} \ldots \tau_{i_s j_s} z \) with \(z \in R[\Sigma_m] \). It is easy to see that the vectors of this form in \(A_I \) form in fact the Specht module \(S_I \) over \(R[\Sigma_{m-2s}] \) the other permutations acting on the left change the indices \(i_1, \ldots j_s \). Now acting
on the left by Σ_{m-2s} we can generate all of S_I. This proves that the element $\tau_1 \cdots \tau_s \cdot e(I)$ belongs to the submodule generated by y (and hence x) showing that x generates all of A_I/C_I.

To prove that A_I/C_I form a complete set of the irreducible A_m-modules we have to show that A_m has a composition series with factors A_I/C_I. We show by induction that J_s/J_{s+1} has such a series. For $s = 0$ we get simply the known result for the symmetric group. Let us assume that we have the result for the numbers smaller than s.

We know that $J_s/J_{s+1} = \sum_{|I|=m-2s} t_I A_I$ where t_I is the multiplicity of S_I in the composition series of $R[\Sigma_{m-2s}]$. Now it suffices to decompose C_I in terms of A_J/C_J. But we know that C_I’s are in fact A_m/J_s-modules, so we get our claim by the induction hypothesis.

The last thing to prove is that all the A_I/C_I are different. We note that if $|I| = m-2s$, $J_s(A_I/C_I) = A_I/C_I$ and $J_{s+1}(A_I/C_I) = 0$ so we can distinguish all the levels s. For a fixed s we see that the modules A_I/C_I are not isomorphic when restricted to Σ_{m-2s}. This completes the proof of the proposition.

Now we proceed to outline the analogous theory for the symmetric map $\varphi : E^* \to E$. The symmetry of φ allows us to define two maps:

$$\text{tr}' : R[1] \to \Lambda^2 \varphi \to \varphi \ast \varphi$$

defined by

$$\text{tr}'(1) = \sum_i e_i \ast e_i^* - \sum_i e_i^* \ast e_i$$

and the dual map

168
RESOLUTIONS OF DETERMINANTAL VARIETIES

\[\text{ev}': S_2 \varphi \to R[1]. \]

Now we can consider the operator \(\tau : \varphi \otimes \varphi \xrightarrow{\text{ev}'} R \xrightarrow{\text{tr}'} \varphi \otimes \varphi \)
and we define the algebra \(A'_m \) to be generated by the permutations \(\sigma \in \Sigma_m \) and the traces \(\tau_{ij} \) acting on \(\varphi^{\otimes m} \). The analogue of 4.1 and 4.3 is

Proposition 4.20 The algebra \(A'_m \) is a quotient of a free \(R \)-algebra generated by the symbols corresponding to \(\sigma, \tau_{ij} \), by the ideal determined by the following relations:

\[
\begin{align*}
a') & \quad \tau_{ij}^2 = 0 , \\
b') & \quad \tau_{ij} = -\tau_{ji} , \\
c') & \quad \sigma \tau_{ij} = \tau_{\sigma(i)\sigma(j)} , \\
d') & \quad (i,j)\tau_{ij} = -\tau_{ij} , \\
e') & \quad \tau_{ij}\tau_{ik} = \tau_{ij}(j,k) = (j,k)\tau_{ik} \quad \text{for different } i,j,k , \\
f') & \quad \tau_{ij}\tau_{kl} = \tau_{kl}\tau_{ij} \quad \text{for different } i,j,k,l , \\
g') & \quad \left(i_1, \ldots, i_s, j_1, \ldots, j_s \right) \tau_{i_1 j_1} \cdots \tau_{i_s j_s} = \text{sign } \alpha \tau_{i_1 j_1} \cdots \tau_{i_s j_s} \\
\end{align*}
\]

\(A'_m \) is a free \(R \)-module of finite rank. All the elements

\[\sigma \tau_{i_1 j_1} \cdots \tau_{i_s j_s} \]

where \(i_1, \ldots, i_s, j_1, \ldots, j_s \) are different, \(i_k < j_k \) and \(\sigma(i_k) < \sigma(j_k) \) for all \(k, i_1 < \ldots < i_s, \sigma(i_1) < \ldots < \sigma(i_s) \), and \(s = 0,1,\ldots,[m/2] \), form a basis of \(A'_m \) over \(R \).

The only difference with 4.1 is the relation d'.).
One can define the ideals J_s^{I} in A_m^I as the two-sided ideals generated by all elements $\tau_{i_1}^{j_1}\ldots\tau_{i_s}^{j_s}$ (i_1,\ldots,j_s different). Now we define the complexes

$$A_{I}^{\phi} = \text{Hom}_{\Sigma_{m}}(S_{I}, W_{0}^{\phi})$$

where

$$W_{0}^{\phi} = \phi^{m/J_1^{I}} \phi^{m}.$$

We also define the dual complexes $(B_{I}^{\phi})^{*} = A_{I}^{\phi}$. Here are the main results on these complexes.

A_{I}^{ϕ} can be treated as a cokernel

$$S_{I/(1^{2})}^{[1]} \to S_{I}^{\phi} \to A_{I}^{\phi} \to 0$$

One gets the analogues of Theorems 4.16 and 4.17. Let $W_{d}^{\phi} = J_{d}^{I} \phi^{m}/J_{d+1}^{I} \phi^{m}$. Let us decompose W_{d}^{ϕ} as a Σ_{m}-module:

$$W_{d}^{\phi} = \Sigma_{|I|=m} S_{I} \otimes S_{I}^{d} \phi$$

Theorem 4.21 For dim $E = n > m$ we have

$$S_{K}^{d} \phi = \Sigma_{|J|=m-2d} (I, J; K) A_{J}^{\phi}$$

where the sum ranges over all $I = (a_1, \ldots, a_r | a_1 + 1, \ldots, a_r + 1)$ of weight 2d.

Theorem 4.22 Let $\phi : E^{*} \to E$, $\psi : F^{*} \to F$ be two symmetric maps, I a partition of m and $m \leq n = \text{dim } E$. Then

$$A_{I}^{\phi}(\psi + \psi) = \Sigma_{J \subseteq I} A_{J}^{\phi} \otimes S_{I/J}^{\psi}$$

up to filtration.

The only difference between 4.21 and 4.16 is that in 4.21 we sum over all $(a_1, \ldots, a_r | a_1 + 1, \ldots, a_r + 1)$ while in
4.16 we summed over all \((a_1+1, \ldots, a_r+1|a_1, \ldots, a_r)\).

This is a consequence of the different relation \(d')\) which changes the module \(P\) mentioned in the proof of 4.15.

5. **EXPLICIT DESCRIPTION OF MINIMAL FREE RESOLUTIONS IN LOW CODIMENSION**

In this section we give an explicit construction of minimal free resolutions of determinantal ideals of low codimension associated with antisymmetric and symmetric matrices. We present a uniform approach to this problem, reproving in a simple way already known cases. This method suggests a general construction (for all determinantal ideals). However technical difficulties have been until now the main obstacle to giving precise proofs.

In this approach one uses both \(E\) and \(E^*\) to describe components and this makes it easier to define differentials. Of course, these components are isomorphic to the ones described in section 3.

Our main tools in proving the exactness of the complexes in question are two lemmas. We keep notation introduced in the previous sections with one exception. We write \(R\) instead of \(O_X\) to denote \(S.(\Lambda^2 U)\) or \(S.(S_2 U)\) where \(U\) is a vector space over \(K\) of dimension \(n\). In particular \(E = U \otimes_K R\) and \(\varphi : E^* \to E\) is a generic antisymmetric (symmetric) map. The field \(K\) is always assumed to be of characteristic zero.
Lemma 5.1 Consider $X = \Lambda^2 U^*$ as a representation of $G = \text{GL}(U^*)$. Let $R = S_*(\Lambda^2 U)$ be the coordinate ring of X and $F_\circ : \ldots \to F_2 \to F_1 \to F_0$ a free G-complex over R with $H_0(F_\circ) = R/Pf_{2p+2}(\phi)$. If the length of F_\circ is $(n-2p-1)(n-2p)/2$ then F_\circ is acyclic if and only if $F_{\circ w} = F_\circ \otimes R_w$ is acyclic for $w = w_1 \wedge w_2 + \ldots + w_{2p+1} \wedge w_{2p+2} \in X$ (where w_1, \ldots, w_n is a basis of U).

Proof One can assume that K is algebraically closed, i.e. the set of maximal ideals Max(X) of R is in 1-1 correspondence with the closed points of X. It suffices to prove that $Z = \text{Max}(X) \cap \text{Supp } F_\circ$ is empty. Observe that $\text{Supp } F_\circ$ is G-invariant and closed, and X is a finite union of orbits so that Z (if non-empty) must be a closure of an orbit. Indeed, if closed points of X are considered as antisymmetric $n \times n$ matrices all orbits are determined by a rank condition and the closure of an orbit of matrices of rank r consists of all matrices of rank $\leq r$. Suppose that Z is non-empty. It follows from the acyclicity lemma [Peskine-Szpiro] that there exists a prime $P \in \text{Supp } F_\circ$ such that depth $P < \text{length } F_\circ$. Since $\text{length } F_\circ = (n-2p-1)(n-2p)/2 = \text{depth } Pf_{2p+2}(\phi)$ by hypothesis and by [Józefiak-Pragacz], we infer that there exists $z \in Z$ corresponding to a matrix of rank $\geq 2p+2$. However in the closure of the orbit of that matrix there lies a matrix corresponding to $w = w_1 \wedge w_2 + \ldots + w_{2p+1} \wedge w_{2p+2}$ and $w \in Z$ by hypothesis, so that we get the required contradiction.

Using similar arguments we also obtain
Lemma 5.2 Consider $X = S_2 U^*$ as a representation of $G = \text{GL}(U^*)$. Let $R = S_*(S_2 U)$ be the coordinate ring of X and let $F_* : \cdots \rightarrow F_2 \rightarrow F_1 \rightarrow F_0$ be a free G-complex over R with $H_0(F_*) = R/I_{r+1}(\omega)$. If the length of F_* is $(n-r)(n-r+1)/2$ then F_* is acyclic if and only if $F_* \omega$ is acyclic for $\omega = w_1^2 + \cdots + w_{r+1}^2 \in X$ (w_1, \ldots, w_n being a basis of U^*).

First we treat the case of an antisymmetric map $\varphi : E^* \rightarrow E$ determined by a generic antisymmetric matrix $T = (T_{ij})$. It will be convenient to write $\text{Pf}(i,j,k,\ldots)$ for the pfaffian of the matrix obtained from T by omitting rows and columns with indices i,j,k,\ldots. If e_1,\ldots,e_n is a basis of E and we denote by $e(i,j,k,\ldots)$ the element $e_1 \wedge e_j \wedge e_k \wedge \ldots$ in the exterior algebra of E then the equality

$$e(i,j,k,\ldots) \wedge e(1,2,\ldots,\hat{i},\ldots,\hat{j},\ldots,k,\ldots,n) =$$

$$= \varphi(i,j,k,\ldots) e_1 \wedge \ldots \wedge e_n$$

defines $\varphi(i,j,k,\ldots)$ which takes values ± 1. Observe that φ is an alternating function of its arguments so that $\text{Pf}'(i,j,k,\ldots) = \varphi(i,j,k,\ldots) \text{Pf}(i,j,k,\ldots)$ defines a map from a suitable exterior power of E into R. These functions appear frequently in considerations with pfaffians. We quote for example the following Laplace type expansion for future reference

$$(1) \quad \sum_j \text{Pf}'(i,j) T_{sj} = \begin{cases} 0 & \text{for } s \neq i \\ \text{Pf}(T) & \text{for } s = i \end{cases}$$

where $T = (T_{ij})$ is an alternating matrix of even order.
Theorem 5.3 [Buchsbaum-Eisenbud] If $2p+2 = n-1$ then

$$(2) \quad R \xrightarrow{\alpha^*} E^* \xrightarrow{\phi} E \xrightarrow{\alpha} R$$

is a minimal free resolution of $R/\text{Pf}_{2p+2}(\phi)$ where $\alpha(e_1) = \text{Pf'}(i)$.

Proof From (1) it follows that $\sum \text{Pf'}(j) T_{s_j} = 0$ so that (2) is a complex. To check the exactness we use Lemma 5.1.

For $\phi = (0) \phi \left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array} \right) \cdots \phi \left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array} \right)$

$\text{Ker} \alpha = \{e_2, \ldots, e_n\} = \text{Im} \phi$; by duality $\text{Im} \alpha^* = \text{Ker} \phi$.

Now suppose that $2p+2 = n-2$. We are going to construct a double complex with 4 rows $W(0), W(1), W(2), W(3)$

$$(3) \quad W_3 \downarrow \quad W_2 \rightarrow W(2) \rightarrow W(2) \downarrow \quad W_1 \rightarrow W(1) \rightarrow W(1) \downarrow \quad W_0 \rightarrow W(0)$$

by putting $W(0) = R$, $W(1) = B(1,1)\phi$, $W(2) = A_2\phi[1]$, $W(3) = R[3]$. Recall (see section 4) that $B(1,1)\phi = \text{Ker}(\Lambda^2\phi \rightarrow R[1])$ and $A_2\phi = \text{Coker}(R[1] \rightarrow S_2\phi)$. Observe that $W(1)^* = W(2)$. The map $W(1) \rightarrow W(0)$ is determined by $\Lambda^2 E \rightarrow R$ which sends $e_i \wedge e_j$ to $\text{Pf'}(i,j)$. From (1) it follows that the above map defines the map of complexes $W(1) \rightarrow W(0)$. By dualizing we get a map of complexes $W(3) \rightarrow W(2)$. To describe a map $W(2) \rightarrow W(1)$ recall that $S_2\phi$ is a sub-complex of a differential graded algebra $\Lambda(E^*) \otimes S(E)$ which is endowed with the structure of
a differential Hopf algebra. Comultiplication in $\Lambda(E^* \otimes S(E)$ determines a map of complexes $S_2 \varphi \to \varphi \otimes \varphi$. Similarly the algebra structure in $S(E^*) \otimes \Lambda E$ determines a map of complexes $\varphi \otimes \varphi \to \Lambda^2 \varphi$. Using these we define a map of complexes

$$S_2 \varphi[1] \to \varphi \otimes \varphi \otimes S_2 \varphi \to \varphi \otimes \varphi \otimes \varphi \otimes \varphi \to \Lambda^2 \varphi \otimes \Lambda^2 \varphi$$

where $R[1] \to S_2 \varphi$ is the trace map described at the beginning of section 4. One can easily check that it induces a map $A_2 \varphi[1] \to B_{(1,1)} \varphi \otimes B_{(1,1)} \varphi$. Taking compositions with $(B_{(1,1)} \varphi \to R) = (W^{(1)} \to W^{(0)})$ we get the required map of complexes $d : W^{(2)} \to W^{(1)}$. Explicitly

$$d_1(ij) = \sum_{p} Pf'(jp) i \otimes p^* + \sum_{p} Pf'(ip) j \otimes p^*$$

where k stands for e_k (for short);

$$d_2(i \otimes j^*) = \sum_{p} Pf'(ip) j^* p^* .$$

Observe that the total complex $W(\varphi)$ associated with the double complex (3) is self-dual.

Theorem 5.4 [Józefiak-Pragacz] $W(\varphi)$ is a minimal free resolution of $R/\text{Pf}_{2p+2}(\varphi)$ where $2p+2 = n-2$.

Proof By Lemma 5.1 it suffices to check the exactness of (3) for the matrix

$$\varphi = \left(\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array} \right) \oplus \left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array} \right) \oplus \cdots \oplus \left(\begin{array}{cc} 0 & 0 \\ -1 & 0 \end{array} \right) .$$

Suppose that ψ is an isomorphism and θ is arbitrary. It is easy to see that $B_{(1,1)}(\theta + \psi)$ is an extension of $\theta \otimes \psi + B_{(1,1)}(\theta)$ by $\Lambda^2 \psi$. Since $\theta \otimes \psi$ and $\Lambda^2 \psi$ are exact (because ψ is exact) $H(B_{(1,1)}(\theta + \psi)) = H(B_{(1,1)}(\theta))$ and
the isomorphism is induced by the natural injection.

Applying this remark to

$$
\theta = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \quad \psi = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \ast \cdots \ast \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad \varphi = \theta \ast \psi,
$$

we infer that $H_0(W^{(1)}(\varphi))$ is of rank 1 and is generated by $1 \wedge 2$, $H_1(W^{(1)}(\varphi))$ is of rank 3 with a basis $1 \ast 2^*$, $2 \ast 1^*$, $1 \ast 1^* - 2 \ast 2^*$, and $H_2(W^{(1)}(\varphi))$ is of rank 3 with a basis 1^*1^*, 1^*2^*, 2^*2^*. Similarly $H(W^{(2)}(\varphi)) = H(W^{(2)}(\varphi))$ so that $H_1(W^{(2)}(\varphi))$ is of rank 3 with a basis 11, 12, 22, $H_2(W^{(2)}(\varphi))$ is of rank 3 with a basis $1 \ast 2^*$, $2 \ast 1^*$, $1 \ast 1^*$, and $H_3(W^{(2)}(\varphi))$ is of rank 1 with a basis element $1^* \wedge 2^*$. By the formula (4) d_1 sends

- 11 to $2(1 \ast 2^*)$,
- 12 to $2 \ast 2^* - 1 \ast 1^*$,
- 22 to $-2(2 \ast 1^*)$,

and therefore establishes an isomorphism $H_1(W^{(2)}(\varphi)) \cong H_1(W^{(1)}(\varphi))$. Similarly, by the formula (5) d_2 sends

- $1 \ast 2^*$ to 2^*2^*,
- $2 \ast 1^*$ to -1^*1^*,
- $1 \ast 1^*$ to 1^*2^*,

and hence $H_2(W^{(2)}(\varphi)) \cong H_2(W^{(1)}(\varphi))$.

Since moreover $H_0(W^{(1)}(\varphi))$ is killed because $1 \wedge 2$ is sent to 1 we infer that $W(\varphi)$ is exact.

Remark The double complexes (2) and (3) should be compared with examples given in 3.5. A characteristic free version of Theorem 5.4 is discussed in [Pragacz].
Now we are going to treat the case $2p+2 = n-3$ and construct a complex $W(\psi)$ of length 10 which is the total complex of a double complex:

$$
\begin{array}{ccccccc}
& & & & & & W^{(0)} \\
& & & & & W^{(1)} & \\
& & & & W^{(2)} & & W^{(3)} \\
& & & W^{(3)} & W^{(3)} & W^{(3)} & W^{(3)} \\
& W^{(4)} & W^{(5)} & W^{(6)} & W^{(7)} & W^{(8)} & W^{(9)} \\
\end{array}
$$

We define $W^{(0)} = R$, $W^{(4)} = R[6]$. To describe $W^{(1)}$ and $W^{(3)}$ recall that the complex $\Lambda^3 \psi$ is a subcomplex of a differential Hopf algebra $S(E^*) \otimes \Lambda(E)$. The comultiplication of this algebra induces a map of complexes $\Lambda^3 \psi \to \Lambda^2 \psi \otimes \psi$. We define a map $\Lambda^3 \psi \to \Lambda^2 \psi \otimes \psi \to \psi[1]$ by taking the composition with the evaluation map $\Lambda^2 \psi \to R[1]$ and put $W^{(1)} = \ker(\Lambda^3 \psi \to \psi[1])$. Observe that $W^{(1)}$ equals $B_{(3)}$ as defined in 4.10.

In a similar way we define $W^{(3)}$ to be $\text{Coker}(\psi[1] \to S_3 \psi) = A_3 \psi$. Observe that $W^{(3)*} = W^{(1)}$ since ψ is antisymmetric.

To define $W^{(2)}$ consider a map of complexes $S_3 \psi \otimes \psi \to S_2 \psi \otimes S_2 \psi$ which is the composition $S_3 \psi \otimes \psi \to S_2 \psi \otimes \psi \otimes \psi \to S_2 \psi \otimes S_2 \psi$ induced by the comultiplication and the multiplication in $\Lambda(E^*) \otimes S(E)$, respectively. It is straightforward to check that $\text{Coker} \alpha$ is isomorphic to the Schur complex $S_{22} \psi$ (see section 2). Recall, (2.13), that $S_{22} \psi$ has the following components

177
and the maps in (7) are induced by \(\varphi \).

We use a uniform notation for generators of various components in (7) by writing \(\frac{z^t}{x^y} \) for the image of \(xy \otimes zt \in S_2\varphi \otimes S_2\varphi \) in \(S_{22}\varphi \) (so that \(x,y,z,t \) may belong to \(E \) or \(E^* \)). For example, \(a^*b^* \in S_2E \otimes \Lambda^2E^* \), \(y^*b^* \in \Lambda^2E \otimes S_2E^* \) for \(x,y \in E \), \(a^* \), \(b^* \in E \). We apply the same convention to other Schur complexes. For instance, a typical generator of a component of \(\Lambda^3\varphi \) has the form \(\frac{z^t}{x^y} \) meaning that \(y \in \Lambda^3E \) if \(x,y,z \in E \), \(y \in S_3E^* \) if \(x,y,z \in E^* \), etc.

Using our standard trace map \(R[1] \rightarrow S_2\varphi \) we get a map \(S_2\varphi[1] \rightarrow S_2\varphi \otimes S_2\varphi \rightarrow S_{22}\varphi \). On the other hand we have a map

\[
S_2\varphi \otimes S_2\varphi \rightarrow \varphi \otimes \varphi \otimes \varphi \otimes \varphi \rightarrow \Lambda^2\varphi \otimes \Lambda^2\varphi
\]

which induces \(S_{22}\varphi \rightarrow \Lambda^2\varphi \otimes \Lambda^2\varphi \). The composition with the evaluation map \(\Lambda^2\varphi \rightarrow R[1] \) gives us a map \(S_{22}\varphi \rightarrow \Lambda^2\varphi[1] \). It turns out that the composition \(S_2\varphi[1] \rightarrow S_{22}\varphi \rightarrow \Lambda^2\varphi[1] \) is zero and we define \(W(2) \) as the homology complex of this sequence shifted by 1. Observe that \(W(2) \) is self-dual because \(S_{22}\varphi \) is so (since \(\varphi \) is antisymmetric).

We should still define maps between rows of (6).

\(W(1) \rightarrow W(0) \) is determined by a map \(\Lambda^3E \rightarrow R \) sending \(i \wedge j \wedge k \) to \(Pf'(i,j,k) \). It follows from (1) that this really defines a map of complexes \(W(1) \rightarrow W(0) \). By duality we get a map \(W(4) \rightarrow W(3) \).

To describe \(W(2) \rightarrow W(1) \) let us consider the map of complexes
(8) $S_{22} \varphi[1] \to \Lambda^2 \varphi \otimes \Lambda^2 \varphi \otimes S_2 \varphi \to \Lambda^2 \varphi \otimes \Lambda^2 \varphi \otimes \varphi \otimes \varphi \to \Lambda^3 \varphi \otimes \Lambda^3 \varphi$

The map (8) sends $\frac{z}{x} \frac{t}{y}$ to

$$\sum_p z \otimes t + \sum_p t \otimes z + \sum_p z \otimes t + \sum_p t \otimes z +$$
$$\sum_{p} p^* \otimes p + \sum_{p} p^* \otimes p + \sum_{p} p^* \otimes p + \sum_{p} p^* \otimes p$$

Denote by $\langle x, y \rangle$ the image of $x \otimes y \in E \otimes E^*$ under the evaluation map and extend the inner product by putting $\langle x, y \rangle = 0$ if $x, y \in E$ or $x, y \in E^*$. Look at the map

$\Lambda^3 \varphi \otimes \Lambda^3 \varphi \to \Lambda^3 \varphi \otimes \varphi[1]$ induced by the evaluation map $\Lambda^2 \varphi \to R[1]$. It sends $\sum_{p} \frac{z}{x} \otimes t$ to

$$\sum_{p} \frac{z}{x} \otimes (p^*, t)y - \sum_{p} \frac{z}{x} \otimes (p^*, y)t + \sum_{p} \frac{z}{x} \otimes (y, t)p^*$$

which is equal to

$$\frac{t}{y} \frac{z}{z} \frac{x \otimes y}{x \otimes t} \text{ if } y, t \in E.$$

In this case (i.e. in the zero component) the composition

(11) $S_{22} \varphi[1] \to \Lambda^3 \varphi \otimes \Lambda^3 \varphi \to \Lambda^3 \varphi \otimes \varphi[1]$

is zero since various summands of type (10) cancel. In the other components this is not so; however the elements from $\ker (S_{22} \varphi[1] \to \Lambda^2 \varphi[2])$ are sent by (11) to zero since the sum of various summands of type $\sum_{p} \frac{z}{x} \otimes (y, t)p^*$ in (9) is zero by assumption. This shows that we have a well-defined map of complexes.
Ker \((S_{22}\varphi[1] \to \Lambda^2\varphi[2])\) \to W^{(1)} \otimes W^{(1)}

and hence

\[(12) \quad \text{Ker} \ (S_{22}\varphi[1] \to \Lambda^2\varphi[2]) \to W^{(1)}\]

by using \(W^{(1)} \to W^{(0)}\). This map is zero on \(\text{Im}(S_{22}\varphi[2] \to S_{22}\varphi[1])\).

Indeed, a typical element of this image is of the form

\[\Sigma \ p \ p^* . \]

It is sent by (12) into

\[\Sigma \left(\Sigma \ Pf'(x,p,q) \ p^* + \Sigma \ Pf'(y,p,q) \ p^* \right).\]

This is zero because \(Pf'(x,p,q) \ p^* + Pf'(x,q,p) \ y^* = 0\)

for fixed \(p,q\). In fact \(Pf'\) is an alternating function of

its arguments and \(p^* = q^*\).

The above discussion shows that (12) induces a map of complexes \(d : W^{(2)} \to W^{(1)}\). We specify this map on some components for future application. Observe that \(W^{(2)}_1 = S_{22}E\)

and

\[(13) \quad d_1(i,j,k) = \Sigma Pf'(i,j,p) \ k \ p^* + \Sigma Pf'(i,k,p) \ 1 \ p^* + \]

\[+ \Sigma Pf'(i,l,p) \ j \ p^* + \Sigma Pf'(j,k,p) \ 1 \ p^* .\]

\(W^{(2)}_2\) is the homology module of the sequence \(S_{22}E \to S_{21}E \otimes E^* \to \Lambda^2E\)

and

\[(14) \quad d_2(i,j,k) = \Sigma Pf'(i,k,p) \ j \ p^* + Pf'(j,k,p) \ i \ p^* .\]

We define \(W^{(3)} \to W^{(2)}\) as the dual map to \(W^{(2)} \to W^{(1)}\). More explicitly it is induced by the map of complexes
Theorem 5.5 The total complex $W(\varphi)$ of the double complex (6) is a minimal free resolution of $R/\text{Pf}_{2p+2}(\varphi)$ where $2p+2 = n-3$.

Proof By Lemma 5.1 it suffices to check the exactness of (6) for the matrix $\varphi = \theta \otimes \psi$ where

$$\psi = \left(\begin{array}{c}
\vdots \\
0 & 1 \\
\vdots
\end{array}\right) \otimes \left(\begin{array}{c}
\vdots \\
-1 & 0 \\
\vdots
\end{array}\right)_{p+1} \otimes \left(\begin{array}{c}
\vdots \\
0 & 1 \\
\vdots
\end{array}\right) ,$$

$\theta = \left(\begin{array}{c}
0 \\
0 \\
\vdots
\end{array}\right)$. We will do it by checking that for such a matrix φ the maps between rows of (6) induce exact sequences of the homology of rows. By standard spectral sequence arguments this implies the exactness of $W(\varphi)$.

The idea of our proof is the same as that of Theorem 5.4, i.e. we need to know that

Lemma 5.6 $H(W^{(i)}(\varphi)) \cong H(W^{(i)}(\theta))$ for $i = 0, \ldots, 4$.

Proof of the lemma For $i = 0,4$ this is trivial, and for $i = 1,3$ it is a simple calculation using arguments similar to those given in the course of the proof of Theorem 5.4. We will concentrate our efforts on the case $i = 2$.

Look at the sequence of complexes

$$(15) \quad R[2] \rightarrow S_2(\theta + \psi)[1] \rightarrow S_{22}(\theta + \psi) \rightarrow \Lambda^2(\theta + \psi)[1] \rightarrow R[2] .$$

We compare its middle homology complex $W^{(2)}(\theta + \psi)$ with $W^{(2)}(\theta)$. By the linearity formula (2.2), which is valid also for Schur complexes, we have

$$S_{22}(\theta + \psi) = S_{22}\theta + S_{21}\theta \otimes \psi + S_2\theta \otimes S_2\psi + \Lambda^2\theta \otimes \Lambda^2\psi \otimes \theta \otimes S_{21}\psi + S_{22}\psi .$$
There is a direct summand of (15) of the form

\begin{align*}
S_{21} \theta \otimes \psi
\end{align*}

whose homology in the middle is an exact complex because all the complexes involved in (16) are exact. Indeed, \(\psi \) and \(S_{21} \psi \) are exact since \(\psi \) is an isomorphism, see [Akin-Buchsbaum-Weyman]. Therefore we can restrict ourselves to the remaining part of (15).

Using the decomposition \(S_2(\theta + \psi) = S_2^\theta + \theta \otimes \psi + S_2^\psi \) and an analogous one for \(\Lambda_2^2(\theta + \psi) \) we can write (15) as follows (except the part thrown out):

\begin{align*}
\begin{array}{c}
S_{22}^\psi \\
S_{2}\psi[1] & \rightarrow & S_2^\theta \otimes S_2^\psi & \rightarrow & \Lambda^2_2^\psi[1] \\
\rightarrow & \rightarrow & \rightarrow & \rightarrow & \rightarrow \\
R[2] \quad + & + & + & + \\
S_2^\theta[1] & \rightarrow & \Lambda^2_2^\theta \otimes \Lambda^2_2^\psi & \rightarrow & \Lambda^2_2^\theta[1] \\
\rightarrow & \rightarrow & \rightarrow & \rightarrow & \rightarrow \\
S_{22}^\theta
\end{array}
\end{align*}

Write \(B \) for the complex of complexes (17) which is exact except possibly in the middle. There exists a subcomplex \(A \) of \(B \)

\begin{align*}
A: & \quad S_2^\theta[1] \quad + \\
& \rightarrow \Lambda^2_2^\theta[1] \rightarrow R[2] \\
& \rightarrow S_{22}^\theta
\end{align*}
with a factor complex

\[C : \quad R[2] \to S_2 \psi[1] \]

\[\xymatrix{ R[2] \ar[r] & S_2 \psi[1] \ar@{.>}[r] & A^2 \psi[1] \ar@{.>}[r] & A^2 \theta \otimes A^2 \psi } \]

The exact sequence of the double complexes \(0 \to A \to B \to C \to 0 \)
induces the exact sequence of complexes \(0 \to H(A) \to H(B) \to H(C) \to 0 \)
where \(H(D) \) means the homology complex in the middle of \(D \).
Moreover by a simple inspection we infer that there exist
exact sequences of complexes

\[0 \to S_2 \theta \otimes S_2 \psi/R[2] \to H(A) \to W^{(2)}(\theta) \to 0 \]

and

\[0 \to W^{(2)}(\psi) \to H(C) \to \text{Ker } (A^2 \theta \otimes A^2 \psi \to R[2]) \to 0 . \]

By direct computation one shows that the only non-vanishing
homology of \(H(C) \) is of rank 1 and appears in degree 4. More-
over the homology of \(H(A) \) is that of \(W^{(2)}(\theta) \) except for one
place in degree 3 where they differ by a module of rank 1.
These two homology modules of rank 1 are sent isomorphically
by the connecting homomorphism of the long exact homology
sequence associated with the sequence of complexes
\(0 \to H(A) \to H(B) \to H(C) \to 0 \), thus establishing an isomorphism
between homology of \(W^{(2)}(\theta) \) and that of \(H(B) \). However
\(W^{(2)}(\theta + \psi) \) differs from \(H(B) \) by an exact complex (according
to our previous discussion) so we are done.

Proof of Theorem 5.5 (Continuation) Coming back to (6) we
are going to show that the maps between rows induce iso-
morphisms on the homology of rows for \(\varphi = \theta \otimes \psi \). Note that
Pf \((1,2,3) = 1\) and all other pfaffians vanish for such a \(\varphi\). Moreover by Lemma 5.6 \(H_1(W(2)(\varphi)) \cong S_{22} \mathbb{R}^3\) is of rank 6 (see (2.12)) and \(H_1(W(1)(\varphi)) \cong H_1(W(1)(\theta)) \subset \Lambda^2(\mathbb{R}^3) \otimes (\mathbb{R}^3)^*\) is also of rank 6. By (13) one can check that the following elements (which form bases of the corresponding homology modules) are sent to each other under \(H_1(W(2)(\varphi)) \to H_1(W(1)(\varphi))\):

\[
\begin{align*}
22 & \quad \longrightarrow \quad 4 \quad (1_{3*}) \\
33 & \quad \longrightarrow \quad -4 \quad (1_{2*}) \\
33 & \quad \longrightarrow \quad 4 \quad (1_{21*}) \\
23 & \quad \longrightarrow \quad 2 \quad (1_{22*} - 1_{33*}) \\
23 & \quad \longrightarrow \quad 2 \quad (1_{11*} - 2_{33*}) \\
33 & \quad \longrightarrow \quad 2 \quad (1_{11*} - 3_{22*}),
\end{align*}
\]

thus establishing the required isomorphism.

\(H_2(W(2)(\varphi)) \cong H_2(W(2)(\theta))\) is of rank 15 as is \(H_2(W(1)(\varphi)) \cong H_2(W(1)(\theta))\). The following list specifies bases of both modules showing pairs of the corresponding elements under \(H_2(W(2)(\varphi)) \to H_2(W(1)(\varphi))\) (see the formula (14)).

\[
\begin{align*}
32* & \quad \longrightarrow \quad -2 \quad (1 \otimes 2*2*) \\
22* & \quad \longrightarrow \quad 2 \quad (1 \otimes 2*3*) \\
23* & \quad \longrightarrow \quad 2 \quad (1 \otimes 3*3*)
\end{align*}
\]

\(184\)
RESOLUTIONS OF DETERMINANTAL VARIETIES

\[
\begin{align*}
31^* & \quad 22 \quad \rightarrow \quad 2 \ (2 \bullet 1^*1^*) \\
33^* & \quad 22 \quad \rightarrow \quad 2 \ (2 \bullet 1^*3^*) \\
23^* & \quad 12 \quad \rightarrow \quad 2 \bullet 3^*3^* \\
31^* & \quad 23 \quad \rightarrow \quad 3 \bullet 1^*1^* \\
32^* & \quad 23 \quad \rightarrow \quad 3 \bullet 1^*2^* \\
32^* & \quad 13 \quad \rightarrow \quad -3 \bullet 2^*2^* \\
22^* & \quad 13 \quad \rightarrow \quad 3 \bullet 3^*2^* - 1 \bullet 1^*2^* \\
33^* & \quad 12 \quad \rightarrow \quad 1 \bullet 1^*3^* - 2 \bullet 2^*3^* \\
11^* & \quad 23 \quad \rightarrow \quad 2 \bullet 2^*1^* - 3 \bullet 3^*1^* \\
31^* & \quad 21 \quad \rightarrow \quad 1 \bullet 1^*1^* - 2 \bullet 2^*1^* \\
23^* & \quad 13 \quad \rightarrow \quad 3 \bullet 3^*3^* - 1 \bullet 1^*3^* \\
12^* & \quad 32 \quad \rightarrow \quad 2 \bullet 2^*2^* - 3 \bullet 3^*2^* \\
\end{align*}
\]

Using Lemma 5.6 once more, one computes that rank $H_3(W^{(2)}(\varphi)) = 20$ and rank $H_3(W^{(1)}(\varphi)) = rank H_3(W^{(3)}(\varphi)) = 10$. An analysis similar to the previous one proves the exactness of the sequence $0 \rightarrow H_3(W^{(3)}(\varphi)) \rightarrow H_3(W^{(2)}(\varphi)) \rightarrow H_3(W^{(1)}(\varphi)) \rightarrow 0$.

Finally $H_0(W^{(1)}(\varphi)) \approx \Lambda^3(R^3)$ and because $1 \wedge 2 \wedge 3 \mapsto Pf(1,2,3) = 1$ the map $H_0(W^{(1)}(\varphi)) \rightarrow R$ is an isomorphism, too. Since (6) is self-dual we are done.
From now on the map $\varphi : E^* \to E$ is supposed to be symmetric and determined by the $n \times n$ matrix of indeterminates T. The symmetry of φ is equivalent to the statement that the evaluation map $S_2 \varphi \to R[1]$ is a map of complexes; we have also the dual trace map $R[1] \to \Lambda^2 \varphi$ (see section 4).

Let us write $W^{(0)} = R$, $W^{(1)} = \ker (S_2 \varphi \to R[1]) = B^{(1,1)} \varphi$ and define a map $W^{(1)} \to W^{(0)}$ which is determined by the map $S_2 E \to R$ sending ij to $(-1)^{i+j} M(i;j)$. Here $M(i;j)$ is the minor of T obtained from T by leaving out the i-th row and the j-th column. From the Laplace expansion it follows that this is really a map of complexes.

Theorem 5.7 [Goto-Tachibana], [Józefiak] If $r+1 = n-1$, then the complex $W^{(1)} \to W^{(0)}$ is a minimal free resolution of $R/I_{r+1}(\varphi)$.

Proof By Lemma 5.2 it suffices to check the exactness for the matrix $\varphi = \theta \circ \psi$ where $\theta = (0), \psi = (1)\varphi \ldots \varphi (1)$. Since again $H(W^{(1)}(\varphi)) = H(W^{(1)}(\theta))$ this implies that $H_1(W^{(1)}(\varphi)) = H_2(W^{(1)}(\varphi)) = 0$. In a similar way as before we also infer that $H_0(W^{(1)}(\varphi))$ (which is of rank 1) is killed by the map $W^{(1)} \to W^{(0)}$.

Finally we treat the case $r+1 = n-2$, which leads to a resolution of length 6.

Consider the map of complexes $\Lambda^3 \varphi \circ \psi \leftarrow \Lambda^2 \varphi \circ \Lambda^2 \varphi$ which is the composition $\Lambda^3 \varphi \circ \psi \to \Lambda^2 \varphi \circ \psi \circ \varphi \to \Lambda^2 \varphi \circ \Lambda^2 \varphi$ and observe that $\Lambda_{22} \varphi = \text{Coker } \alpha$. The situation is similar to that discussed in the course of the construction of the length 10 complex in the antisymmetric case. Once again we
RESOLUTIONS OF DETERMINANTAL VARIETIES

have a complex of complexes

\[\Lambda^2 \varphi[1] \to \Lambda^2 \varphi \to S^2 \varphi[1] \]

coming from maps \(R[1] \to \Lambda^2 \varphi \) and \(S^2 \varphi \to R[1] \) and we define \(W^{(1)} \) as the homology of this complex. Observe that it is self-dual. Moreover we put \(W^{(0)} = R \), \(W^{(2)} = R[5] \). A map of complexes \(W^{(1)} \to W^{(0)} \) is determined by the map of modules \(\Lambda^2 E \to R \) which sends a typical basis element \(j^1_{i,k} \) to a minor \(\pm M(i,j;k,l) \) obtained from \(T \) by leaving out the \(i,j \)-th rows and the \(k,l \)-th columns. One checks that this really leads to a map of complexes \(W^{(1)} \to W^{(0)} \).

By duality we also get a map \(W^{(2)} \to W^{(1)} \).

Theorem 5.8 If \(r+1 = n-2 \), then the complex \(W(\varphi) \) is a minimal free resolution of \(R/I_{r+1}(\varphi) \).

Proof Again by Lemma 5.2 we check the exactness of \(W(\varphi) \) for \(\varphi = \theta \oplus \psi \) where \(\theta = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \), \(\psi = (1) \oplus \ldots \oplus (1) \).

Since, as in Lemma 5.6, \(H(W^{(1)}(\varphi)) = H(W^{(1)}(\theta)) \) we infer that \(H_1 = H_2 = H_3 = 0 \). Moreover the one-dimensional \(H_0(W^{(1)}(\varphi)) \) is killed by \(W^{(1)} \to W^{(0)} \). Duality implies the exactness of \(W(\varphi) \).
REFERENCES

C. De Concini, E. Strickland, Traceless tensors and the symmetric group, J. of Algebra, 61 (1979), 112-128

T. Józefiak, P. Pragacz, Ideals generated by Pfaffians, J. of Algebra 61 (1979), 189-198

G. Kempf, On the collapsing of homogeneous bundles, Inv. math. 37 (1976), 229-239

H. Kleppe, D. Laksov, The algebra structure and deformation of pfaffian schemes, J. of Algebra 64 (1980), 167-189

A. Lascoux, Syzygies pour les mineurs de matrices symétriques, Preprint, Paris (1977)

H.A. Nielsen, Tensor functors of complexes, Aarhus University Preprint No. 15 (1977/78)

C. Peskine, L. Szpiro, Dimension projective finie et cohomologie locale, I.H.E.S. Publ. Math. 42 (1973), 323-395

P. Pragacz, Characteristic free resolution of (n-2)-order Pfaffians of n x n antisymmetric matrix, (in preparation)

P. Roberts, A minimal free complex associated to the minors of a matrix, Preprint

J. Towber, Two new functors from modules to algebras, J. of Algebra 47 (1977), 80-104

Institute of Mathematics, Polish Academy of Sciences
Institute of Mathematics, N. Copernicus University
Chopina 12, 87-100 Toruń, Poland