EDUARDO D. SONTAG

On quasi-reachable realizations of a polynomial response

Astérisque, tome 75-76 (1980), p. 207-217

<http://www.numdam.org/item?id=AST_1980__75-76__207_0>
ON QUASI-REACHABLE REALIZATIONS OF A POLYNOMIAL RESPONSE

by

Eduardo D. SONTAG

ABSTRACT. - This paper studies the class of quasi-reachable realizations of a fixed polynomial response. This class is described as a complete lattice. Various subclasses are explored in detail with respect to the induced order, and examples are given.

I. - INTRODUCTION AND NOTATIONS.

Polynomial response maps are basically those given by discrete-time Volterra series. A class of natural realizations for such maps is given by systems whose states evolve in n-dimensional Euclidean space via first order polynomial difference equations, but various facts suggest that this class must be "completed" in order to allow for more arbitrary schemes as state-spaces. To shorten the exposition, most of the definitions and basic results of SONTAG [1976,1979] will not be repeated; these will be quoted as "PRM (a)" where "(a)" refers to the numbering in these references.

We recall some of the basic notations and definitions: fixing an infinite field k, a "k-space" means the set of all k-points of an affine k-reduced k-scheme; "k-space morphisms" or "polynomial maps" are scheme-morphisms. An abstract system \(\Sigma = (X, P, h, x^*) \) is given by a ("state-space") set \(X \), a ("transition") map \(P : X \times U \rightarrow X \), an "output" map \(h : X \rightarrow Y \), and an "initial state" \(x^* \) in \(X \). For simplicity, \(U \) (input-values space) will be \(k^m \) and \(Y \) (output-values space) = \(k^p \) for some \(m, p \), and \(P(x^*, 0) = x^* \) (equilibrium initial state). A morphism \(T : \Sigma_1 \rightarrow \Sigma_2 \) will be a map \(X_1 \rightarrow X_2 \) with \(T(x_1^*) = x_2^* \), \(T(P(x, u)) = P(T(x), u) \), and \(h_2(T(x)) = h_1(x) \) for all \(x, u \). A k-system has \(X \) a k-space and \(P, h \) polynomial maps; a k-system morphism is a \(T \) as above which is polynomial (so an isomorphism is a polynomial
change of variables in the state-space). An almost-variety X is a k-space with $A(X)$ (algebra of polynomial functions on X) a subalgebra of a finitely generated k-algebra (if $A(X)$ is itself f.g., X is a variety); an [almost-] polynomial system has X an [almost-] variety. For an algebra A, $X(A)$ is the k-space of k-points of A (= homomorphisms $A \to k$); both $A(.)$ and $X(.)$ are naturally seen as functors, giving an equivalence between the categories of k-spaces and k-reduced algebras. The input space Ω was introduced in PRM as a "completion" of the set of finite-support sequences $U[z]$; a system is quasi-reachable when the reachability map is dominating, i.e. when reachable states are dense in X.

Attention is restricted here to quasi-reachable systems. If a given system is not quasi-reachable, it may be restricted to the closure of its reachable set; this operation is rather straightforward, and restricting to such systems simplifies matters considerably. Isomorphism classes of quasi-reachable systems are ordered in a natural way, as studied below.

II. - THE LATTICE $QR(f)$.

All systems appearing in this paper will be assumed to be quasi-reachable realizations of a fixed polynomial response map f.

(2.1). DEFINITION. - $\Sigma_2 \preceq \Sigma_1$ means that there exists a k-system morphism $T : \Sigma_1 \to \Sigma_2$.

The above defines a pre-order among systems, which will become a partial order when isomorphic systems are identified.

(2.2). LEMMA. - If $T_i : \Sigma_i \to \Sigma_2$, $i = 1, 2$, are morphisms, then $T_1 = T_2$. Furthermore, the T_i are dominating.

Proof: Since Σ_1 is quasi-reachable, the abstractly canonical state-space X_{ac} is dense in X_1. Thus by an argument as in PRM(7.7), $T_1 = T_2$ on X_{ac}. The equality follows by continuity. A similar argument proves the last statement.
By a slight abuse of notation, the same letter will be used for a system and for its isomorphism class. Let $\text{QR}(f)$ denote the set of all isomorphism classes of quasi-reachable realizations of f; then $\text{QR}(f)$ inherits the preorder \leq; in fact:

(2.3) COROLLARY. - $\text{QR}(f)$ is partially ordered by \leq.

Proof: If $T : \Sigma_1 \to \Sigma_2$ and $S : \Sigma_2 \to \Sigma_1$ are morphisms, then $TS : \Sigma_2 \to \Sigma_2$ must be equal to the identity morphism, by (2.2). Similarly, ST is the identity. So T is an isomorphism.

Recall that $\Sigma_{\text{free}}(f)$ is the system having the input space Ω as its state-space, and with transitions extending the concatenation operation on input sequences; see PRM (6.10). By PRM (8.2), the reachability map $g : U[z] \to X_\Sigma$ extends to a polynomial map g^Ω from Ω to X_Σ, for any k-system Σ. If Σ realizes f, then g induces an abstract-system morphism from the system with $X = U[z]$, P = concatenation, and h, x^* as in $\Sigma_{\text{free}}(f)$, into Σ. Thus g^Ω induces a k-system morphism from $\Sigma_{\text{free}}(f)$ into Σ. Since on the other hand, by PRM (11.3), the canonical realization Σ_f is terminal among quasi-reachable ones, it follows that:

(2.4) PROPOSITION. - $\Sigma_{\text{free}}(f)$ is the (unique) largest, and Σ_f the (unique) smallest, element of $\text{QR}(f)$.

If $T : \Sigma_1 \to \Sigma_2$ is a dominating k-system morphism, $A(T)$ gives $A(X_2)$ as a subalgebra of $A(X_1)$, with "co-transitions" $A(P_1)$ and "co-output map" $A(h_1)$ extending $A(P_2), A(h_2)$. Conversely, given any k-subalgebra A of $A(X_1)$ such that:

(2.5) A includes A_f

(note that A_f if a subalgebra of $A(X_1)$, by the quasi-reachability assumption) and

(2.6) $A(P_1)(A)$ is included in $A \otimes \widehat{U}, \widehat{U} = A(U)$,

then the restriction of $A(P_1)$ to A, together with the restriction of $A(x^*_1)$.
to A and $A(h_1)$ (seen as a homomorphism into A), define a system Σ_2 with $A(x^2_2) = A$ and $\Sigma_2 \leq \Sigma_1$. Furthermore, A determines a unique such Σ_2 (up to isomorphism), since $A(P^2), A(h^2_2), A(x^*_{2})$ are given necessarily by the above procedure.

Thus, the (isomorphism classes of) systems less or equal than Σ_1 are in a one-to-one correspondence with the algebras satisfying (2.5) and (2.6). Furthermore, this correspondence preserves orderings, when the subalgebras A are ordered by inclusion. But (2.5) and (2.6) are preserved under intersections, and if a family A_i satisfies (2.6) then the algebra generated by the union of the A_i again satisfies (2.5), (2.6). Translating these facts into the partial order for systems, and applying them for $\Sigma_1 = \Sigma_{\text{free}}(f)$:

(2.7). THEOREM. - $\text{QR}(f)$ is a complete lattice.

Although the technicalities are very different, the above is formally very similar to the result for linear responses over rings presented in SONTAG [1977].

III. - SOME RELEVANT SUBLATTICES.

The lattice $\text{QR}(f)$ is too "large", in that it contains realizations of arbitrary dimension. Certain sublattices described below are much more interesting; it is a remarkable fact that there seems to be no way to study any of these lattices without in some way first introducing $\text{QR}(f)$. In this section, f will be assumed to be finitely realizable.

(3.1). DEFINITION. - $\text{MD}(f)$ denotes the (isomorphism classes of) minimal-dimension realizations of g, viewed as a partially-ordered subset of $\text{QR}(f)$.

(3.2). THEOREM. - $\text{MD}(f)$ is a complete sublattice of $\text{QR}(f)$.

Proof: Minimal realizations correspond to those subalgebras A of the algebra of Volterra series which satisfy (2.5) and (2.6) together with the additional condition that A is algebraic over A_f. This is again a complete lattice.
(3, 3). REMARK. - By PRM(9. 3), if Σ is a realization of dimension n then the n-step reachability map is dominating. By the arguments in PRM(12, 12), it follows that two minimal realizations are isomorphic if and only if $A(g_n)(A)$ is the same subalgebra of $A(U^n)$ for both of them, where $n = \text{dim } A$. This permits calculations to be carried out explicitly, in $A(U^n)$.

Realizations in $\text{MD}(f)$ are characterized by the fact that their observation fields are algebraic over the canonical observation field Q_f. Another important subclass of realizations is:

(3.4). DEFINITION. - A realization Σ of f is quasi-canonical iff $Q(\Sigma)$ is equal to Q_f. The poset of quasi-canonical realizations is $\text{QC}(f)$.

(Note that the natural inclusion of the observation algebra $A_f = A(X_f)$ in $A(\Sigma)$ extends to an inclusion of Q_f in $Q(\Sigma)$, for any quasi-reachable realization Σ).

A dominating k-space morphism $T : X \to Z$ is birational when $A(Z)$ has the same quotient field as $A(X)$, (identifying via $A(T)$). The meaning of (3.4) will be clarified by the algebraic :

(3.5). LEMMA. - Let X, Z be almost-varieties, $T : X \to Z$ dominating. Assume that the field k is algebraically closed and has characteristic zero. Then T is birational if and only if there is a Zariski open set Z_1 in Z such that the fibre $T^{-1}(z)$ has precisely one element, for each z in Z_1.

Proof: The argument is essentially that in PRM(4.6). By DIEDONNE [1974, Section 5.3], the varieties X_1, Z_1 can be chosen to be normal (i.e., $A(X_1), A(Z_1)$ are integrally closed). If T is birational, $n = m$ in PRM(4.6) and the restriction map $X_1 \to Z_1$ is finite and onto; furthermore, $s = \text{cardinality of fibres } = 1$ by DIEDONNE [1972, Prop. 5.3.2]. Conversely, if fibres have generically a single point then the argument in PRM(4.6) proves that $n = m$, so $Q(X)$ is algebraic over $Q(Z)$, with separable degree one; since $\text{char } k = 0$, they are equal.

The above is a straightforward generalization of a result well-known for varieties. Since Σ_f may be nonpolynomial, however, (3.5) is needed in order to
conclude, for k as in (3.5):

(3.6). PROPOSITION. - The (quasi-reachable) almost-polynomial system Σ is in $QC(f)$ if and only if there exists an open (hence dense) subset X_1 of its state-space X such that no two states in X_1 are indistinguishable.

Proof: Immediate from (3.5), by considering the canonical morphism $T: \Sigma \rightarrow \Sigma_f$.

This justifies the terminology "quasi-canonical" = quasi-reachable plus "quasi-observable" in the above sense. Such systems have been suggested before in the context of minimality of discrete-time nonlinear systems; see Pearlman [1977]. (A related concept appears implicitly in the last section of Hermann and Krener [1977]). The "if" in (3.6) is not true, for general f, over the reals, but it is valid for restricted kinds of systems (classes of multilinear systems, etc.).

(3.7). THEOREM. - $QC(f)$ is a complete sublattice of $QR(f)$.

Proof: As in the previous cases.

In particular, there exists a largest quasi-canonical realization Σ^f. Explicitly, Σ^f can be obtained by intersecting Q_f with the algebra of Volterra series (this gives A^f, the algebra of functions on the state-space X^f), and restricting the maps defining $\Sigma_{\text{free}}(f)$. That A^f indeed satisfies (2.6) follows from the more general result:

(3.8). LEMMA. - If $\Sigma^2 \leq \Sigma^1$, then (with the notations in (2.5) (2.6)), $A := Q(\mathcal{A}_2) \cap \mathcal{A}_1$ satisfies (2.6).

Proof: Since Σ^1 is quasi-reachable, its transition map p is dominating; thus $A(p)$ is one-to-one. So $A(p)$ extends to a homomorphism from $Q(\mathcal{A}_1)$ into $Q(\mathcal{A}_1 \otimes \tilde{U})$, which itself restricts to a homomorphism from $Q(\mathcal{A}_2)$ into $Q(\mathcal{A}_2 \otimes \tilde{U})$. Since \mathcal{A}_2 satisfies (2.6), the result will follow from:
To prove this, let \(a \) be in the left-hand side, i.e., \(a = \sum c_i \otimes T_i \), where \(U = X(k[T_1, \ldots, T_m]) \), \(c_i \) in \(A \), and \((\sum b_i \otimes T_i) a = \sum a_i \otimes T_i \), with the \(a_i, b_i \) in \(A_2 \), some \(b_i \) nonzero.

The set:

\[
V = \{ u \in U \text{ with } (\sum b_i \otimes T_i)(u) \neq 0 \}
\]

is a proper algebraic subset of \(U \), (see PRM (2.4)) and, for \(u \) in \(V \), \(a(u) \) belongs to \(Q(A_2) \). Thus, by PRM (12.11), all \(c_i \) are in \(Q(A_2) \), as wanted. (The same proof works for more general \(U \)).

The largest quasi-canonical realization \(\Sigma^f \) is therefore obtained, using \(\Sigma_1^f = \Sigma^f \text{ free}(f) \) and \(\Sigma_2^f = \Sigma^f \) above.

Other natural classes (sub-posets) of realizations are that of all polynomial realizations (\(X \) a variety), or of all minimal polynomial realizations, or of all realizations with \(X^\Sigma \) = affine space, etc. These classes do not form sublattices, however. In fact, as shown by examples in the next sections, meets or joins of systems of these kinds are not necessarily in any sense "nice". This provides a further justification for considering nonpolynomial \(k \)-systems, seen as those needed to "complete" the various posets.

IV. - FIBRE PRODUCTS.

The lattice operations in \(QR(f) \) can be interpreted more concretely than in the previous sections. This is particularly simple with the join, which obviously corresponds to a fibre product construction, i.e., \((\Sigma_1 \text{ join } \Sigma_2) \) is given by the product of \(\Sigma_1 / \Sigma^f \) and \(\Sigma_2 / \Sigma^f \) in the category of all \(k \)-system morphisms \(\Sigma / \Sigma^f \) from quasi-reachable realizations \(\Sigma \) into \(\Sigma^f \) (with the standard morphisms \(r: \Sigma_1 / \Sigma^f \rightarrow \Sigma_2 / \Sigma^f \) corresponding to the \(r: \Sigma_1 \rightarrow \Sigma_2 \) such that \(r \) composed with \(\Sigma_2 / \Sigma^f \) is \(\Sigma_1 / \Sigma^f \)). Thus \(\Sigma = (\Sigma_1 \text{ join } \Sigma_2) \) has state-space a closed subset of \(X_1 \times X_2 : \)

\[
X = \{(g_1(w), g_2(w)) \text{, } w \text{ in } U^* \},
\]
and \(P((x_1', x_2'), w) = (P(x_1', w), P(x_2', w)) \), initial state \((x_1^*, x_2^*)\), and
\(h(x_1', x_2') = h_1(x_1') \) (or \(h_2(x_2') \)).

The calculations for the following examples are easy, using (3.3); initial
states are zero, and \(U = k \), unless otherwise stated.

(4.2). EXAMPLE. - Let \(\Sigma_1 \) be
\[
\begin{align*}
x(t+1) &= u_2(t) \\
y(t) &= x^3(t)
\end{align*}
\]
and \(\Sigma_2 \) be
\[
\begin{align*}
x(t+1) &= u_3(t) \\
y(t) &= x^2(t)
\end{align*}
\]
Both realize the same response map \(f \) with canonical realization (which is
also their meet):
\[
\begin{align*}
x(t+1) &= u_6(t) \\
y(t) &= x(t)
\end{align*}
\]
Their product is the system whose state-space is the "cusp" \(\{(x_1, x_2) \in k^2 \}
\]
with \(x_1^3 = x_2^2 \) and
\[
\begin{align*}
x_1(t+1) &= u_2(t) \\
x_2(t+1) &= u_3(t) \\
y(t) &= x_1^3(t)
\end{align*}
\]
which is more complex than the original systems.

(4.3). EXAMPLE. - Here \(\Sigma_1 \) and \(\Sigma_2 \) have as state-space the closed set
consisting of those vectors \((x_1, x_2, x_3, x_4) \in k^4 \) with \(x_1 x_3 = x_2^2 \), and
input set \(U = k^2 \). The equations are, for \(\Sigma_1 \):
\[
\begin{align*}
x_1(t+1) &= u(t) \\
x_2(t+1) &= u(t) v(t) \\
x_3(t+1) &= u(t) v(t)^2 \\
x_4(t+1) &= x_2(t) + x_1(t) x_2(t) u(t) + x_3(t) v(t) \\
y(t) &= x_4(t)
\end{align*}
\]
POLYNOMIAL SYSTEMS

and for \(\Sigma_2 \):

\[
\begin{align*}
\dot{x}_1(t+1) &= v(t) \\
\dot{x}_2(t+1) &= u(t) v(t) \\
\dot{x}_3(t+1) &= u(t)^2 v(t) \\
\dot{x}_4(t+1) &= x_2(t) + x_3(t) u(t) + x_1(t) x_2(t) v(t) \\
y(t) &= x_4(t).
\end{align*}
\]

Their meet is the canonical realization \(\Sigma_f \) with \(X_f = \) all 4-vectors with \(x_1 = x_2 x_3 \), and:

\[
\begin{align*}
\dot{x}_1(t+1) &= u(t) v(t) \\
\dot{x}_2(t+1) &= u^2(t) v(t) \\
\dot{x}_3(t+1) &= u(t) v(t)^2 \\
\dot{x}_4(t+1) &= x_1(t) x_2(t) + x_1(t)^2 x_2(t) u(t) + x_1(t) x_2(t)^2 v(t) \\
y(t) &= x_4(t).
\end{align*}
\]

Here the join turns out to be simpler than all of the above; it is the system with \(X = k^3 \) and:

\[
\begin{align*}
\dot{x}_1(t+1) &= u(t) \\
\dot{x}_2(t+1) &= v(t) \\
\dot{x}_3(t+1) &= x_1(t) x_2(t) + x_1(t)^2 x_2(t) u(t) + x_1(t) x_2(t)^2 v(t) \\
y(t) &= x_3(t).
\end{align*}
\]

V. - EXAMPLE OF NON POLYNOMIAL k-SYSTEMS.

The purpose of this section is to give an example illustrating how nonpolynomial k-systems arise naturally when studying polynomial realizations in \(QR(f) \).

(5.1), EXAMPLE. - Let \(f \) be the response of \(\Sigma_0 \), where \(X = k^2 \) and \(x^* = (1, 1)' \) and

\[
\begin{align*}
\dot{x}_1(t+1) &= x_1(t) x_2(t) \\
\dot{x}_2(t+1) &= x_2(t)(u(t) + 1) \\
y(t) &= x_1(t).
\end{align*}
\]

Then, there exists a family a polynomial systems \(\Sigma_i \) such that for every non-canonical (quasi-reachable) realization \(\Sigma \), there is an \(i \) with \(\Sigma \) strictly greater (in \(QR(f) \)) than \(\Sigma_i \). Since the canonical realization is nonpolynomial.
(PRM (18.1)), there results in particular an infinite chain
\[\Sigma_1 > \Sigma_2 > \Sigma_4 > \Sigma_8 > \ldots > \Sigma_f, \]
and \(\Sigma_f \) appears in taking the meet of this chain. The \(\Sigma_i \) have algebras
\[K \left[T_1, T_2, \ldots, T_1 T_2^{-1}, T_2^{-1} \right]; \]
the construction is detailed in SONTAG [1979]. A consequence of this construction is that it is not possible to obtain a "canonical realization theory" for \(f \) solely via affine spaces, or even polynomial systems, at least if the existence of a terminal object in the category of quasi-reachable realizations is sought, as usual in system theory.

VI. - FINAL REMARKS.

Various other classes can be defined as subposets of \(QR(f) \). "Normal" realizations, for instance, form an interesting subclass which give "less singular" state-spaces and permit a much stronger uniqueness result for canonical realizations; this is explained in SONTAG [1979]. Similarly, results can be easily extended to more arbitrary input and output values sets, or to systems whose state-spaces are nonaffine schemes, although in this latter case the exposition is technically more complicated.

REFERENCES

Eduardo D. SONTAG
Department of Mathematics
Rutgers University
New Brunswick
NEW JERSEY 08903 (U.S.A.)