J. W. JENKINS
Invariant Functionals and Polynomial Growth

Astérisque, tome 74 (1980), p. 171-181

<http://www.numdam.org/item?id=AST_1980__74__171_0>
Invariant Functionals and Polynomial Growth

by

J. W. Jenkins

Recall that a locally compact group G is said to be amenable if there is an element $p \in L^\infty(G)^*$ such that i) $p > 0$, ii) $\langle p, \delta_g \ast \psi \rangle = \langle p, \psi \rangle$ for all $g \in G$ and $\psi \in L^\infty(G)$ (here δ_g is the unit mass at g and \ast denotes convolution), and iii) $\langle p, \chi_A \rangle = 1$, where χ_A denotes the characteristic function of a subset $A \subseteq G$. In this note we consider the situation in which the "normalization condition" iii) is replaced by iii)\' $\langle p, \theta \rangle = 1$, where θ is a given non zero, non negative element of $L^\infty(G)$. The first results on this problem were obtain by Rosenblatt [6].

We begin with the following observation : if G is not compact and K is a compact subset of G then there is an infinite sequence of elements $\{g_i\} \subseteq G$ such that for any positive integer N,

$$\chi_G \geq \sum_{i=1}^{N} \delta_{g_i} \ast \chi_K.$$

If p is an element of $L^\infty(G)^*$ that satisfies i), ii), iii)\' for $\theta = \chi_K$, then for all positive integers N,

$$\langle p, \chi_G \rangle \geq \sum_{i=1}^{N} \langle p, \delta_{g_i} \ast \chi_K \rangle = N.$$

This contradiction shows that, in general, given a θ, the desired functional can exist only on a proper subspace of $L^\infty(G)$. Hence we begin by considering the smallest translation invariant subspace of $L^\infty(G)$ containing θ.

Definition 1.- A locally compact group is said to be type A if for any non zero, non negative $\theta \in L^\infty(G)$, there is a linear functional p
R. W. JENKINS

defined on

\[S_\theta = \{ \sum \alpha(g) \delta_g * \theta \mid \text{supp } \alpha \text{ finite} \} \]

such that i) \(p > 0 \), ii) \(\langle p, \delta_g * \psi \rangle = \langle p, \psi \rangle \) for \(g \in G \), \(\psi \in S_\theta \), iii) \(\langle p, \theta \rangle = 1 \).

In order to state our first theorem we need to recall the notion of polynomial growth. Fix a left Haar measure on \(G \) and denote the measure of a subset \(A \) of \(G \) by \(|A| \). For any positive integer \(n \), let \(A^n = \{ a_1 a_2 ... a_n \mid a_i \in A \} \). \(G \) is said to have polynomial growth if for every compact neighborhood of \(e \) in \(G \), \(U \), there is a polynomial \(p \) such that \(|U^n| \leq p(n) \) for \(n = 1, 2, 3, ... \). The following theorem was first proved in [6] for discrete groups and in [3] for arbitrary groups.

Theorem 2. A locally compact group with polynomial growth is type \(A \).

Proof. We define a linear functional \(p \) on \(S_\theta \) by setting

\[\langle p, \sum \alpha(g) \delta_g * \theta \rangle = \sum \alpha(g) \]. It is obvious that \(p \) satisfies conditions ii) and iii) of definition 1. It only remains to show that \(p \) is positive, i.e. if \(\sum \alpha(g) \delta_g * \theta > 0 \) then \(\sum \alpha(g) > 0 \). For this purpose, let \(U = U^{-1} \) be a compact neighborhood of \(e \) in \(G \) containing the support of \(\alpha \) and such that \(\langle \chi_U, \theta \rangle > 0 \). Set

\[A_n = \int_{U^n} \theta(s) \, ds \]

and note that \(0 < A_n \leq ||\theta||_{\infty} |U^n| \). Hence \(\lim(A_n)^{1/n} = 1 \). Thus there is a subsequence \(\{n_k\} \) such that \(A_{n_k-1} / A_{n_k+1} \rightarrow 1 \). Now if \(g \in \text{supp } \alpha \) then \(U^{n-1} \subseteq gU^n \subseteq U^{n+1} \), and hence, for such \(g \),

\[A_{n-1} \leq \int_{gU^n} \theta(s) \, ds \leq A_{n+1} \].

Recalling that \(\sum \alpha(g) \delta_g * \theta > 0 \), we have
\[0 \leq \int_{U} \sum_{\alpha(g)} \delta_{g} \ast \theta(s) \, ds = \sum_{\alpha(g)} \int_{U} \delta_{g} \ast \theta(s) \, ds. \]

Dividing the inequality by \(A \) and taking the limit on \(k \) we have, since \(\text{supp} \alpha \) is finite, \(\sum_{\alpha(g)} > 0 \).

There is a partial converse to theorem 2.

Theorem 3. Suppose that \(G \) is a finitely generated, discrete, solvable group or that \(G \) is a connected group, and that \(G \) is type A. Then \(G \) has polynomial growth.

Proof. Suppose that \(G \) a finitely generated, discrete, solvable group or that \(G \) is a connected group, and that \(G \) does not have polynomial growth. Then by [4] and [6], there exist elements \(a, b \in G \) and a compact neighborhood \(U \) of \(e \) in \(G \) such that if \([a, b] \) denotes the semi group generated by \(a \) and \(b \), we have i) \(a[a, b] \cap b[a, b] = \emptyset \) and ii) \(sU \cap tU = \emptyset \) if \(s, t \in [a, b] \), \(s \neq t \). Let \(V = [a, b] \). Then

\[\text{supp} \delta_{a} \ast \chi_{V} \cap \text{supp} \delta_{b} \ast \chi_{V} \subseteq aV \cap bV \]

\[= (a[a, b] \cap b[a, b]) V = \emptyset. \]

Thus \(\chi_{V} > \delta_{a} \ast \chi_{V} + \delta_{b} \ast \chi_{V} \). Hence there can not be a functional \(p \) on \(S_{\chi} \) satisfying the conditions of definition 1.

\(S_{\theta} \) is the smallest subspace of \(L^{\infty}(G) \) on which we might hope to find a translation invariant positive functional normalized with respect to \(\theta \). By contrast, the largest subspace is

\[L_{\theta} = \{ \psi \in L^{\infty}(G) \mid |\psi| \leq \mu \ast \theta, \mu \in M(G) \}, \]

where \(M(G) \) denotes the algebra of all bounded, regular Borel measures on \(G \). Further, instead of asking only for invariance with respect to convolution by point masses, one could require that \(< p, \mu \ast \psi > = \mu(G) < p, \psi > \) for all \(\psi \in L_{\theta} \) and all \(\mu \in M(G) \). We will construct such functionals \(p \), inductively, obtaining at each stage a
functional invariant with respect to a larger subalgebra of $M(G)$. This construction also requires continuity of the functionals with respect to the following norm, $\| \cdot \|_\Theta$, on L_Θ.

$$\| \psi \|_\Theta = \inf \{ \| \mu \| \mid \| \psi \|_\Theta \leq \mu \star \theta, \mu \in M(G) \} .$$

Définition 4. Let A be a subalgebra of $M(G)$. G is said to have A-invariance if for all $0 \neq \theta \in L^\infty(G)$ for which $0 \leq \theta \leq f \star \theta$ for some $f \in L^1(G)$, there is a $p \in L^*_\Theta$ such that

i) $p \geq 0$,

ii) $< p, \mu \star \psi > = \mu(G) < p, \psi >, \mu \in A, \psi \in L_\Theta$,

iii) $< p, \mu \star \psi > = \int < p, \delta_x \star \psi > d\mu(x), \mu \in M(G), \psi \in L_\Theta$,

iv) $< p, \theta > = 1$.

The following theorem and proof were inspired by Ludwig [5].

Theorem 5. Suppose G is a connected group with polynomial growth or that G is a compact extension of a nilpotent group. Then G has $M(G)$-invariance.

The proof of this theorem requires the following.

Lemma 6. Suppose G has polynomial growth and that G contains normal subgroups H and K with $K \subseteq H$. Suppose further that each element of H/K is contained in a compact neighborhood that is invariant under the inner-automorphisms from G/K. Then, if G has $M(K)$-invariance it has $M(H)$-invariance.

Proof. Let θ be a non zero, non negative element of $L^\infty(G)$ and let $p \in L^*_\Theta$ satisfying i) - iv) of definition 4 with respect to $M(K)$.

Let \hat{U} be a compact neighborhood of e in H/K that is invariant under inner-automorphism from G/K. Given $\varepsilon > 0$, we define $f_\varepsilon, \hat{u}(x)$ on H/K by $f_\varepsilon, \hat{u}(x) = (1 + \varepsilon)^{-1}$ if $\hat{x} \in \hat{U}$, $f_\varepsilon, \hat{u}(x) = (1 + \varepsilon)^{-n}$ if $\hat{x} \in \hat{U}^n - \hat{U}^{n-1}, n \geq 2$, and $f_\varepsilon, \hat{u}(x) = 0$ if $\hat{x} \varepsilon < \hat{U}$, the closed
(and open) subgroup of H/K generated by \hat{U}. Since H/K has polynomial growth

$$\|f_{\epsilon}, \hat{U}\|_1 = (1 + \epsilon)^{-1}|\hat{U}| + \sum_{n=2}^{\infty} (1 + \epsilon)^{-n} |\hat{U}^n - \hat{U}^{n-1}| < \infty.$$

Furthermore, for $y \in \hat{U}$ and $x \in <\hat{U}>$

$$|f_{\epsilon}, \hat{U}(\hat{x} \hat{y}) - f_{\epsilon}, \hat{U}(\hat{x})| \leq \epsilon f_{\epsilon}, \hat{U}(\hat{x}).$$

Since $\theta \leq f_0 * \theta$ for some $f_0 \in L^1(G)$,

$$1 = <p, \theta> = <p, f_0 * \theta> = \int_G f_0(x) <p, \delta_x * \theta> dx.$$

Thus, $<p, \delta_x * \theta> > 0$ on some open subset of G. Hence, for some $a \in G$, $<p, \delta_a x * \theta> > 0$ for x is some open subset of $<\hat{U}>$. Since $<p, \delta_k * \psi> = <p, \psi>$ for all $k \in K$, we can define $<p, \delta_x * \psi>$ for $x \in H/K$ by setting $<p, \delta_x * \psi> = <p, \delta_x * \psi>$. We define p'_ϵ, \hat{U} on L_θ by

$$<p'_\epsilon, \hat{U}, \psi> = \int_{H/K} f_{\epsilon}, \hat{U}(\hat{x}) <p, \delta_{\hat{x}} * \psi> d\hat{x}.$$

Fix $\delta \in H/K$ so that

$$(1 - \epsilon)^{-1} <p'_\epsilon, \hat{U}, \delta_{\hat{U}} * \theta> \sup_{y} <p'_\epsilon, \hat{U}, \delta_{\hat{y}} * \theta> = \alpha,$$

and define p_{ϵ}, \hat{U} on L_θ by setting

$$<p_{\epsilon}, \hat{U}, \psi> = \alpha^{-1} <p'_\epsilon, \hat{U}, \delta_{\hat{U}} * \psi>,$$

for all $\psi \in L_\theta$.

We first show that $\|p_{\epsilon}, \hat{U}\|_\theta \leq 1$. For this, suppose that $\psi \in L_\theta$ and that $|\psi| \leq \mu * \theta$. Then
\[|\langle p_\varepsilon, \hat{u}, \psi \rangle| \leq |\langle p_\varepsilon, \hat{u}, \psi \rangle| = \alpha^{-1} \int_{H/K} f_\varepsilon, \hat{u}(\hat{x}) < p, \delta_{axb} \psi > d\hat{x} \]

\[\leq \alpha^{-1} \int_{H/K} f_\varepsilon, \hat{u}(\hat{x}) < p, \delta_{axb} \psi > d\hat{x} \]

\[= \alpha^{-1} \int_{G} \int_{H/K} f_\varepsilon, \hat{u}(\hat{x}) < p, \delta_{axb} \psi > d\hat{x} d\mu(z) \]

\[\leq \int_{G} d\mu(z) \leq \|\mu\| . \]

Also note that if \(\hat{y} \in \hat{U} \), \(\psi \in L_\Theta \), then

\[|\langle p_\varepsilon, \hat{u}, \delta_{y} \psi \rangle| - |\langle p_\varepsilon, \hat{u}, \psi \rangle| \]

\[\leq \alpha^{-1} \left| \int f_\varepsilon, \hat{u}(\hat{x}) < p, \delta_{axby} \psi - \delta_{axb} \psi > d\hat{x} \right| \]

\[= \alpha^{-1} \int |f_\varepsilon, \hat{u}(\hat{x})| < p, \delta_{axb} \psi > d\hat{x} \]

\[\leq \varepsilon \alpha^{-1} \int f_\varepsilon, \hat{u}(\hat{x}) < p, \delta_{axb} \psi > d\hat{x} \]

\[= \varepsilon |\langle p_\varepsilon, \hat{u}, \psi \rangle| . \]

Choose a sequence of compact neighborhoods of \(e \) in \(H/K \), \(\hat{U}_n \), that are invariant under the inner-automorphisms from \(G/K \) and such that

\[\cap_{n=1}^\infty \hat{U}_n = H/K . \]

For each positive integer \(n \), let \(p_n = p_{1/n}, \hat{U}_n \). By \(\omega^* \)-compactness of the unit ball in \(L_\Theta^* \), the sequence \(\{p_n\} \) has a cluster point \(p_\infty \). Clearly \(p_\infty \geq 0 \) and, since

\[1 > \langle p_n, \theta \rangle = \langle p_{1/n}, \hat{U}_n, \theta \rangle = |\alpha^{-1} \langle p_{1/n}, \hat{U}_n, \delta_{a_n} \theta \rangle | \geq 1 - 1/n , \]

176
<p>INVARIANT FUNCTIONNALS AND POLYNOMIAL GROWTH</p>

\(< p_\infty, \theta > = 1 \). It is also clear that for \(k \in K \) and \(\psi \in L_0 \),

\(< p_\infty, \delta_k \ast \psi > = < p_\infty, \psi > \) and hence that \(< p_\infty, \delta_y \ast \psi > = < p_\infty, \delta_y \ast \psi >

= < p_\infty, \psi > \) for \(y \in H/K \).

If \(\psi \in L_0 \) and \(\mu \in M(G) \), then

\(< p_\infty, \mu \ast \psi > = \lim < p_{1/n}, \check{\psi}_{n}, \mu \ast \psi >

= \lim \int_G < p_{1/n}, \check{\psi}_{n}, \delta_x \ast \psi > d\mu(x) \).

Since

\(|< p_{1/n}, \check{\psi}_{n}, \delta_x \ast \psi >| \leq ||\psi||_0 \),

the dominated convergence theorem gives

\(< p_\infty, \mu \ast \psi > = \int < p_\infty, \delta_x \ast \psi > d\mu(x) \).

Finally, note that if \(\mu \in M(H) \), \(\psi \in L_0 \),

\(< p_\infty, \mu \ast \psi > = \int < p_\infty, \delta_x \ast \psi > d\mu(x)

= \mu(G) < p_\infty, \psi > \).

Therefore \(p_\infty \) satisfies i) - iv) of definition 4.

Proof of theorem 5. If \(N \) is a normal, nilpotent subgroup of \(G \) such
that \(G/N \) is compact and if \(N = N_1 \supset \ldots \supset N_k = \{e\} \) is the lower center
series for \(N \), then for each \(i = 1, \ldots, k-1 \), \(N_i/N_{i+1} \) has large compact
neighborhoods invariant under the inner-automorphisms form \(G/N_{i+1} \).

If \(G \) is a connected Lie group with polynomial growth then the eigenvalues
of \(\text{Ad}s \) are of modulus 1 for all \(s \in G \) (see [4] or [1], where the follo­
wing fact was first pointed out). Let \(S \) be the solu-radical of \(G \), \(LS \)
its Lie algebra and \(LS_\mathbb{C} \), the complexification of \(LS \). By Lie's theorem,
there is an ordered basis for \(LS_\mathbb{C} \), \(\{X_1, \ldots, X_m\} \) so that the matrix
representation for Ads with respect to this basis is upper triangular for all \(s \in S \). Let \(V_j \) be the subspace spanned by \(\{X_1, \ldots, X_j\} \). Then the action of Ads on \(V_j / V_{j-1} \) is multiplication by \(\alpha_j(s) \) where \(|\alpha_j(s)| = 1 \), i.e. Ads acts by rotation on each space \(V_j / V_{j-1} \). Thus we can find subspaces \(\{0\} = W_0 \subset W_1 \subset \ldots \subset W_n \) of \(L^S \), each invariant under Ads with \(\dim(V_j / V_{j-1}) \leq 2 \), and with Ads acting by rotation on each space \(W_j / W_{j-1} \), \(j = 1, 2, \ldots, n \). Thus \(W_j \) is an ideal in \(L^S \) and if \(S_j \) is the corresponding closed normal subgroup of \(S \), each element of \(S_j / S_{j-1} \) has large compact neighborhoods invariant under the inner-automorphisms from \(S / S_{j-1} \), and also \(G/S \), since \(G/S \) is compact.

If \(G \) is a connected group with polynomial growth, then there is a compact, normal subgroup \(K \) of \(G \) such that \(G/K \) is a Lie group with polynomial growth. The above argument applied to \(G/K \) produced the desired series of subgroups.

In order to show that polynomial growth is not sufficient to imply \(M(G) \)-invariance, as is the case with being type A, we prove the following.

Theorem 7. Let \(A \) be a subalgebra of \(M(G) \) that contains the point masses and is closed with respect to involution. If \(G \) has \(A \)-invariance then for each \(f \in A \cap L^1(G) \), \(-1 \notin \text{sp}(f * f^*)\).

Proof. Assume there is an \(f \in A \cap L^1(G) \) such that \(-1 \in \text{sp}(f * f^*)\). Then for all \(g \in L^1(G) \), \(\|g * f * f^* + g + f * f^*\| \geq 1 \), for other wise,

\[
[(g-1)(-f * f^* - 1)]^{-1} = [1 + [(g-1)(-f * f^* - 1) - 1]]^{-1}
\]

exists in \(C \cap L^1(G) \), contradicting the assumption that \(-1 \in \text{sp}(f * f^*)\). Hence, there is a \(\varphi \in L^\infty(G) \) such that \(<g * f * f^* + g, \varphi> = 0 \) for all \(g \in L^1(G) \) and \(<f * f^*, \varphi> = 1 \). Thus \(f * f^* * \varphi = -\varphi \).

Let \(\theta = \|\varphi\|^2 \). Note that for \(h \in L^1(G) \)
\[|h * \varphi|^2(s) = \left| \int h(t) \varphi(t^{-1}s) \, dt \right|^2 \]
\[\leq \left[\int |h(t)|^{1/2} |h(t)|^{1/2} |\varphi(t^{-1}s)| \, dt \right]^2 \]
\[\leq \int |h(t)| \, dt \int |h(t)| |\varphi(t^{-1}s)|^2 \, dt \]
\[= \|h\|_1 \|h\| \|\varphi\|^2 . \]

Hence, \(\vartheta = |\varphi|^2 = |f * f^* * \varphi|^2 \leq \|f * f^*\| |f * f^*| * \theta . \)

Thus, there is a functional \(\rho \) on \(h_0 \) satisfying i) - iv) of definition 4 with respect to \(A \). Now, if \(g, h \in L^1(G) \),

\[(g * \varphi)(h * \varphi) \leq \frac{1}{2} \left\{ |g * \varphi|^2 + |h * \varphi|^2 \right\} \in L_0 . \]

We define a bilinear form \(B \) on \(A \cap L^1(G) \) by

\[B(g, h) = < \rho, (g * \varphi)(h * \varphi) > . \]

Clearly \(B(g, g) \geq 0 \) for \(g \in A \cap L^1(G) \) and

\[B(f * f^*, f * f^*) = < \rho, |\varphi|^2 > = 1 . \]

Also, for \(g \in A \cap L^1(G) \),

\[B(g, g) = < \rho, |g * \varphi|^2 > \leq \|g\|_1 < \rho, |g * \theta > = \|g\|_1^2 . \]

Thus \(B \) is bounded, and if \(g, h \in A \cap L^1(G) \), \(s \in G \),

\[B(\delta_s * g, \delta_s * h) = < \rho, \delta_s * [(g * \varphi)(h * \varphi)] > = B(g, h) . \]

Hence, for \(g, h, k \in A \cap L^1(G) \)

\[B(g * h, k) = B(h, g^* * k) . \]

Recalling that \(f * f^* \varphi = -\varphi \), we have

\[0 \leq B(f^*, f^*) = -B(f^* * f * f^*, f^*) = -B(f * f^*, f * f^*) = -1 . \]

This contradiction implies that \(-1 \notin \text{sp}(f * f^*) \).
A Banach *-algebra A is said to be symmetric if $-1 \in \sigma_p(aa^*)$ for all $a \in A$. Theorems 5 et 7 show that $L^1(G)$ is symmetric if G is a connected group with polynomial growth or if G is a compact extension of a nilpotent group. This was first proved by Ludwig [5].

Hulanicki [2], considered the following group: let D be a countable direct sum of \mathbb{Z}_2^∞, and let

$$D = \prod_{d \in D} (D)_d = \{ (x_d)_d \in D \mid x_d \in D \}$$

be the direct product of D copies of D. Define $t : D \to \text{Aut}(D)$ by $t(c)(x_d)_d \in D = (x_d + c)_d \in D$. Then $D \ltimes_t D$ is a solvable group and for each $s \in D \ltimes_t D$, $s^4 = e$. Hulanicki showed that $L^1(D \ltimes_t D)$ is not symmetric, hence $D \ltimes_t D$ is a solvable group with polynomial growth that does not have $M(D \ltimes_t D)$-invariance. Hence even for solvable groups being type A is a weaker condition than having $M(G)$-invariance.

Let $F(G)$ denote the subalgebra of $M(G)$ consisting of all measures with finite support.

Using the Krein extension theorem, one can easily see that G is type A if and only if G has $F(G)$-invariance. Hence polynomial growth implies $F(G)$-invariance. Using the same techniques as in the proof of theorem 2, one can show that polynomial growth implies $K(G)$-invariance where $K(G)$ denotes the measures with compact support, or even invariance with respect to algebras of measures that vanish sufficiently rapidly at infinity. (In Hulanicki's example, for instance, one selects a sequence of subsets $U_n \subset U_{n+1}$ such that $U \cup_n = D \ltimes_t D$ and requires the measure μ to satisfies

$$\lim_n |< u_n >| |\mu| (D \ltimes_t D \not\subset < u_n >) = 0.$$

It is not known how large a subalgebra will give invariance for arbitrary groups with polynomial growth.
References

