JACK MORAVA

The Weil group as automorphisms of the Lubin-Tate group

Astérisque, tome 63 (1979), p. 169-177

<http://www.numdam.org/item?id=AST_1979__63__169_0>
THE WEIL GROUP AS AUTOMORPHISMS
OF THE LUBIN-TATE GROUP

Jack Morava

Introduction:

Let \(L \) be a finite extension of \(\mathbb{Q}_p \), with maximal abelian extension \(L_{ab} \); then the canonical monomorphism \(\alpha \) of \([5, \S 3]\) maps the multiplicative group of \(L \) onto an open dense subgroup \(W(L_{ab}/L) \) of the Galois group of \(L_{ab} \) over \(L \). These modified Galois \([\text{or } W-\text{]}\) groups can be defined more generally, and behave very much like Galois groups \([8, \text{ appendix II}]\), but for some purposes they are more convenient.

For example, there is a representation of \(W(L_{ab}/L) \) on the \(\mathbb{Q}_p \)-vector space \(L \), defined by the obvious multiplication map \(L^X \times L \rightarrow L \).

The trace of this representation defines a \(p \)-adic character of \(W(L_{ab}/L) \) and therefore \([\text{via the natural homomorphism from } W(\overline{\mathbb{Q}_p}/L) \text{ to } W(L_{ab}/L)]\) a \(p \)-adic character of \(W(\overline{\mathbb{Q}_p}/L) \). In this note we construct an extension of this character to \(W(\overline{\mathbb{Q}_p}/\mathbb{Q}_p) \) when \(L \) is normal over \(\mathbb{Q}_p \).
Our construction uses a theorem of Safarevič: if d is the degree of L over \mathbb{Q}_p, and D is a division algebra with center \mathbb{Q}_p, and P is an invariant of D over \mathbb{Q}, then L can be embedded as a commutative subfield of D; let $N(L)$ be the normaliser of the multiplicative group L^X of L in D^X. The canonical morphism α then extends to a canonical isomorphism $\nu : N(L) \to W(L_{ab}/\mathbb{Q}_p)$, and the composition of ν^{-1} with the reduced trace from D to \mathbb{Q}_p defines a character of $W(L_{ab}/\mathbb{Q}_p)$ and therefore of $W(\overline{\mathbb{Q}_p}/\mathbb{Q}_p)$.

In §1 we identify $N(L)$ with a group of "extended automorphisms" of the Lubin-Tate group of L: this action defines a cocycle (and thus a representation) ω of $N(L)$, whose trace is the character described above.

The present work was motivated by the construction of a (topological) spectrum which admits $N(L)$ as a group of automorphisms, such that the representation defined on its n^{th} homotopy group is the n^{th} tensor power of ω [6]. However, the result of §1 suggests the hope of a constructive proof of the Weil-Safarevič theorem [which might shed some light on the interpretation of $W(L_{ab}/\mathbb{Q}_p)$ as a group of automorphisms [9]] and could therefore be of wider interest.

I wish to thank the US Academy of Sciences and the Steklov Institute of Mathematics for their support of this research, and Yu. I. Manin [resp. Ramesh Gangolli and Han Sahl] for interesting conversations during its early [resp. late] stages. It is a pleasure also to thank the organisers of the Journées de géométrie algébrique for some exciting days in Rennes.

§1, proof of the main result

1.1. A continuous homomorphism $\phi : A[[T]] \to A[[T]]$ of commutative
formal power series rings will be called an extended endomorphism, if

1) $\phi(T)$ lies in the ideal generated by T, and

2) the image of the composition $A \xrightarrow{\phi} A[[T]] \to A[[T]]$ lies in A.

Consequently $\phi \left(\sum a_i T^i \right) = \sum \phi(a_i) \phi(T)^i$.

Note that the composition of two extended endomorphisms is another, and that the tensor product $\phi \otimes_A \psi$ maps $A[[T \otimes_A T]]$ to itself by $(\phi \otimes_A \psi) \left(\sum a_{ij} T_i \otimes T_j \right) = \sum \phi(a_{ij}) \psi(T)^i \otimes_A \psi(T)^j$.

If $F(X,Y) \in A[[X,Y]]$ is a [one-parameter, commutative] formal group law over A, then the extended endomorphism ϕ of $A[[T]]$ will be called an extended endomorphism of F provided that the diagram

$$
\begin{array}{ccc}
A[[T]] & \xrightarrow{\Delta_F} & A[[T \otimes_A T]] \\
\phi \otimes_A \psi & & \phi \otimes \psi
\end{array}
$$

[defined by $\Delta_F(T) = F(T \otimes_A T)$] is commutative.

If $\text{Aut}^*(F)$ denotes the group of extended automorphisms of F [under composition], then it follows from 1) and 2) that there is an exact sequence

$$1 \rightarrow \text{Aut}_A(F) \rightarrow \text{Aut}^*_A(F) \rightarrow \text{Aut}_{(\text{rings})}(A) \rightarrow 1$$

with the terminal group consisting of the continuous ring-automorphisms of A; the usual automorphisms of F over A [4.1.6]2] define the group $\text{Aut}_A(F)$.

1.2. We write \mathcal{O}_L for the valuation ring of L, and $^{\wedge}\mathcal{O}_L$ for the valuation ring of the completion $^\wedge L$ of a maximal unramified extension L_{nr} of L; if I denotes the residue field of $^{\wedge}\mathcal{O}_L$, and \mathcal{I} is the union of the finite fields, then $^{\wedge}\mathcal{O}_L \cong \mathcal{O}_L \otimes_{W(I)} W(\mathcal{I})$.

171
If \(\pi \in \mathbb{Q}_L \) is a uniformising element, and \(q \) is the cardinality of \(\mathcal{L} \), then the series
\[
\log_{\pi}(T) = \sum_{i \geq 0} \pi^{-1} q^i
\]
defines a formal group law \(F_{\pi}(X,Y) = \log_{\pi}^{-1}(\log_{\pi}(X) + \log_{\pi}(Y)) \) for which the map \(\frac{X}{\pi} \circ \pi \mapsto [a]_{\pi}(T) = \log_{\pi}^{-1}(a \cdot \log_{\pi}(T)) \in \text{Aut}_{\pi}(F_{\pi}) \) is a bijection \([1]\). By "the" Lubin-Tate group of \(L \), we mean the class of formal group laws over \(\mathbb{Q}_L \) isomorphic to \(F_{\pi} \) for some (and hence any) choice of \(\pi \). If \(\pi_0, \pi_1 \) are two choices of uniformising element, then \([5\text{, lemma } 2]\) there exists an invertible series \(\phi_0(T) \in \mathbb{Q}_L[[T]] \) such that
i) \(\phi_0 \) is an isomorphism of \(F_{\pi_0} \) with \(F_{\pi_1} \), and
ii) if \(\sigma \) is the automorphism of \(\mathbb{L} \) defined by the Frobenius operation \(x \mapsto x^q \) on the residue field, then
\[
\sigma(\phi_0(T)) = \phi_0([\pi_0^{-1} \pi_1^q](T)).
\]

We denote the formal group law over \(\mathcal{L} \) defined by reducing \(F_{\pi} \) modulo the maximal ideal \(\mathfrak{m}_L \) of \(\mathbb{Q}_L \) by \(F_{\pi} \): its height equals the degree of \(L \) over \(Q_p \) \([1\text{, lemma } 9]\).

1.3. Now the ring of endomorphisms of a group law of height \(d \) over an algebraically closed field of characteristic \(p \) is the valuation ring \(\mathbb{Q}_D \) of a division algebra \(D \) with center \(Q_p \) and invariant \(d^{-1} \in Q/Z = Br(Q_p) \) \([4\text{, I } \S 7.42]\), and the normalised ordinal valuation of an element of \(\mathbb{Q}_D \) is its height as a power series. It follows that the sequence of 1.1 can be continued to the right as
\[
1 \longrightarrow \mathbb{Q}_D^X \longrightarrow \text{Aut}_{\pi}(F_{\pi}) \longrightarrow \mathbb{Z}(\mathbb{I}/F_{\pi}) = \mathbb{L} \longrightarrow 1
\]
to construct a lifting of the Frobenius endomorphism \(\alpha_0(x) = x^p \) of \(\mathbb{I} \),
let $\phi \in \mathcal{O}_E$ be an endomorphism of height 1 [so $\phi(T) = \phi(T^p)$] with ϕ an invertible series; then $\phi = \phi_R^\infty \phi_0$ has the desired property.

This shows moreover that $\text{Aut}_I^*(\mathbb{F}_p)$ is isomorphic to the profinite completion of the multiplicative group I^\times of \mathbb{F}_p under the correspondence which sends the endomorphism ϕ (which can be written as $\phi(T) = \phi_0(T^p)$ with ϕ_0 invertible and $p \neq 0$) to the extended automorphism $\phi_0^\infty \phi_0$. It suffices to see that the conjugation of a series $\alpha \in \mathcal{O}_p^\times$ by ϕ in $\text{Aut}_I^*(\mathbb{F}_p)$ agrees with its conjugation by α in I, or that $P\phi_0^{-1} \alpha \phi_0^{-1} = \alpha \phi$, where $P(T) = T^p$; this is an elementary exercise in the composition of power series.

1.4. It follows similarly that if L is a normal extension of \mathbb{Q}_p, then $\text{Aut}_{\mathcal{O}_L}^*(\mathbb{F}_|_L)$ is a central topological extension of the Galois group $G(\mathbb{L}_{nr}/\mathbb{Q}_p)$ by the multiplicative group \mathcal{O}_L^\times. To see that the final homomorphism of the sequence in 1.1 is onto, note that if $v_0 = v$ is a uniformising element and $\sigma \in G(\mathbb{L}_{nr}/\mathbb{Q}_p)$ then $\sigma = v(\pi)$ is another and $\sum_{1 \leq i \leq s} a_i T^i \mapsto \sum_{1 \leq i \leq s} v(a_i)(\phi_0^1(T))i$ defines a (noncanonical) lift of g to an extended automorphism. Since any automorphism of a formal group law over an integral domain of characteristic 0 is determined by its leading coefficient, the group $G(\mathbb{L}_{nr}/\mathbb{Q}_p)$ acts on the subgroup \mathcal{O}_L^\times via the canonical homomorphism to $G(\mathbb{L}/\mathbb{Q}_p)$.

1.5. Now an extended automorphism of $\mathbb{L}_\mathcal{O}[[T]]$ maps the ideal $\mathbb{L}_\mathcal{O}[[T]]$ to itself, so an extended automorphism ϕ of \mathbb{F}_p defines an extended automorphism of \mathbb{F}_p, which we will denote by

$$\rho : \text{Aut}_{\mathcal{O}_L}^*(\mathbb{F}_|_L) \to \text{Aut}_{\mathbb{F}_p}^*(\mathbb{F}_p).$$

Since the reduction of a usual automorphism of \mathbb{F}_p is a usual automorphism of \mathbb{F}_p, we have a commutative diagram.
Now the final vertical arrow fits in an exact sequence

\[1 \rightarrow I(L/Q_p) \rightarrow G(L_{nr}/Q_p) \rightarrow G(\mathcal{I}/F_p) \rightarrow 1 \]

which defines the inertia group of \(L \) over \(Q_p \), and the homomorphism \(\rho_0 \) is injective since \(F^\pi \) is of finite height. It follows that \(\rho_0 \) is injective, for \(I(L/Q_p) \) acts effectively on \(G_{L}^X \).

It will simplify matters to pull our commutative diagram back along the dense embedding \(\mathbb{Z} \rightarrow \hat{\mathbb{Z}} \) : the effect is to replace \((D^X)^G \) with \(D^X \), \(G(L_{nr}/Q_p) \) with the open dense subgroup \(W(L_{nr}/Q_p) \), and \(\text{Aut}^*(F^\pi) \) with an open dense subgroup which we will denote \(\text{Aut}^0 \); the original diagram can be recovered by profinite completion.

1.6. It remains to identify the image of \(\rho \). We observe first that because \(F^\pi \) has coefficients in \(I \), the extended automorphism \(\rho([\pi]) = \sigma^d = \sigma^d \) commutes with elements of \(\rho_0(\mathcal{G}_{L}^X) \) in \(D^X \). It follows that \(\rho_0(\mathcal{G}_{L}^X) \) and \(\sigma^d \) generate a (normal) subgroup of \(\text{Aut}^0 \) isomorphic to \(L^X \), and that the image of \(\rho \) is therefore contained in the normaliser \(N(L) \) of \(L^X \) in \(D^X \). But now the Weyl group of \(L^X \) in \(D^X \) is \(G(L/Q_p) \) if \(L \) is normal [8, appendix III §7] so we have a commutative diagram

\[
\begin{array}{cccccc}
1 & \rightarrow & \mathcal{L}_L^X & \rightarrow & \text{Aut}^*(F^\pi) & \rightarrow & G(L_{nr}/Q_p) & \rightarrow & 1 \\
& & \downarrow \rho_0 & & \downarrow \rho & & \downarrow & & \\
1 & \rightarrow & \mathcal{L}_D^X & \rightarrow & (D^X)^G & \rightarrow & G(\mathcal{I}/F_p) \cong \hat{\mathbb{Z}} & \rightarrow & 1
\end{array}
\]
with exact rows and columns. If \(x \in N(L) \) then there is some \(y \) in \(\Aut^0 \) such that \(z = y^{-1}x \) lies in \(L^X \), so \(x = yz \) lies in \(\Aut^0 \).

This completes the proof of

1.7. **proposition:** The morphism \(\rho \) maps an open dense subgroup of \(\Aut^X_\Delta(F_n) \) onto the normaliser \(N(L) \) of \(L^X \) in \(D^X \).

§2. some corollaries

2.1. If \(\delta \in N(L) \), then we write \(\overline{\rho}^{-1}(\delta)(T) = \overline{w}(\delta)T + \) higher order terms for the action of the extended automorphism \(\overline{\rho}^{-1}(\delta) \) on the formal parameter \(T \); here \(\overline{w}(\delta) \) is a unit of \(\overline{\Delta^X} \). The composition \(N(L) \xrightarrow{\overline{\rho}^{-1}(\delta)} W(L_{ab}/Q_p) \xrightarrow{w} W(L_{nr}/Q_p) \) defines an action of \(N(L) \) on \(\Delta^X \) which we will denote by juxtaposition. With this notation, we have

\[
\overline{w}(\delta\delta_1) = \overline{\delta_1}(\overline{w}(\delta)) \cdot \overline{w}(\delta_1);
\]

in other words, \(\overline{w} \) is a crossed antihomomorphism from \(N(L) \) to \(\overline{\Delta^X} \).

Note that if \(\delta \in \overline{\Delta^X} \), then \(\overline{w}(\delta) = \delta^{-1} \) [7, III§A4].

An extended automorphism of \(F_n \) defines an extended automorphism of \(F_n \otimes_{\Delta^X} H \), and it follows that

\[
\overline{\rho}^{-1}(\delta)(T) = \log_{\delta^{-1}_{\Delta^X}}(\overline{w}(\delta) \cdot \log_{\Delta^X}(T));
\]

consequently the crossed antihomomorphism \(\overline{w} \) specifies the action of \(N(L) \) on \(\overline{\Delta^X}[[T]] \).

2.2. The 1-cocycle \(\delta \mapsto \overline{w}(\delta^{-1}) \) of \(N(L) \) with values in the right \(N(L) \) module \((\overline{\Delta^X})^{op} \) [defined by \(x^{op} \delta = (\overline{\delta^{-1}})^{op}x \)] defines a class in a continuous cochain cohomology group isomorphic to \(H^1_c(W(L_{ab}/Q_p);(\overline{\Delta^X})^{op}) \).

The Hochschild-Serre spectral sequence of the topological extension

\[
E : 1 \xrightarrow{} W(L_{ab}/L_{nr}) \xrightarrow{} W(L_{ab}/Q_p) \xrightarrow{} W(L_{nr}/Q_p) \xrightarrow{} 1
\]
yields an exact sequence.
\[
\cdots - H^1_c(W(L_{ab}/\mathbb{Q}_p); \hat{\omega}_L^X) - H^0_c(W(L_{nr}/\mathbb{Q}_p); \hat{\omega}_L^X) - H^1_c(\hat{\omega}_L^X; \hat{\omega}_L^X) \cong G(L/\mathbb{Q}_p)
\]

invariants of \(\text{Hom}_c(\hat{\omega}_L^X, \hat{\omega}_L^X) \rightarrow H^0_c(W(L_{nr}/\mathbb{Q}_p); \hat{\omega}_L^X) \cong H^0(G(L/\mathbb{Q}_p); \hat{\omega}_L^X) \)
of terms of low degree. The existence of the cocycle \(\omega \) implies
\[
d_2 = 0; \text{ since } d_2(x) = -x \cup [x] \text{ theorem } 4 \text{ it follows that; the in}
\]
clusion \(\hat{\omega}_L^X - \hat{\omega}_L^X \) induces the zero map from \(H^0_c(W(L_{nr}/\mathbb{Q}_p); \hat{\omega}_L^X) \) to \(H^2_c(W(L_{nr}/\mathbb{Q}_p); \hat{\omega}_L^X) \). A direct proof of this might suggest a construc-tion for \(\omega \).

2.3. The isomorphism \(G(L_{ab}/\mathbb{Q}_p) \) with \(\text{Aut}^* (F_{\pi}) \) defined in §1.7

\(\hat{\omega}_L^X \)
respects an implicit proalgebraic group structure, which may be made explicit by observing that \(G(L_{ab}/\mathbb{Q}_p) \) is isomorphic to the semidirect product \(\text{I}(L_{ab}/\mathbb{Q}_p) \cdot G(\overline{\mathcal{I}}/F_p) \), in which \(\text{I}(L_{ab}/\mathbb{Q}_p) \) is the inertia group of \(L_{ab} \) over \(\mathbb{Q}_p \). In particular, \(\text{I}(L_{ab}/\mathbb{Q}_p) \) admits a continuous action of \(G(\overline{\mathcal{I}}/F_p) \), and may therefore be regarded as a proetale groupscheme over \(F_p \) [2,II§5]. On the other hand \(\hat{\omega}_L^X \) is represented by a group of power series with coefficients in \(\overline{\mathcal{I}} \), and has an obvious structure as proetale groupscheme defined \(\text{a priori} \) over \(\mathcal{I} \), in which the generator of \(G(\overline{\mathcal{I}}/\mathcal{I}) \) acts on \(\hat{\omega}_L^X \) by \(\pi \)-conjugation in \(D^X \). The maximal compact subgroup \(N^0(L) \) of \(N(L) \) inherits this structure.

However, if the uniformising element \(\pi \) of \(\hat{\omega}_L^X \) is chosen to satisfy an Eisenstein equation with coefficients in \(F_{\pi} \), then \(F_{\pi} \) has coefficients in \(F_p \), and \(\hat{\omega}(X) = X^0 \) defines an endomorphism of \(F_{\pi} \) which maps to an \(f \)-th root of \(\pi \) in \(\text{Aut}^*(F_{\pi}) \), where \(q = p^f \). It follows that \(N^0(L) \) is in fact a proetale groupscheme defined over \(F_p \), and is isomorphic as such to \(\text{I}(L_{ab}/\mathbb{Q}_p) \). Consequently the group of \(F_p \)-valued points of \(\text{I}(L_{ab}/\mathbb{Q}_p) \) can be identified with the auto-morphisms of \(F_{\pi} \) defined over \(\hat{\mathcal{I}}_p \), which leads to the
corollary: $I(L_{ab}/Q_p)(F_p) \cong \mathbf{A}_p$

references:
2. M. Demazure, P. Gabriel, Groupes Algébriques I, North Holland

J. Morava
Department of Mathematics
SUNY at Stony Brook
Stony Brook, New York 11794