WILLIAM A. VEECH

Ergodic theory and uniform distribution

Astérisque, tome 61 (1979), p. 223-234

<http://www.numdam.org/item?id=AST_1979__61__223_0>
Ergodic Theory and Uniform Distribution
by
William A. Veech*

1. Introduction. We shall discuss the applications of ergodic theory to two problems in the theory of uniform distribution. The first problem concerns uniform distribution in a general compact group, the second uniform distribution modulo 1.

If K is a compact (Hausdorff, topological) group, a sequence $S = \{s_n\}$ in K is a K-sequence if S generates a dense subgroup of K. S is a K_σ-sequence if it has the additional properties that (i) for every $n > 0$ $(s_1, \ldots, s_n) = (s_{k+1}, \ldots, s_{k+n})$ for infinitely many k, and (ii) $S^{-1}S = \{s_{-1}^1, s_{-1}^2\}$ generates a dense subgroup of K. Any K-sequence may be used to construct a K_σ-sequence.

We recall that a sequence $R = \{r_n\}$ is called a uniformly (resp. well) distributed sequence generator, u.d.s.g. (resp. w.d.s.g.), if for every compact group K and every K-sequence $S \subset K$, the sequence $T(R, S) = \{t_n\}$, where

\begin{equation}
(1.1) \quad t_n = \prod_{j=1}^{n} s_j r_j
\end{equation}

is uniformly (resp. well) distributed in K ([13], [15], [17]).

Examples of u.d.s.g.'s are given in [13], [15]. One such is $r_1 = 9$, $r_2 = 2$, and in general r_n is the length of the gap between the n^{th} and $(n+1)^{st}$ '1' in the sequence 123456789101112... .

At the present time one knows no example of a w.d.s.g. . However, Losert and Rindler [8] have proved there exist sequences $R \subset \mathbb{Z}$ which satisfy a similar condition which we shall not describe.

*Research supported by NSF - MCS 78-01858
Any Losert-Rindler sequence serves as a "program" (like (1.1)) for writing down a well distributed sequence in terms of a given K-sequence. This is the purpose for which the notion of a w.d.s.g. was introduced, and the Losert-Rindler result suffers only an aesthetic defect of being nonexplicit.

In preparation of the statement of the first theorem, let
\[\lambda = \{\lambda_1, \lambda_2, \ldots\} \]
be a sequence of integers such that \(\lambda_n \geq 2 \). Also, set \(\lambda_0 = 1 \). For every \(k \in \mathbb{Z} \) such that \(k \neq -1 \) there is a unique integer \(\tau = \tau(k) \geq 0 \) such that
\[
(1.2) \quad k+1 = \lambda_0 \lambda_1 \cdots \lambda_\tau (a_\tau + b)
\]
with \(a \in \mathbb{Z} \) and \(0 < b < \lambda_{\tau+1} \).

Notice in the theorem to follow that the \(K_\sigma \)-sequence begins at 0 (the definition is analogous).

1.3 Theorem. With notations as above, assume the sequence \(\lambda \) is bounded, and define \(R = \{\tau(1), \tau(2), \ldots\} \). If \(K \) is a compact group, and if \(S = \{s_0, s_1, \ldots\} \) is a \(K_\sigma \)-sequence in \(K \), then \(T(R, S) \) (see (1.1)) is well distributed in \(K \).

Next, let \(X = \mathbb{R}/\mathbb{Z} \), and let \(\alpha \in X \) be an irrational. Given an "interval" \(I \subset X \) whose length is denoted \(|I| \), define \(S_n(x) = S_n(x, \theta, I) \), \(x \in X \), \(n > 0 \), to be the number of \(j \) such that \(0 \leq j < n \) and \(x+j\alpha \in I \).

A theorem of Kesten [7] asserts that there exists \(x \in X \) such that \(S_n(x) - n|I| \) is bounded (in \(n \)) only if \(|I| \in \mathbb{Z}\alpha \) modulo 1. (The converse is easy and classical.) A simple proof of Kesten's theorem is given by Furstenberg-Keynes-Shapiro [6] (see also [17]). The following is a sharpening of Kesten's theorem:
1.4 Theorem. *With notations as above, suppose there exist* $x \in X$ and $M < \infty$ *such that*

$$E_M(x) = \{n \mid |S_n(x) - n| \leq M\}$$

has positive upper density. Then modulo 1, $|I| \in \mathbb{Z}^\mathbb{R}$.

2. Monothetic groups. In this section X denotes an infinite compact monothetic group and $\theta \in X$ an element which generates a dense subgroup. X will be written additively. Let μ be normalized Haar measure on X.

Fix a finite set $E \subseteq X$ such that E contains a coset of no subgroup of X other than $\{0\}$. Let K be a compact group, and let there be given a continuous map $\varphi : E^c \to K$ such that φ does not extend to be continuous on X.

Define $X' = E + \mathbb{Z}\theta$, and define a map $X' \to K^\mathbb{Z}$ by $m_x(n) = \varphi(x + n\theta)$, $x \in X'$, $n \in \mathbb{Z}$. The closure, M, of the image of X' is invariant under the left shift, $\sigma(m(n) = m(n+1))$. In addition one has from [16], Section 2, that (a) (σ, M) is minimal (every σ-orbit in M is dense in M), (b) (σ, M) is uniquely ergodic (there is a unique normalized σ-invariant Borel measure on M), and (c) the map $\pi_m = x$, $x \in X'$, is well defined and extends to a continuous map $M \to X$ such that $\pi_m = \pi_m + \theta$, $m \in M$; moreover, π is one-to-one on $\pi^{-1}X'$. Because of (b) and (c), we shall write μ also for the normalized invariant measure on M.

Next, let $N = M \times K$, and define $T : N \to N$ by

$$(2.1) \quad T(m,k) = (\sigma m, m(0)k)$$

Let ν be normalized Haar measure on K, and set $\omega = \mu \times \nu$. Clearly, ω is T-invariant.
If \((T,N)\) is uniquely ergodic, a theorem of Oxtoby [9] implies that for each \(z \in N\) the sequence \(\{T^nz, n \geq 1\}\) is \(\omega\)-well distributed in \(N\). In particular, the sequence of "second coordinates" is well distributed in \(K\). When \(z = (m_x,e), x \in X',\) the second coordinate of \(T^nz, n > 0,\) is

\[
\varphi^{(n)}(x) = \varphi(x+(n-1)e)\varphi(x+(n-2)e)\ldots\varphi(x).
\]

It is Furstenberg's observation that \((T,N)\) is uniquely ergodic if \(\omega\) is ergodic for \(T\) (if \(A \subset N\) is measurable, and if \(T^{-1}A = A\), then \(\omega(A) = 0\) or \(\omega(A^c) = 0\)([5])). The necessary and sufficient condition that \(\omega\) fail to be ergodic is that there exist a nontrivial continuous irreducible unitary representation \(\rho:K \to U(d)\) and a nonconstant measurable function \(F:X \to \mathbb{C}^d\) such that

\[
F(x+\theta) = \rho(\varphi(x))F(x) \quad (a.e. \mu).
\]

(See [5], [14].)

3. Proof of Theorem 1.3. Let \(\lambda\) be as in the introduction, and define \(\lambda_0 = 0\) and \(\lambda_n = \lambda_1\lambda_2\ldots\lambda_n, n > 0.\) We set \(X = \lim_{n \to \infty} \mathbb{Z}/\lambda_n\mathbb{Z}\) and view \(X\) as the set of sequences, \(x = (x_1,x_2,...),\) such that \(0 \leq x_n = x_n(x) < \lambda_n\) and \(x_{n+1} - x_n \in \lambda_n\mathbb{Z}\) for all \(n > 0.\) Letting \(\theta = (1,1,...),\) the subgroup \(\mathbb{Z}\theta\) is dense in \(X.\) \(\mu\) denotes normalized Haar measure on \(X.\)

Let \(E = \{-\theta\}.\) If \(x \not\in E,\) define \(\tau(x) = t-1,\) where \(t\) is the least integer such that \(x_\downarrow \not\in \lambda_{t-1}.\) \(\tau(\cdot)\) is continuous on \(E^c,\) and

\[
\lim_{x \to \theta} \tau(x) = \infty.\]

In terms of the function \(\tau(k), k \not\in t-1,\) defined in (1.2), one has (a) \(\tau(k\theta) = \tau(k), k \not\in -1,\) and (b) \(\tau(x) = \tau(x_n(x))\) for any \(n\) such that \(x_n(x) \not\in \lambda_n-1.\)
Define partitions $\mathcal{P}_n = \{P_{nk} \mid 0 \leq k < n\}$ by setting $P_{nk} = \{x \mid x \in (x) = k\}$. The function $T_n(x) = \wedge_n -1 - x_n(x)$ assumes the constant value $\wedge_n -1 - k$ on P_{nk} for each k. Remark (b) of the preceding paragraph implies $\tau(x+q)$ is constant on P_{nk} if $q \neq \wedge_n -1 - k$. As for the exceptional value of j, define $P_{nk}^t = \{x \in P_{nk} \mid \tau(x+(\wedge_n -1 - k)\theta) = n+\ell\}$, $\ell \geq 0$. An easy counting argument shows $\mu(P_{nk}^t) = (\wedge_n + \ell - 1) \wedge_n - 1 \mu(P_{nk})$ holds for $\ell \geq 0$. If in particular λ is bounded (by Q), the last inequality implies

$$\mu(P_{nk}^t) \geq Q^{-(\ell+1)} \mu(P_{nk}) .$$

If $x \in X$, write $P_n = P_n(x)$ for the element of \mathcal{P} which contains x. Given an $L^1(\mu)$ function $F:X \to \mathbb{C}^d$, the martingale theorem, together with a standard argument, shows

$$\lim_{n \to \infty} \frac{1}{\mu(P_n)} \int \{F(y) - F(x)\} |\mu(dy) = 0 .$$

Next, suppose $K \neq \{e\}$ is a compact group, and let $S = \{\psi(0), \psi(1), \ldots\}$ be a $K \sigma$-sequence in K. Using τ and S, we define $\psi(x) = \psi(\tau(x))$, $x \in E^C$. The facts $K \neq \{e\}$ and S is a $K \sigma$-sequence easily imply ψ has no limit at $-\theta$. We shall be interested in $\psi(\wedge_n)$ which we denote by ψ_n. Our earlier discussion implies there exist $A_{nk}, B_{nk} \in K$, $0 \leq k \leq \wedge_n$, such that

$$\psi_n(x) = A_{nk} \psi(n+\ell) B_{nk} \quad (x \in P_{nk}^t) .$$

Indeed, of the \wedge_n factors determining ψ_n, all but one are constant on P_{nk}, and that factor is constantly $\psi(n+\ell) = \psi(\tau(x+T_n(x)\theta))$ on P_{nk}^t.

Suppose now that ρ is a nontrivial continuous irreducible unitary representation of K on \mathbb{C}^d, and suppose also that (2.3) has a nontrivial measurable solution. We replace K by $\rho(K) \neq \{e\}$, and reletter, so that (2.3) becomes
(2.3') \quad F(x+\theta) = \phi(x)F(x) .

Now \(\phi(x) \in U(d) \), and (2.3') implies \(|F(\cdot)|\) is invariant under translation by \(\theta \), hence constant a.e. As \(F \) is assumed to be nontrivial, we may and shall assume that \(|F(x)| = 1 \) a.e. This will lead us to a contradiction, assuming \(\lambda \) is bounded (by \(Q \)).

Iterating (2.3'), one finds \(F(x+m\theta) = \phi^m(x)F(x) \), and this, plus the continuity of translation in \(L^1(u) \), implies

\[
(3.4) \quad \lim_{m \to 0} \|\phi^m(F) - F\|_1 = 0 .
\]

3.5 Lemma. With notations as above, there exists for every pair \(\epsilon, q > 0 \) a vector \(v = v(\epsilon, q) \), \(|v| = 1 \), such that \(|\psi(i)v - \psi(j)v| < 2\epsilon\), \(0 \leq i, j \leq q \).

Proof: \(S \) is a \(K_\sigma \)-sequence, and therefore there exists an infinite set \(\tau \) such that \(\psi(n+j) = \psi(j) \), \(0 \leq j \leq q \), \(n \in \tau \). Apply (3.4) \((m = \Lambda_n, n \in \tau) \), and (3.2) to conclude that if \(n \in \tau \) is large there exist \(p_{nk} \in \Phi_n \), such that \((p_{nk}^\epsilon)^c = \{ y \in \Phi_n \mid |\psi(y)F(x) - F(x)| \geq \epsilon \} \) has measure less than \(Q^{-(q+1)}(\epsilon)\). From (3.1) one concludes \(p_{nk}^\epsilon \cap p_{nk}^\epsilon \neq \emptyset \), \(0 \leq t \leq q \). Finally, (3.3), the definition of \(p_{nk}^\epsilon \), and the facts \(n \in \tau \) and \(A_{nk} \in U(d) \) imply that if \(v = p_{nk}^\epsilon F(x) \), then \(|v| = 1 \) and

\[
|\psi(i)v - \psi(j)v| < 2\epsilon, \quad 0 \leq i, j \leq q .
\]

The lemma is proved.

Notice in the above that also \(|\psi(i)^{-1}\psi(j)v - v| < 2\epsilon\), \(0 \leq i, j \leq q \), \(v = v(\epsilon, q) \). If we let \(\epsilon \to 0 \), \(q \to \infty \) in such a way that \(v(\epsilon, q) \to v_0 \), then \(|v_0| = 1 \), and \(\psi(i)^{-1}\psi(j)v_0 = v_0 \), \(i, j \geq 0 \). As \(S \) is a \(K_\sigma \)-sequence \(kv_0 = v_0 \), \(k \in K \). Irreducibility then implies \(d = 1 \), \(K = \{ e \} \), a contradiction. We conclude that (2.3) cannot have a nontrivial measurable solution. The discussion of Section 2 now implies Theorem 1.3. (The second coordinate of \(T^n(\theta, \epsilon) \) is \(\phi^{(n)}(\theta) = \psi(\tau(n))\psi(\tau(n-1))...\psi(\tau(1)) \), where \(\tau(k) \) is defined by (1.2)).
Remark on the case \(d = 1 \). Let \(\lambda \) be as in Section 1, possibly unbounded, and let \(S = \{ \psi(n) \}_{n \geq 0} \) be a sequence of complex numbers of absolute value 1. Define \(K \) to be the closed subgroup of \(U(1) \) generated by the terms of \(S \). Form \(X = X(\lambda) \), and set \(\phi(x) = \psi(\tau(x)), \ x \neq \theta \). We wish to allow for the possibility that \(\omega \) has a limit at \(-\theta \); this means that \(M = M(\lambda, \psi) \), rather than having \(X(\lambda) \) for a "factor," may in fact itself be a "factor" of \(X(\lambda) \) (more precisely, the quotient of \(X(\lambda) \) by the periods of the extended function \(\omega \)). Let \(N = N(\lambda, \psi) = M \times K \) and \(T = T(\lambda, \psi) \) be as in Section 2. Also, set \(\omega = \omega(\lambda, \psi) = \cup \times \nu \), as in Section 2. Using the above, one may prove

3.6 Theorem. With notations as above, suppose \(\sum_{n=0}^{\infty} |\psi(n+1) - \psi(n)| = \infty \). Then \((T, N) \) is uniquely ergodic. Moreover, the point spectrum of \(T \), relative to \(\omega \), is contained in \(\Gamma(\lambda) = \{ \chi(\theta) | x \text{ a continuous character on } X(\lambda) \} \).

If \(\tilde{\lambda} \) is a second sequence, we write \(\tilde{\lambda} \perp \lambda \) if \(\langle \lambda_n, \tilde{\lambda}_n \rangle = 1 \) for all \(n \). When \(\tilde{\lambda} \perp \lambda \), the Chinese Remainder Theorem implies \(Z(\theta, \tilde{\theta}) \) is dense in \(X(\lambda) \times X(\tilde{\lambda}) \), and this in turn implies \(\sigma \times \tilde{\sigma} \) is uniquely ergodic on \(M \times \tilde{M} \) for any given \(\tilde{\psi} \). Suppose now that both \(\psi \) and \(\tilde{\psi} \) satisfy the hypothesis of Theorem 3.6. As \(\Gamma(\lambda) \cap \Gamma(\tilde{\lambda}) = \{ 1 \} \), the point spectra of \(T, \tilde{T} \), relative to \(\omega, \tilde{\omega} \), have trivial intersection (\(\{ 1 \} \)), and so by a well known result in ergodic theory, \(T \times \tilde{T} \) is ergodic relative to \(\omega \times \tilde{\omega} \). But \(\omega \times \tilde{\omega} \) may be viewed as \((\cup x_U) \times (\cup x_{\tilde{\nu}}) \), \(\cup x_{\tilde{\nu}} = \text{Haar measure on } K \times \tilde{K} \), and so Furstenberg's principle (Section 2), plus the unique ergodicity of \(\sigma \times \tilde{\sigma} \), implies \(T \times \tilde{T} \) is uniquely ergodic.

The sequences \(\varphi^{(n)}(0), \tilde{\varphi}^{(n)}(0) \) are "q-multiplicative sequences"
(see [3] for definition and references). An immediate consequence
of the above is that when \(\lambda \perp \lambda \) and \(\nu, \tilde{\nu} \) satisfy the hypothesis of
Theorem 3.6, one has

\[
\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} \phi(n) \tilde{\nu}(n) = 0.
\]

It would be interesting to know whether other known (and unknown)
properties of \(q \)-multiplicative sequences can be obtained from such
considerations.

4. Irregularities of distribution modulo 1. In this section we
suppose \(X = \mathbb{R}/\mathbb{Z} \), and we fix \(\theta \in X \) irrational. If \(I \subset X \) is an in-
terval and \(\alpha, \beta \in \mathbb{R} \), define \(\phi = (\alpha - \beta) x_I - \beta x_I \). We regard \(\phi \) as having
values in \(K = K(\alpha, \beta) \), the closed subgroup of \(X \) generated by \(\alpha \) and \(\beta \)
(modulo 1). We note that \(\phi(n)(x) = S_n(x)\alpha - n\beta \), where \(S_n(x) = S_n(x, \theta, I) \) is defined in Section 1.

Let \(\{p_n/q_n\} \) be the sequence of convergents to \(\alpha \), and define \(\Gamma_0(\alpha) \)
\(\in X \) to be the set of \(t \) which admit a representation \(t = \sum_{n=1}^{\infty} b_n q_n \beta \)
(in \(X \)) such that \(b_n \in \mathbb{Z} \) and \(\lim_n b_n q_n \|q_n \beta\| = 0 \). (Any two such repre-
sentations agree for large \(n \) [16].) If \(\alpha \in \mathbb{R} \), we also define \(\Gamma_0(\theta) = \{t \in \Gamma_0(\theta) | \lim_n b_n \alpha = 0 \text{ in } X \} \). As noted in [16], [17] we have (i)
if \(\alpha \) has bounded partial quotients, then \(\Gamma_0(\theta) = \mathbb{Z} \alpha \), and (i) if
\(t \not\in \mathbb{Z} \theta \), then for almost all \(\alpha \), \(t \not\in \Gamma_0(\theta) \).

The theorem below is proved in [16] for \(\alpha = \frac{1}{2} \). Extension to the
general case is sketched in [18], [17] and the details are carried
out by Stewart in [12].

4.1 Theorem. Let \(\alpha, \beta \in \mathbb{R} \), \(\alpha \not\in \mathbb{Z} \). If for every \(k \) such that
\(k\alpha \not\in 0 \text{ (in } X) \) \(|I| \not\in \Gamma_x(\theta) \) modulo 1, then \((T, N) \) (Section 2) is uni-
que ergodic.
4.2 Corollary. ([17],[12]) If \(|l| \not\equiv 0 \mod 1\), then for almost all \(a \in \mathbb{R}\) the sequence \(\{S_n(x)a-n\beta\}\) is well distributed modulo 1 for any choice of \(x \in X\) and \(\beta \in \mathbb{R}\).

The corollary may be used to prove Theorem 1.4. To this end, suppose \(|l| \not\equiv 0 \mod 1\) but for some \(x \in X\) and \(M < \infty\) the set \(E^*_M(x)\) (Section 1) has upper density \(2\epsilon > 0\). Corollary 4.2 implies there exists \(\alpha, 0 < \alpha < \frac{\epsilon}{2M}\) such that \(\{S_n(x)a-n\beta\}\) is well distributed modulo 1 for all \(\beta\). Set \(\beta = |l|\alpha\), and note for this choice that \(\|S_n(x)a-n|l|\alpha\| < \frac{\epsilon}{2}\) if \(n \in E_N(x)\). Well distribution implies the set of \(n\) such that \(\|S_n(x)a-n|l|\alpha\| < \frac{\epsilon}{2}\) has upper density \(\frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon < 2\epsilon\), and we have a contradiction. That is, \(E_M(x)\) has upper density 0, and the theorem is proved.

When \(\omega = (\alpha-\beta)\chi_I-\chi_{I^c}\) is regarded as taking values in \(\mathbb{R}\), it is natural to prevent "drift" by requiring \(\omega\) to have integral 0. But for a change of scale, this is tantamount to requiring \(\omega = (1-|l|)\chi_I-|l|\chi_{I^c}\). In what follows, \(G = G(I)\) is the closed subgroup of \(\mathbb{R}\) generated by \(|l|\) and \(1-|l|\). We assume \(0 < |l| < 1\).

Define \(T:X \times G \rightarrow X \times G\) by \(T(x,y) = (x+\theta, y+\varphi(x))\). \(T\) preserves Haar measure on \(X \times G\), which of course is infinite. Using a topological analogue of K. Schmidt's notion of an "essential value" of a cocycle ([11]), it is not difficult to prove

4.3 Proposition. Assume \(|l|\) is rational or else 1, \(\theta\), and \(|l|\) are rationally independent. Then \(T\) has a residual set of points with dense orbits. In particular, for a residual set of \(x \in X\) the sequence \(S_n(x)-n|l|\) is dense in \(G(I)\).

One conjectures the conclusion of the proposition holds with
residual set of x replaced by 'measure 1 set of x.' (It does not hold for 'all x'. See Dupain [4].) One way to prove this is to prove T is ergodic (relative to Haar measure). This is so for |I| = \frac{1}{2} (K. Schmidt [10]; Conze-Keane [2]) and also for almost all values of |I| (Conze [1]). In [17] the question was raised whether |I| \not\in \Gamma_0(\Theta) implies ergodicity. This is proved by M. Stewart [12] when \Theta has bounded partial quotients, and Stewart now claims a proof for general \Theta (oral communication). It is open whether any condition on |I| is necessary for ergodicity (save |I| \in \Phi or 1, \alpha, |I| rationally independent).

Stewart's work relies heavily on the work of Schmidt and Conze. The most important ingredients are Schmidt's notion of essential value, the Denjoy-Koksma lemma (used by Conze), and the following

4.4 Theorem (M. Stewart [12]). Assume \Theta has bounded partial quotients. If t \not\in \mathbb{Z}^\alpha modulo 1, then

$$\limsup_{n \to \infty} (\|q_n t\| - \frac{1}{2} q_n \|q_n \Theta\|) > 0.$$

It would be of interest to have a formulation and proof of a nonabelian analogue of Theorem 4.1. At the present time one knows only that if \Theta has bounded partial quotients, if |I| \not\in \mathbb{Z}^\Theta modulo 1, and if K is a finite group with generators a, \Theta, the homeomorphism (T,N) corresponding to \varphi(x) = a, \Theta as x \in I, I^c is uniquely ergodic [14].

References

William A. VEECH
Department of Mathematics
Rice University HOUSTON
U.S.A.