On topological and measure entropies of semigroups

by

Krystyna Małgorzata Ziemian

The present paper contains a generalization of the theory of topological and measure entropies to the case of an action of an arbitrary subsemigroup of \mathbb{Z}^n. Some ideas were suggested to the author by M. Misiurewicz.

1. Definitions of the topological and measure entropies.

A subset $\bar{\Lambda} \subset \mathbb{R}^n$ will be called a cone in \mathbb{R}^n if $\forall x \in \Lambda \quad \forall t > 0 \quad t \cdot x \in \Lambda$ and $\bar{\Lambda} \cap B(0,1)$ is of positive Jordan measure, where $B(0,1)$ is the unit-ball in \mathbb{R}^n.

The set Λ of the form $\Lambda = \bar{\Lambda} \cap \mathbb{Z}^n$, where $\bar{\Lambda}$ is a cone in \mathbb{R}^n, will be called a cone in \mathbb{Z}^n.

If G is a semigroup in \mathbb{Z}^n then G generates a subgroup of \mathbb{Z}^n isomorphic to $\mathbb{Z}^{n'}$ for some $N' \in \mathbb{N}$ as usually denotes the set of positive integers / \mathbb{N}.

Thus without loss of generality, we can restrict ourselves to the study of these semigroups in \mathbb{Z}^n which generate \mathbb{Z}^n. It is easy to prove the following.

Proposition 1. A semigroup $G \subset \mathbb{Z}^n$ generates \mathbb{Z}^n iff G contains a cone in \mathbb{Z}^n.

Commencing from now G is a fixed semigroup in \mathbb{Z}^n containing a cone $\bar{\Lambda}$ in \mathbb{Z}^n.

457
We introduce the following notations:

For \(r_1 = (r_1^1, \ldots, r_1^N), \ r_2 = (r_2^1, \ldots, r_2^N) \in \mathbb{R}^N \)
the relation \(r_1 < r_2 / r_1 < r_2 / \) means that \(r_1^i < r_2^i / \) for \(i = 1, \ldots, N. \)

\(\mathbb{R}_+^N = \{ \mathbb{R}^N : x \geq 0 \}. \)

For \(s \in \mathbb{R}_+^N \) we define \(J_s \) as \(\{ x \in \mathbb{R}_+^N : x < s \}. \)

\(z_+^N = \{ z \in \mathbb{Z}_+^N : z \geq 0 \}. \)

For \(w \in \mathbb{Z}_+^N \) we define \(I_w \) as \(\{ x \in \mathbb{Z}_+^N : x < w \}. \)

For \(\mathbb{N} \) we set \(\mathbb{N} = (\mathbb{Z}^+ \cup \{ 0 \}). \)

\(X \) is a non-empty, compact Hausdorff (probability) space.

\(T \) is an action of \(G \) in \(X \) (it is not assumed that \(T^0 = \text{id}_X \)).

\(\mathcal{A} \) denotes an open cover (a finite measurable partition) of \(X \).

For every subset \(B \) of \(G \) we set \(H_B = \bigvee_{s \in B} (T_s)^{-1} \mathcal{A} \).

\(H(\mathcal{A}, B) \) stands for the topological (measure) entropy of the cover (partition) \(\mathcal{A}_B \).

For \(n \in \mathbb{N} \) we set \(\Lambda_n \equiv \bigcap B(0, n) \), where \(B(0, n) \) is the ball with center 0 and radius \(n. \)

Theorem 1. \(\lim_{n} \frac{1}{\text{card} \lambda_n} H(\mathcal{A}, \lambda_n) \) exists and does not depend on the choice of \(\lambda = G. \)

Lemma 1. Let \(\delta \) be an arbitrary positive number. If \(\lambda \) is a cone in \(\mathbb{Z}_+^N \) and \(\{n_1\} \) is a sequence of positive
integers such that \(\lim_{n_1} \frac{1}{n_1} \) then there exist

(i) \(n_1 = +\infty \) then there exist

(1) positive integers \(l_1, \ldots, l_k, t_1, \ldots, t_k \)

(ii) \(w \in \mathbb{Z}_+^N \)

(iii) \(z_{i,j} \in I_w; \quad j=1, \ldots, t_i; \quad i=1, \ldots, k \)
such that

\[
I_w = \bigcup_{j=1}^{t_k} (\Lambda^{n_{t,k}} + z_{1,t_1}) \cup \ldots \cup
\]

\[
\ldots \cup \bigcup_{j=1}^{t_k} (\Lambda^{n_{t,k}} + z_{k,t_k}) \cup I_w' \quad \text{where all the sets in the}
\]

above sum are pairwise disjoint and \(\frac{\text{card } I_w'}{\text{card } I_w} < \delta \).

Proof: By assumption, \(\Lambda = \Lambda \cap \mathbb{Z}^N, \Lambda^{n_1} = \Lambda \cap B(0, n_1) = \Lambda \cap B(0, n_1) \cap \mathbb{Z}^N \) for \(1 \leq n_1 \). Let \(\Lambda^{n_1} = \Lambda \cap B(0, n_1) \subset \mathbb{R}^N \).

Fix \(\varepsilon > 0 \). If \(| \cdot | \) denotes the Jordan measure on \(\mathbb{R}^N \) then

\[
(1) \quad \lim_{n_1} \frac{\text{card}(\Lambda^{n_1} \cap \mathbb{Z}^N)}{|\Lambda^{n_1}|} = 1,
\]

by definition of Jordan measure.

Let \(J \subset \mathbb{R} \) be a rectangle with vertices belonging to \(\mathbb{Z}^N \) such that \(\Lambda \subset J \). Denote

\[
(2) \quad \beta = \frac{|\Lambda^{n_1}|}{|J|}
\]

\(I_w \) can be constructed inductively. The idea is the following. We chose \(l_1 \in \mathbb{N} \) such that \(n_1 \cdot J \setminus \Lambda^{n_1} \) can be covered by pairwise disjoint translates of \(n_1 \cdot J \) by vectors with integer coordinates so precisely that if we denote the covered part of \(n_1 \cdot J \) by \((n_1 \cdot J)_C \) then

459
Then, \(n_1 \cdot J \) contains both \(\Lambda^{n_1} \) and the translates of \(\Lambda^{n_1} \). Now, if \((n_1 \cdot J)^{\sim} \) denotes the sum of and these translates then, in virtue of (2) and (3),

\[
\frac{|(n_1 \cdot J)^{\sim}|}{|n_1 \cdot J|} > \beta + (1 - \varepsilon)(1 - \beta) \cdot \beta.
\]

Now, we chose \(l_2 \in \mathbb{N} \) such that \(n_1 \cdot J \setminus \Lambda^{n_1} \) can be covered pairwise disjoint translates of \(n_1 \cdot J \) by vectors with integer coordinates, so precisely that if we denote the covered part of \(n_1 \cdot J \) by \((n_1 \cdot J)_c \) then

\[
\frac{|(n_1 \cdot J)_c|}{|n_1 \cdot J \setminus \Lambda^{n_1}|} > 1 - \varepsilon.
\]

Then, \(n_1 \cdot J \) contains both \(\Lambda^{n_1} \) and the translates of \(\Lambda^{n_1} \) and \(\Lambda^{n_2} \). Now, if \((n_2 \cdot J)^{\sim} \) denotes the sum of \(\Lambda^{n_2} \) and these translates then by (2), (4) and (5) we have

\[
\frac{|(n_2 \cdot J)^{\sim}|}{|n_2 \cdot J \setminus \Lambda^{n_2}|} > \beta + (1 - \varepsilon)(1 - \beta) \cdot \frac{|n_1 \cdot J^{\sim}|}{|n_1 \cdot J|}.
\]

Continuing this procedure, after the \(k \)-th step we have \(J^{n_k} \) which contains both \(\Lambda^{n_k} \) and the translates of \(\Lambda^{n_k} \), \(\Lambda^{n_{k-1}} \), \ldots, \(\Lambda^{n_1} \) by vectors with integer coordinates,
and if \((n_k \cdot J)\Lambda\) denotes the sum of \(\Lambda^{n_k}\) and these translates then
\[
\frac{|(n_k \cdot J)\Lambda|}{|n_k \cdot J|} > \beta + (1 - \epsilon)(1 - \beta) \cdot \frac{|(n_k \cdot J)\Lambda|}{|n_k \cdot J|}
\]

where \((n_k \cdot J)\Lambda\) is the sum of \(\Lambda^{n_k}\) and the translates of \(\Lambda^n, \Lambda^{n_1}, ..., \Lambda^{n_{k-1}}\) covering \(J_n\) after \((k-1)\)-th step.

Denote \(r_0 \overset{df}{=} \beta\), \(r_1 \overset{df}{=} \frac{|(n_1 \cdot J)\Lambda|}{|n_1 \cdot J|}\), ..., \(r_k \overset{df}{=} \frac{|(n_k \cdot J)\Lambda|}{|n_k \cdot J|}\)

By (7) \(1 > r_k > \beta + (1 - \epsilon)(1 - \beta)r_{k-1}\) for \(k \in \mathbb{N}\).

It is easy to prove that the sequence \((r_k)\) satisfying the above condition tends to \(f(\epsilon)\) while \(k\) tends to infinity, where \(\lim_{\epsilon \to 0} f(\epsilon) = 1\). This fact together with (1) ends the proof.

Proof of Theorem 1: Suppose that \(\Lambda_1, \Lambda_2 \subset G\) are cones in \(\mathbb{Z}^N\). Denote \(\eta_1 \overset{df}{=} \lim \inf \frac{1}{\text{card } \Lambda_1^n} H(\mathcal{A}_{\Lambda_1^n})\), \(\eta_2 \overset{df}{=} \lim \sup \frac{1}{\text{card } \Lambda_2^n} H(\mathcal{A}_{\Lambda_2^n})\). Fix \(\epsilon > 0\).

There exist a sequence \((n_1)\) of positive integers such that
\[
\frac{1}{\text{card } \Lambda_1^{n_1}} H(\mathcal{A}_{\Lambda_1^{n_1}}) \leq \eta_1 + \epsilon \quad \text{for } l \in \mathbb{N}.
\]

If \(I_w\) is a rectangle from Lemma 1 constructed for \((n_1)\) and \(\epsilon\), then for sufficiently large \(n \in \mathbb{N}\)
(9) \[\Lambda_2^n = \bigcup_{i=1}^{t} (I_i + \gamma) \cup (\Lambda_2^n)'
\]

where \(\gamma \in G, \ i=1, \ldots, t, \) the sets in the above sum are pairwise disjoint and \(\frac{\text{card}(\Lambda_2^n)}{\text{card} \Lambda_2^n} < \varepsilon \).

By (8), (9) and Lemma 1 we have
\[\frac{1}{\text{card} \Lambda_2^n} H(\Lambda_2^n) \leq \eta_1 + \varepsilon + 2 \varepsilon H(\mathcal{A}), \text{ so } \eta_2 \leq \eta_1. \]

Definition 1. (a) The topological (measure) entropy of a cover (partition) \(\mathcal{A} \) with respect to an action \(T \) of the semigroup \(G \) is the number
\[h(T, \mathcal{A}) \overset{df}{=} \lim_{n \to \infty} \frac{1}{\text{card} \Lambda_2^n} H(\Lambda_2^n). \]

(b) The topological (measure) entropy of an action \(T \) of the semigroup \(G \) is the number \(h(T) \overset{df}{=} \sup_{\mathcal{A}} h(T, \mathcal{A}). \)

Example. Let \(H \not\cong \mathbb{Z}^N \) be a semigroup in \(\mathbb{Z}^N \) containing 0 and a cone in \(\mathbb{Z}^N \). Equip the set \(\{0,1\} \) with the discrete topology and put \(X \overset{df}{=} \{0,1\}^H \) with the product topology. We define an action \(T \) of \(H \) as a shift on \(X : (T^h(x))_g = x_{h+g} \) for \(x \in X, h, g \in H \). It is easy to prove that \(T \) cannot be extended to an action of a semigroup \(H', H \not\subseteq H' \subseteq \mathbb{Z}^N \).

This example shows that the above definition is a substantial generalisation of classical one.

It can be easily proved that the above defined notions of entropy possess all the basic properties of entropy which can be found e.g. in [7] and [3].
2. The relation between the entropy of a semigroup and the entropy of its subsemigroup.

For \(A \subseteq \mathbb{Z}^N \), \(\langle A \rangle \) will denote the additive group generated by \(A \).

Let \(P \) be a subsemigroup of \(G \). We know that for some \(K \in \mathbb{N} \) there exists an isomorphism \(\varphi : \mathbb{Z}^K \rightarrow \langle P \rangle \). \(\varphi \) induces a linear mapping \(\overline{\varphi} : \mathbb{R}^K \rightarrow \mathbb{R}^N \). Let

\[V \overset{df}{=} \varphi(\langle \mathbf{1}, \ldots, \mathbf{1} \rangle) \cap \mathbb{Z}^N. \]

\(G \) contains a cone in \(\mathbb{Z}^N \), thus there exists \(h \in G \) such that \(V + h \subseteq G \).

We set \(\mathcal{A}^V = \mathcal{A} \upharpoonright V + h \) and \(p \overset{df}{=} \text{card } V \).

\(T_p \) denotes an action of \(P \) on \(X \) defined by \(P \ni g \mapsto T_g \).

Theorem 2 / cf [3] 2.1/. If \(K = \mathbb{N} \) then

\[h(T_p, \mathcal{A}^V) = p \cdot h(T, \mathcal{A}). \]

Proof:

1. \(h(T_p, \mathcal{A}^V) \geq p \cdot h(T, \mathcal{A}). \)

By assumption \(\varphi^{-1}(P) \) generates \(\mathbb{Z}^N \), thus there is a cone \(\Lambda_p \) in \(\mathbb{Z}^N \), \(\varphi(\Lambda_p) \subseteq P \).

Fix \(\varepsilon > 0 \). We set \(\eta \overset{df}{=} h(T, \mathcal{A}) \), \(\eta_p \overset{df}{=} h(T_p, \mathcal{A}^V) \).

For some \(n_0 \in \mathbb{N} \) we have

\[
\frac{1}{\text{card } \Lambda_p^n} H(\mathcal{A} \varphi(\Lambda_p^n)) \leq \eta_p + \varepsilon \quad \text{for } n \geq n_0.
\]

Let \(I_w \) be a rectangle in \(\mathbb{Z}^N \) from Lemma 1, constructed for the sequence \((\Lambda_p^n)_{n \geq n_0} \), and \(\varepsilon \). For some \(k \in G \), \(\varphi(I_w) + V + k \subseteq G \), because \(G \) contains a cone in \(\mathbb{Z}^N \). For sufficiently large \(n \) we can find \(s \in \mathbb{N} \), \(\lambda_j \in G, j = 1, \ldots, s \) such that

\[
\Lambda_p^n = \bigcup_{j=1}^s (\varphi(I_w) + V + h + k + \lambda_j) \cup (\Lambda_p^n)^c.
\]
where the sets appearing in this sum are pairwise disjoint and
\[
\frac{\text{card}(\Lambda^n)}{\text{card} \Lambda^n} < \varepsilon.
\]

From (12), (13) and Lemma 1 we get
\[
\frac{1}{\text{card} \Lambda^n} H(\mathcal{A}_n) \leq \frac{1}{\text{card} \Lambda^n} \sum_{j=1}^{s} H(\mathcal{A}_j \phi(I_w) + V + h + k + \chi_j) + \varepsilon \cdot H(\mathcal{A}_r) + \frac{1}{\text{card}(\phi(I_w) + V)} H(\mathcal{A}_r \phi(I_w) + k)
\]
but
\[
\text{card} (\phi(I_w) + V) = p \cdot \text{card} I_w
\]
and in virtue of (12) and Lemma 1, and
\[
\frac{1}{\text{card} \Lambda^n} H(\mathcal{A}_n) \leq \frac{1}{p} \cdot \eta_p + \varepsilon \cdot H(\mathcal{A}_r) + \frac{1}{p} + \frac{1}{p} H(\mathcal{A}_r)
\]
which implies
\[
p \cdot \eta_p \leq \eta_p.
\]

II. \(p, h (T, \mathcal{A}) \geq h (T_p, \mathcal{A}) \).

Fix \(\varepsilon > 0 \). There exists \(n_0 \in \mathbb{N} \) such that
\[
(12) \quad \frac{1}{\text{card} \Lambda^n} H(\mathcal{A}_n) \leq \eta + \varepsilon \quad \text{for} \quad n \geq n_0.
\]

Let \(I_w \) be a rectangle in \(\mathbb{Z}^N \) from Lemma 1, constructed for \((\Lambda^n)_{n=n_0}^\infty \) and \(\varepsilon \). There exists \(t \in \mathbb{N} \), \(z_0, z_1 \in \mathbb{Z}^N \), \(i = 1, \ldots, t \), such that
\[
(13) \quad \phi(I_{z_0}) + V = \bigcup_{i=1}^{t} (I_w + z_i) \cup (\phi(I_{z_0}) + V),
\]
the sets appearing in this sum are pairwise disjoint and
\[
\frac{\text{card}(\phi(I_{z_0}) + V)}{\text{card}(\phi(I_{z_0}) + V)} < \varepsilon.
\]

For \(n \in \mathbb{N} \) sufficiently large we can find \(l \in \mathbb{N} \), \(\chi_i \in \Lambda^n_p \), \(i = 1, \ldots, l \), such that
\[
(14) \quad \Lambda^n_p = \bigcup_{i=1}^{l} (I_{z_0} + \chi_i) \cup (\Lambda^n_p)',
\]

464
all the sets in the above sum are pairwise disjoint and
\[
\frac{1}{\text{card} \Lambda_p^n} < \varepsilon.
\]

By (14), (15) and (16) we have
\[
\frac{1}{\text{card} \varphi(\Lambda_p^n)} H(\Lambda\times \varphi(\Lambda_p^n)) \leq
\]
\[
\leq \varepsilon \cdot H(\mathcal{A}^V) + \frac{1}{\text{card} \Lambda_p^n} \sum_{i=m}^t H(\mathcal{A}^\varphi(\mathcal{I}_{z_0}^+ \cup V) + \varphi(\mathcal{A})) \leq \varepsilon \cdot H(\mathcal{A}^V)
\]
\[
+ \frac{1}{\text{card} \Lambda_p^n} \sum_{i=m}^t \left(\sum_{j=m}^t H(\mathcal{A}^\varphi(\mathcal{I}_{z_0}^+ z_j \cup \varphi(\mathcal{A})) + H(\mathcal{A}^\varphi(\mathcal{I}_{z_0}^+) \cup \mathcal{V}) + \varphi(\mathcal{A})) \right)
\]
\[
\leq p \cdot \eta + \varepsilon (p \cdot H(\mathcal{A}) + p + H(\mathcal{A}^V)) \quad \text{which gives the inequality}
\]
\[
\eta_p \leq p \cdot \eta.
\]

Corollary 1 (cf. [3] 2.3). If $K = N$ then
\[
\eta(T_p) = p \cdot \eta(T).
\]

Theorem 3 (cf. [3] 2.5). If $K < N$ and $h(T) > 0$ then
\[
h(T_p) = + \infty.
\]

Proof: Recall that $\langle \mathcal{P} \rangle \sim \mathbb{Z}^K$, $\varphi: \mathbb{Z}^K \rightarrow \langle \mathcal{P} \rangle$
is an isomorphism, $K \leq N$. We extend φ to an isomorphism of
\mathbb{Z}^N into \mathbb{Z}^N. In the sequel this extension is denoted
also by φ. Let $p^\mathbb{Z}$ denotes the index of subsemigroup
$\varphi(\mathbb{Z}^N)$ in \mathbb{Z}^N and $p^\mathbb{Z} \stackrel{df}{=} \varphi(\mathbb{Z}^N) \cap G$. By Theo-
rem 1, $h(T_p^\mathbb{Z}) = p^\mathbb{Z} \cdot h(T)$. The extension φ can be cho-
sen in such a way that $p^\mathbb{Z}$ is arbitrarily large. Thus it suf-
fices to prove that $h(T_p^\mathbb{Z}) \leq h(T_p)$.

$\varphi^{-1}(\mathcal{P})$ contains a cone Λ_p in \mathbb{Z}^K. $\varphi^{-1}(p^\mathbb{Z})$
contains a cone Λ_+ in \mathbb{Z}^N. Fix $\varepsilon > 0$. There exists
$n_0 \in \mathbb{N}$ such that for $n \geq n_0$
(15) \(\frac{1}{\text{card } \Lambda_p^n} H(\mathcal{Q}(\Lambda_p^n)) \leq h(T_p, \mathcal{Y}) + \varepsilon \).

Let \(\mathcal{W} \) be a rectangle from Lemma 1, constructed for
\((\Lambda_p^n)_{n=1}^{\infty} \) and \(\varepsilon \). For \(n \in \mathbb{N} \) sufficiently large
we can cover \(\Lambda_p^n \) by pairwise disjoint translates of \(\mathcal{W} \)
so precisely, that by a standard estimation we obtain the de-
sired inequality.

Corollary 2. /of [3] 2.6./. If \(K < N \), \(h(T_p) < +\infty \),
then \(h(T) = 0 \).

Note that everything that was proved in part 2 is also
valid for measure entropy (proofs without modifications).

We introduce the following notations:
\(\mathcal{M}(X) \) - the space of all Borel, normalised measures on \(X
\) with weak \(\ast \) - topology.
\(\mathcal{M}(X,T) \) - the subspace of all \(T \)-invariant measures
in \(\mathcal{M}(X) \).

\(W \) - the set of all neighbourhoods of the diagonal in \(X \times X
directed by the inclusion.

Let \(\mathcal{C} \in W \). \(\mathcal{C} \triangleq \cap \{ (T^g \times T^{g})^{-1} \} \) for arbitrary
\(g \in G \).

A finite subset \(e \) of \(X \) is called a/ \((\mathcal{C}, \mathcal{S}) \) - sepa-
rated, if for all \(x, y \in e \), \(x \neq y \) we have \((x,y) \notin \mathcal{S}_C \); b/ \((\mathcal{C}, \mathcal{S}) \) - spanning, if for all \(x \in X \) there exists
\(y \in e \) such that \((x,y) \in \mathcal{S}_C \).
Let $\tau(C,\mathcal{E}) \overset{df.}{=} \min \{ |\text{card} e : e \text{ is } (C,\mathcal{E})\text{-spanning} \}$. We define

$$\overline{\tau}_T(A,\mathcal{E}) \overset{df.}{=} \limsup_n \frac{1}{\text{card } A^n} \log \tau(A^n,\mathcal{E}),$$

$$\underline{\tau}_T(A,\mathcal{E}) \overset{df.}{=} \limsup_n \frac{1}{\text{card } A^n} \log \tau(A^n,\mathcal{E}).$$

By an argument analogous to the one applied in [3] the following definition makes sense,

Definition 3. $h_T(A) = \lim \overline{\tau}_T(A,\mathcal{E}) = \lim \underline{\tau}_T(A,\mathcal{E}) = \sup_{\mathcal{E}} \overline{s}_T(A,\mathcal{E}) = \sup_{\mathcal{E}} \underline{s}_T(A,\mathcal{E}).$

Theorem 4. For all $A \subset G$ we have $h_T(A) = h(T).$

The proof of this theorem is a translation of the proof [3] 4.8 to the language of the form structure \mathcal{W} on X.

The following lemma will be used in the proof of Dinaburg-Goodwyn-Goodman theorem.

Lemma 2. Assume that $\mu \in \mathcal{M}(X,T)$ and \mathcal{J} is a μ-measurable finite partition of X. Let $p_i \in \mathbb{Z}_+^N$ for $i \in \mathbb{N}$ and $\lim p_i = +\infty$. Chose $g_i \in G$ such that $I_p + g_i \subset G$ for $i \in \mathbb{N}$. Then

$$h_\mu(T,\mathcal{J}) = \lim_i \frac{1}{\text{card } I_p} H_\mu(I_p,\mathcal{J} + g_i).$$

Proof: $I \limsup_i \frac{1}{\text{card } I_p} H_\mu(I_p,\mathcal{J} + g_i) \leq h_\mu(T,\mathcal{J}).$

There exists a sequence of positive integers (n_i) such that $\frac{1}{\text{card } A^n} H_\mu(A^n) \leq h_\mu(T,\mathcal{J}) + \epsilon.$
For i sufficiently large we cover $I_{p_i} + g_i$ by pairwise disjoint translates of a rectangle I_w from Lemma 1, constructed for (Λ^n) and ε.

A standard estimation yealds the desired inequality.

$$\limsup_{i} \frac{1}{\text{card } I_{p_i}} H_{\mu}(\bigcup_{i} (I_{p_i} + g_i))$$

If $i \in \mathbb{N}$ then for sufficiently large $n \in \mathbb{N}$ we can find $k \in \mathbb{N}, \lambda_i \in \Lambda^n, l = 1, \ldots, k$, such that

$$(\bigcup_{i=1}^{k} (I_{p_i} + \lambda_i) \cup (\Lambda^n)),$$

where the sets appearing in this sum are pairwise disjoint and

$$\frac{1}{\text{card } \Lambda^n} < \varepsilon.$$

Since $\mu(A_{I_{p_i} + \lambda_i}) = \mu(A_{I_{p_i} + \lambda_i + g_i}) = \mu(A_{I_{p_i} + \lambda_i + g_i})$, the following inequality holds:

$$\frac{1}{\text{card } \Lambda^n} H_{\mu}(\bigcup_{i} A_{I_{p_i} + \lambda_i}) \leq \varepsilon \cdot H_{\mu}(\bigcup_{i} A_{I_{p_i} + \lambda_i}).$$

This inequality implies II.

Theorem 5. /Dinaburg-Goodwyn-Goodman/.

$$h(T) = \sup_{\mu \in M} h_{\mu}(T).$$

Proof: I. $\sup_{\mu \in M} h_{\mu}(T) \leq h(T) /$Goodwyn/.

The proof is analogous to the proof of Theorem 4.1 in [4].

II. $h(T) \leq \sup_{\mu \in M} h_{\mu}(T) /$cf [5] /.

Fix $\varepsilon > 0$ and $\mathcal{C} \in W$. Let for all $n \in \mathbb{N}$ e_n be a set (Λ^n, \mathcal{C}) - separated of maximal cardinality.
For some sequence \((n_k) \) of positive integers there exists
\[
\lim_{k} \frac{1}{\text{card } \Lambda^{n_k}} \log \text{card } e_{n_k} = h_T(\Lambda, \mathcal{E}).
\]

We construct a measure \(\mu \in \mathcal{M}(X, \mathcal{T}) \) in the way indicated in [5]:
\[
\mathcal{S}_n = \frac{1}{\text{card } \Lambda^n} \sum_{g \in \Lambda^n} T^{g_n} \delta_{\mathcal{S}_n}
\]
/definition of \(T^{\mathcal{S}_n} \) is given in [5]. In virtue of the theorem of Alaoglu there exists a cluster point \(\mu \in \mathcal{M}(X) \) of the sequence \((\mu_{n_k}) \). As in [5] one proves that \(\mu \in \mathcal{M}(X, \mathcal{T}) \).

Let \(\mathcal{A} \) be a finite Borel partition of \(X \) such that \(a \times a \subset \mathcal{E} \) for \(a \in \mathcal{A} \). Then for \(a \in \mathcal{A}_n \) \(a \times a \subset \mathcal{E}_n \) thus \(\forall a \in \mathcal{A}_n \) \(\text{card } (e_n \cap a) \leq 1 \), so
\[
\mathcal{H}_{\mathcal{S}_n}(\mathcal{A}_n) = - \sum_{\gamma \in \mathcal{E}_n} \mathcal{S}_n(\{y_\gamma\}) \log \mathcal{S}_n(\{y_\gamma\}) = \log \text{card } e_n.
\]

Let \((p_1^{m} + g_1) \) be a sequence from Lemma 2.

We can assume that \(g_i \in \mathbb{Z}_+^N \) for \(i \in \mathbb{N} \).

Fix \(m \in \mathbb{N} \) and \(\varepsilon \), \(0 < \varepsilon < \frac{1}{2 \log \text{card } \mathcal{A}} \). There exists \(l_0 \in \mathbb{N} \) such that for \(l \geq l_0 \) \(p_1 - g_m - p_m \in \mathbb{Z}_+^N \) and
\[
\frac{\text{card } I_{p_1 - g_m - p_m}}{\text{card } I_{p_1}} \Rightarrow 1 - \varepsilon.
\]

If \(l \geq l_0 \), \(l \in \mathbb{N} \), then for \(n \) sufficiently large we can find \(t \in \mathbb{N} \), \(\Lambda_t \in \Lambda^n \), \(i = 1, \ldots, t \), such that
\[
\Lambda^n = \bigcup_{i=1}^{t} (I_{p_1} + \Lambda_1) \cup (\Lambda^n)^{1};
\]
the sets appearing
in this sum are pairwise disjoint and \(\frac{\text{card}(A^n)}{\text{card}(A^n)} \leq \varepsilon \).

Now, let \(q \in I_{P_m} \). We define

\[
s(q) = \left(\left[\frac{p_1 - g_m - q_1}{p_m} \right], \ldots, \left[\frac{p_N - q_m - q_N}{p_m} \right] \right).
\]

Observe that \(I_{P_l} = \bigcup_{r \in I_{X(q)}} (I_{P_l} + g_m + q + r \cdot p_m) \cup (I_{P_l})' \),
where the sets appearing in this sum are pairwise disjoint and

\[
\text{card} (I_{P_l}') \leq \text{card} I_{P_l} - \text{card} I_{P_l} + g_m - p_m \leq \varepsilon \cdot \text{card} I_{P_l}
\]

(by (16)). So, finally we can represent \(A^n \) as a sum of pairwise disjoint sets as follows

\[
A^n = \bigcup_{i \in A} \left(\bigcup_{r \in I_{X(q)}} (I_{P_l} + \gamma_i + g_m + q + r \cdot p_m) \cup (I_{P_l} + \gamma_i) \cup (A^n) \right).
\]

Thus, for all \(q \in I_{P_m} \)

\[
(17q) \quad H_{\Sigma_n}(A^n) \leq \text{card}(A^n)' \cdot \log \text{card} A + \sum_{i \in A} \frac{\text{card} I_{P_l}}{\log \text{card}} \sum_{i \in A} \sum_{r \in I_{X(q)}} H_{\sigma_n}(T^{\gamma_i + q + r \cdot p_m} A_{I_{P_m} + g_m}) + \sum_{q \in A^n} H_{\sigma_n}(T^q)^{-1} A_{I_{P_m} + g_m}.
\]

Adding the inequalities (17q), \(q \in I_{P_m} \), by sides we obtain

\[
(18) \quad \text{card} I_{P_m} \cdot \log \text{card} e_n \leq \text{card} I_{P} \cdot \log \text{card} A' + \left(\text{card}(A^n) + t \cdot \text{card} I_{P_l} \right) + \sum_{i \in A} \sum_{r \in I_{X(q)}} H_{\sigma_n}(T^{\gamma_i + q + r \cdot p_m} A_{I_{P_m} + g_m}) \leq \text{card} I_{P_m} \cdot \log \text{card} A \left(\text{card}(A^n) + t \cdot \text{card} I_{P_l} \right) + \sum_{q \in A^n} H_{\sigma_n}(T^q)^{-1} A_{I_{P_m} + g_m}.
\]

Dividing the inequality (18) by \(\text{card} I_{P} \cdot \text{card} A^n \) and applying the inequalities
\[\frac{1}{\text{card } \Lambda^n} \sum_{g \in \Lambda^n} H_n \left((T^g)^{-1} A_{I_{p_m} + q_m} \right) \leq H_\mu \left(A_{I_{p_m} + q_m} \right) \]

and

\[\frac{t \cdot \text{card } I_{p_k} \cdot \mathcal{E}}{\text{card } \Lambda^n} \leq \frac{t \cdot \text{card } I_{p_k} \cdot \mathcal{E}}{\text{card } \Lambda^n} \leq \mathcal{E}, \] we obtain

\[(19) \quad \frac{1}{\text{card } \Lambda^n} \log \text{card } \epsilon_n \leq 2 \cdot \epsilon \log \text{card } \mathcal{A} + \]

\[+ \frac{1}{\text{card } I_{p_m}} H_\mu \left(A_{I_{p_m} + q_m} \right). \]

Inequality (19) is true for all \(n \in \mathbb{N} \) sufficiently large and \(\mathcal{A} \) can be chosen in such a way that the boundaries of the elements of \(\mathcal{A} \) have measure \(\mu \) zero, hence taking the limit with respect to \(n \) or with respect to a subsequence \((n_k) \) if necessary / we get \(h_T(\Lambda, \mathcal{D}) \leq 2 \cdot \epsilon \log \text{card } \mathcal{A} + \)

\[+ \frac{1}{\text{card } I_{p_m}} H_\mu \left(A_{I_{p_m} + q_m} \right) \leq \mathcal{E} + \frac{1}{\text{card } I_{p_m}} H_\mu \left(A_{I_{p_m} + q_m} \right) \]

for all \(\mathcal{D} \in \mathcal{W} \) and \(m \in \mathbb{N} \). Passing to the limit with \(\mathcal{D} \) and \(m \), owing to the arbitrariness of \(\mathcal{D} \), we obtain finally \(h(T) \leq h_\mu (T) \).

Corollary 3. If \(T_\Omega \) denotes an action of \(G \) on the set of nonwandering points \(\Omega \) defined by \(T^g_\Omega (x) = T^g (x) \) for \(x \in \Omega \), then \(h(T_\Omega) = h(T) \).
Bibliography

Krystyna Małgorzata Ziemian
Wydz. Mat. i Mech.
Instytut Matematyki
Uniwersytet Warszawski
PKiN
00-901 Warszawa
Poland