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ALEXANDER COCYCLES AND DYNAMICS 

M. Shub 

Differential topology has studied differentiable manifolds and the mappings 
between them by studying functors from manifolds to algebra. In dynamics we are 
given a map f : M -* M from a manifold to itself and we study the asymptotic 
properties of the iterates of f . In principle it should be much easier to study 
asymptotic algebraic data. Then we must ask: What is the dynamical interpretation 
of the asymptotic data? Here it is usually easier to give answers in the generic 
or stable cases, but we may ask for all f as well. One example is the entropy 
conjecture. This conjecture is true for an open and dense set of homeomorphisms 
of manifolds, except perhaps in dimension 4 , although not true in general for 
homeomorphisms. It is also true for diffromorphisms in the stable case. In the 
general case we have the results of Manning which bound the topological entropy 
from below by the growth rate of the induced map on the first cohomology or homo-
topy group for continuous f , and the results of Misiurewicz and przytycki 
which bound the topological entropy from below by log|degree f| for continuously 

1 
differentiable f . But we are still in the dark for the general C f and all 
dimensions. 

we consider another example where we know even less in general, but where 
the generic case is clearer. Let Mn be compact and orientable, and let V 
and W be oriented submanifolds of Mn of dimension k and n-k respectively, 
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M. SHUB 

V represents a homology class in H. CM] . We may consider W as a homomorphism 
[wj : HK(M) + 2 by intersection. That is [w] (V] is the number of points of 
intersection of W and V counted with multiplicity and sign; [w] : Ĥ CM) 2 
and f. : H. CM] -> H. CM) are homomorphisms. So in principle at least, the growth 
rate lim sup — log| [wl (f[J V) | is easy to calculate. This number is the growth n K j, 
rate of the homological or algebraic number of points of intersection of W and 
fn(V) . Now let Nn(f,V,W) be the actual or geometric number of points of inter­
section of W and fn(V) . We would like to compare the asymptotic algebraic 
information to the asymptotic geometric information. 

Problem . 
A _ 

Suppose that f is C and that f |V is an embedding for each n . 
a) Is lim sup-1 log N Cf,V,WJ > lim sup ̂  log | [w] (f^V) | ? 
b) What is the distribution of the points of intersection in W ? 

In the generic case f n |v is always transverse to W , and 
NRCf,V,W) l|[w](f^KV)| for all n ; so a) is trivially true. Also in case V 
has dimension 1 , any isolated point of intersection of fn(V) and W has 
index -1, 0 or +1 . So once again N (f,V,W) >_ |[ W ] Cf^V) | for all n . 
But in neither of these cases do we Know the distribution of the points of inter­
section. 

A 
A special case of the problem arises from a C map g : M M . We let 

f:MxM+Mx|v| be IdM * g that is f Cx,y) = (x,g(y)j . We let 
V = w =^ M ) c P 1

 t h e diagonal of My M . Then Nn(f,V,W) = Nn(g3 the number of 
periodic points of g of period n , and the Lefschetz trace of dim M fn, L(fn) - E M ) 1 trace f£ , is [ W][f£ d i m MV) . i=0 
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ALEXANDER COCYLES AND DYNAMICS 

Sub-problem . 
1 

Suppose g : M M is C . 
a) Is lim sup 1 log N (g) >. lim sup ̂  log |L(fn)| ? 
b] How are the periodic points of g distributed in M ? 

Once again a) is true for the generic g and is true in dimension 1 . 
1 1 So our emphasis is on all C maps g . The hypothesis that g is C is already 

1 
necessary in dimension 2 . For C maps g we Know that when the Lefschetz 
traces L(fn) are unbounded then there must be an infinite number of periodic 
points, but we Know very little about their growth rate. Nothing is Known about 
the distribution of the periodic points in the general case. 

2 
This sub-problem is already interesting for the two sphere, S . Even for 

2 
polynomials in one complex variable thought of as acting on S the answer is 
not obvious, but in fact a strong statement may be made for rational maps. Proposition 1. 

p 2 2 
If g = — : S S is a rational map of the two sphere of degree d , then 

q 
there is a constant K > 0 such that N (g) > d n - K . 

Proof. 
Let d > 1 . According to [Julia,G. -Sur l'itération des fonctions rationnels-

Journal de Mathématiques 1918 p 236] for any non-transversal fixed point p of a 
2 2 rational map g of S of degree bigger than 1 there is a point x

p € s 

such that gn(xp) P a s n and DgCx̂ ) = 0 . Now it is clear that g can 
have at most d non-transversal periodic orbits. For any periodic point p which 
is non-transversal taKe a power of g, g , to maKe p fixed. There is now a 

K Kn singularity of g , Xp , such that g (xp) •> p as n -**<» . The singularities 
K -K 

of g are g (singularities of g ) so there is an original singularity x^ 
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such that gKn(x^) -> p as n +00 . As g has at most d singularities, g has 
at most d non-transversal periodic orbits and we are done. 

* k k 
Returning to our general problem, we may put : H (N,C) •+ H (M,C) into 

Jordan form. Then the eigenclasses and eigenvalues of f* play a special role, 
k 

but their relationship to manifolds or to entropy is not clear. We seek a geometric 
object which represents an eigenclass in cohomology. To find the object we use 
Alexander cohomology theory. 

Let X be a compact space. Let <j> : Xx... .̂ xX —»C be a function. The support 
K+1 

of 4 , supp § , is the set of points x 6X such that <J> is not identically zero 
on any neighborhood of (x,x,̂ ..,x) . The boundary of (f> is the function 

k+1 
<5<J> : Xx.. .xX I 

k+2 
defined by 

k+1 fi<fr CX q, ...,xK+1) = E (-1) <|)(xo,...,xi,...,xK+1) . i=o 
If f : Y -*• X then f*(f> is the function defined by 

fVyo....,yk) = •Cf(y 0),. . . , f(y k)) 
which I will sometimtes also write <|>©f . Let F be the vector space of functions 

k k 
(|> : Xx...xX •> t and let Z CF be the subspace of those functions with empty 
supports. The homology groups of the complex 

are the Alexander cohomology groups of X with complex coefficients. We may 
also do the same for real coefficients. It makes little difference if I use R 
or C in the propositions which follow. I will start with t and change to R 
when it is convenient. For various categories we may restrict the functions $ 
considered and still get the same cohomology theory. 
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Examples . 

1] In the category of compact spaces and continuous maps we may restrict 

to continuous (f> or alternating continuous <J> . 

2) In the category of compact metric spaces and Lipschitz maps we may restrict 

to Lipschitz or Holder <j> and we may assume that the functions (J) are alternating, 

3] In the category of compact differentiable manifolds and differentiable maps, 

we may restrict to differentiable <j> and we may assume they are alternating. 

All this results from sheaf theory and is easily derivable in an earlier 

version from [Borel,A. Cohomology des Espaces Localement Compacts d'après  

J. Leray 1964 Springer Lecture Notes # 2, 1964 ]. 

We give a sample proposition. 

Proposition 2. 

Suppose that X is a compact, connected metric space and that f : X •> X 

is Lipschitz. Suppose that v£H CX,C) is a X eigenclass for 

f* : HkCX,C) HKCX,C) 

with |x| > 1, that is f* Cv) = Xv . Then 
K 

4 

a) there is a X alternating eigencocycle <f> representing v , that is 

f*(<f>J = X<|> + z with zêZ k . 

b) if K = 1 , <j) is unique mod Z . That is if <j> also represents 

v , f*(<J>') = X<f>' + z' with z'̂ Z' then there is a z"€Z' such that <|> = <j)»+z" . 

c) <f> is Hfllder. 

Proof. 

a] We start with an alternating cocycle oc representing v . Thus f*(ct) = 

Xa + 6y + z for some alternating yfcF and some zfcZ . Let 

(f) = a + ô 
00 

( E 
n=o 

f * n t Y ) 
x n + 1 

). 
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Since |x| > 1 I converges uniformly so <J> is defined and does the 
n=o ^ n +1 

trick. For the same z, f*C<J>) = A<f> + z . 
b) Suppose (J)' represents v and f*̂ ') = X<f>' + z' . There are y£F° and 
z"€F1 such that cj) = 6' + <5y + z" . Thus f*Cc|>) = f*(<J>') + 6f*Cy) + f*Cz") 
and XcJ> + z = Xo>' + z' + 6f*(y) + f*Cz") so 

X<f>' + X6y + Xzw + z = X<j)» + z» + 6f*Cy] + f*Cz") . 
Hence 6Cf*Cy) - Xp] = z^ for some z^Z' . This means that f*(P) - Xy 
is locally constant and since X is connected f*(P) - Xy = c for some constant c 
But now 

oo *n
 00 

,n+1 ,n-1 
n«0 A n=0 A 

which is constant. Thus Sy = o and j> = 4>' + z" . 
c] In a way we may choose a and y to be Hfllder. Let 1 >. e 0 D e chosen 
such that Clip f] £ < |A| and such that y is Hfllder of Hfllder exponent c . 
We denote its Hfllder constant by H(y) . Then 

| " YfRCx] _ - Yfn(y). K ^ I Yfn(x) - YfRCy)l ' L .n+1 L .n+1 1 - L ,.n+1. n=o A n=o A n=o | A I 

K - HCY) d(fn(x3, f"(y))% H " CLip f) n £ d(x,y)e — | , | nH — I , | n+1 n=o |A| n=o |X| 

oo e n 00 *n 
Now E C tLip f) ) converges by the choice of e . Thus 1 ^ Sf, is i -v i nH „ _ -v nn n=o |AI n=o A 

f Y 
Hfllder of exponent e and the same is true for 6C Z — n + ^ " A s a W a s 

n=o A 
Hfllder the sum is Hfllder. 

The process carried out in a), which was the inversion of CXI - f*] that 
00

 f* nr Yi . -1 

is E — ^ = CXI - f ) iy) , can be carried out for more general subspaces. 
n=o X 
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Recall that a linear map A : V V is hyperbolic if the spectrum of A is 
disjoint from the unit circle. If the spectrum is outside the unit circle, we 
say A is expanding. If f :V •> V is hyperbolic on an f. invariant subspace 

K 
V c H CX,C) then we can invert the appropriate operator on the space of cochains 
for a homeomorphism f . 

Proposition 3. 
Suppose that X is a compact space and that f : X -+ X is a homeomorphism 

(continuous). Let f' : V V be hyperbolic (expanding) where V c H (X,C) is 
K * K k a finite dimensional invariant subspace for f. : H (X,C) •> H (X,(D) . Then there k 

1̂  
is a subspace W of cocycles contained in F (X) which projects isomorphically 

* k 
onto V and such that f : W W mod Z . The isomorphism identifies 
f*: W -> W mod ZK with f* :V -> V . If k=1 then W is unique mod Z1 . 
Proof. 

Choose a basis v^,...,vm for V and cocycles ,̂... ,<j>m *n ^ ̂ X] which 
represent v„,...,v . We use matrix notation and write 1 m 

' • ( M i - < M ) 

rm Tm m m 
Now we attempt to add boundaries 6ai to the $ in order to eliminate the • 
Thus we want to solve the equation 

.; ) = < • W ; 

<J> +6a / K M +6a > V z / m m Tm m m 
or 

' • f ) - ( r ) - < ( l ' ) - 4 ) - ( r ) 

m m Tm m m 
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' • m - ^ M n - f r ) 
Ym Tm lm m 

this amounts to solving 

m m m 
We drop the boundaries and solve the seemingly more difficult equation 

. yA . a. . a. . a. t 

( ) • < ) - < • ( ) - (1 • 
m m m m 

( D - K - ' t - t r ) -

m 'm 
We indicate why this last equation makes sense, f. : V V is hyperbolic. This 

k 
means that we may axpress V as the direct sum of two f* invariant subspaces. 
V = V S$V U . The map f* : Vs Vs is a contraction and f* : Vu •+ Vu is an 
expansion. More precisely ̂ c > o and A > 1 such that 

||f*n |VS|| < CAn for n > • 
and 

||f*"n|\/U|| < CA° for n > 0 . 

f Y 1 C x ] A / Y 1 C x ] \ / Y 1 C f C x ) ) \ 
For any point x 6X we may consider ( .' and f ( i I - I ,' as 

Y m C x ) ' * Y m C x 3 ' * Y m C f ( x ) ] ' 

elements of V . Thus we may write 

( i 1 ) - (Y8(x].Yu(xn and ( I ' ) - (Y 8.Y UJ . 
\ Ymtx) / \ Ym / 
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This splitting is invariant for f* and f* that is 
K 

f* 
Y 1 

Yro 
= 

T 1 . F 

m.f 
• CY 9.f.Y u.f) 

and 
Y 1 

< (; ) - t < v < V • 

Now we may write 
(f*k-f* y1 

ym = (f*k-f*)(ys,yu)=((f*k-f*)ys, (f*k-f*)yu). 

To invert this product map it suffices to invert it on each factor. We invert 
these by the usual series. 

(-f*k-f*)-1(ys,yu)=((f*k-f*)-1ys, (f*k-f*)-1yu) 

= (-(-f*«>(f~V * Id).f*) " 1 Y . (f* (Id - f*"1 f*)3 1 Y ) 
K S * K u 

. c - f - 1 

oo 

n=o ( f ' . C F 1 ) - ) " V 

00 

n=o 
f V < V 

oo n -n 00 -n-1 n 
• C " 1 f K f* Y s ' E f K f ' V • 

n=o n=o 
2 

and both series converge uniformly. If V = • then we don't need to invert f . 
(The second formula is the one which we used when we had a single eigenvalue X 
with |x| > 1 .) 

Now we turn to uniqueness in the case K = 1 . Suppose that W and W' 
are vector spaces of cocycles which project isomorphically onto V and such 

* * 
that f : W W mod Z' and f : W' -> W' mod Z' . Choose cocycles <J> ,..., <J>m in 
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W and (f> jj,... ,(|>m in W which project to the same basis v^,.. (v in V . 

t 

Thus <f>̂  = <f>̂  + ou^ + for some u. and some z£eZ' . 

f*k 
o 

fi 
Ò 

" f K | 
o 

+f*k 
o 
t 
6u. J 1 
Ó 

+f*k 
o 
I 

Ò 

Now 
o 

fi 
Ò 

I 
o 

fi 
Ò 

• »i ) • '"Ini * % 1 • '*( 1 

•'I 

o 

Ó 

+ 

o 

+ f 

o 

K 
o 

+f* 
o 

fi 
o 

So 

f*k 
o 
: 
f i 
Ò 

+ f K 

o 

6u. 
; 1 
Ò 

+f*k 
o 

h 
o 

+ 

o 
: 
fi 
o 

=f*k 
o 

fi 
: 

o 

+ 

o 

z! 
11 
Ò 

+f* 
9 , 

K 
Ò ' 

+ f 

o 

fi 
Ò 

Thus fk 
a 
I 

6u i  

ó 

- f* 

o 

K 
Ó 

= 

m 

for some z£ 5Z' . 

Thus 
f*k 

о 
t 

Vi 
ó 

- f* 
о 

ó ¿ i m 

where the c ^ are constants. 

Finally 
f*k VI 

u 
m 

- f* 
: 1\ 

U t 
m 

d 
m 

where the d^ are constants and 

•Ì1 

u 
m 

=(f*k-f*)-1 •1 

d 
m 

which is a constant vector. Thus u^ is constant for each i, <5û  = o and 
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i= "i + z"i . 

Remarks. 
1) The same argument and theorem are true for real coefficients, and we will 
use them. 
2) If we worked in the category of compact metric spaces and Lipschitz homeo-

morphisms with Lipschitz inverses we could produce Hfllder cocycles <f>̂  as 
above. As it is we have continuous <j>̂  in the general case. 

We return to H'(X,R) and consider a geometric interpretation of an 
Alexander cocycle. For convenience I will limit myself to a connected differentia-
ble manifold M . An Alexander 1-cocycle is something like a closed 1-form 
and consequently defines something like a foliation with a transversal structure. 
A translational H structure of codimension j on N is a collection of charts 
U. which cover N and functions <f>. : U. -*• such that if U. . /111. = <J> 
1 1 1 I K 

then there is a constant vector v.. £ R* such the 
lk 

•i U i f l U K = * K U. Л и к • V 
К 

Here H is for Haefliger not homology or cohomology. Our functions <\>± are to 
be assumed continuous and in many interesting cases Hfllder .We will call the 
level surfaces of the <|>_̂  | U^ strokes. Because of the overlap conditions the 
strokes overlap coherently and form maximal subsets which we call stripes. 
We call the stripe structure on N induced by a translational H-structure of 
codimension j a translational H-striation of M of codimension j . Given 
a translational H-structure of codimension j defined by functions <j>̂: u\ •> 
and a translational H-structure of codimension 1 defined by functions 
¥. : U. -> R 1 there is an induced translational H-structure of codimension l l 
(j+1) defined by <f). x y. : u. + R j x R 1 . 

Y i l l 
The stripes of this structure are 

the intersections of the stripes defined by the <j>̂  and the ^-structures. 
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Lemma 1 . 
An Alexander 1-cocycle $ : M x N R defines a translational H-structure 

of codimension 1 on M, cf>i : IL •> R such that aCcĵ ) : LL x U i -> R equals 
<f> : LL x y -> R . 

Proof. 
Cover M by geodesically convex balls for each xeN . For each x 

<f> : U x u R is null cohomologous thus there is a function <f> : Uf •> R 
X X X X 

such that 6 (<J> ] = <f> | U• x U' for some perhaps smaller geodesically convex neigh-
X X X 

borhood U' of x . Cover N by a finite collection U. of the IT . If 
X 1 X 

LLHLL 0 then 6[$±) = 6C(f>J so 6 ((JK - <j> J = 0 on Ih /ILK . As LL flu\ is 
contractible <J>. - $. = c. for some constant c. 

On the other hand a translational H-striation of N of codimension 1 
defines an Alexander 1-cocycle which induces it. To see this fix the cover LL 
and the functions <f>i : LL •> R defining the striation. Let b be a Lebesgue 
number for this cover, that is if d(x,y) < b then x and y are both in the 
same LL . Define <{>Cx,y) = $±{x) - <j>i(y) if d(x,y) < b . This makes sense since 
the (t>i differ by a constant. Now leave <f> fixed on a neighborhood of the 
diagonal in N x M and extend it to be continuous or Hfllder as the case may be . 

Given a translational H-striation S of H of codimension j and 
f : M M , we say that S is f-invariant if f of every stripe of S is 
contained in a stripe of S . If we let be the stripe of S containing x 
then our condition is f(S )cSn, s . If in addition there are charts U. on N , 

x f(x) 1 
functions C|k : LL •+ R which define S and a linear map A of R̂  such that 
• j(f M) - (j)j(f (y)) = AC^Cx) - •1(y)) whenever x,yeU. and f(x),f(y)6U. 
then we say S is transversally transformed by A . In the case that j = 1 
and ACx) = Xx with |x|> 1 we say that S is transversally stretched by X . 

Thus we may restate proposition 2 in terms of manifolds and striations. We 
say that a translational H-striation represents a cohomology class if its 
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corresponding Alexander 1-cocycle does . 

Proposition 4. 
Suppose that M is a compact connected manifold and that f : N •> N is 

K 
Lipschitz (continuous). Suppose that veH (M,R) is a X eigenclass for 
f* : HK(M,R) -> Hk(M,R) with |x| > 1 , that is f*(v) = Xv . Then there is a K K 
unique Holder (continuous] translational H-striation S of M of codimension 
1 such that S represents v , is f invariant and is transversally stretched 
by X . 

Proof. 
1 

Mod Z there is a unique Alexander cocycle <J> such that <J> represents v 
* 1 1 

and f <j> = X<|> mod Z . Two cocycles which are equal mod Z define the same stria-
tion 0 . 

Proposition 3 translates as follows: 
Proposition 5. 

Suppose that N is a compact connected manifold and that f : M -> M 
is a homeomorphism (continuous). Let f* : V V be hyperbolic(expanding) where 

1 
VcH (X,R) is a finite dimensional invariant subspace of dimension j for 
f* : H'(X,R) + H'(X,R) . Then there is a unique translational H-striation S of 
H of codimension j which satisfies the following properties. 
1) There is a basis v^,...,^ of V and cocycles <^,.--*$j£F (M) which 
represent the such that S is the intersection of the striations defined 
by the (JK, 
2) S is f invariant. 
3) S is transversally transformed by fA : V •> V . 

Proof. 
This is just Proposition 3 with the uniqueness mod 2 . 
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Examples and construction. 
Suppose that A is an n x n matrix with integer entries. Then ft : Rn -* Rn 

and maps the integer lattice ZncRR into itself. Thus ft induces a map of the 
n-torus, Tn , which is RR/^n • We denote this map by A . We have the following 
commutative diagram. 

R n is the universal covering space of T n and A is the unique lifting of A 
which sends 0 to 0 . The first homology group of the n-torus with integer 
coefficients , H^t",/) , may be identified with Z n and A^: H 1 tTn .l)-*H^ (Tn,/) 
is then identified with A : / n £ n . Thus on real homology 

A*1 : V 1 " ' ^ Hi C l" n' R 5 i s identified with A : R n R n . On real cohomology 
A* : H1CTn,R) + H1(Tn,R) is identified with the transpose of A , Â  : R n R n . 
There is an invariant subspace V* C R n of dimension j for A** if and only if 
t ** 
V is the dual space of an invariant quotient V of A of dimension j . 
Aj = 7̂*1 V1" is hyperbolic or expanding if and only if Â  : V -* V is . In 
diagram notation we have 

incl incl and 

where incl is an inclusion and it is a surjection. 
If Aj : Vt -* Vt is hyperbolic and A : T R -* TR is an isomorphism or if 

Aj is expanding we are in the circumstances of propositions 2 through 5 . 
If v v.* is a basis for then v.̂  : R n -> R and KerCv.̂ ) is a 1 J i i 
subspace of R n of dimension n - 1 . The parallel translates of KerCv^) 
foliate R n and the projection of this foliation is a linear foliation of T n 
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which we will denote j . The intersection j| J , = j is the invariant foli-
v.t i=1 v.* . 1 1 3 t ation for A given by Proposition 5. The intersection f] Ker(v. ) = Kerfr . The 

i=1 
translates of Ker TF foliate Rn and the projection of this foliation to T is 
the same foliation j> . Here we use the word foliation instead of striation because 

? n . Let x and y be any two close by points in T 
We may lift x and y to x,y£Rn such that d(x,y) = d(x,y) i.e. the 
distances are unchanged. ŷ Cxjy) is then defined by the formula 
^(Xjy) = v i (xj - v i (y) . Extend 4̂  to a global function which we call 4f

i 

again and which we may assume to be O , ^ : T n x T n -* R . These V^ represent 
the and define the foliation J- ^ . By definition J is transversally 

~t Vi 
transformed by Â  . 

We will see that these V and F are universal in the sense that all 
others are pull backs of these. Let M be a compact connected manifold and let 
f : M •> N be a homeomorphism (continuous) . The map f* : H'(n,R) -* H'(M,R) is 
induced by f* : H'(n,Z) -> H'CH,/) . Thus if dimCH'CM,R]) = n we may identify 
Hf CM,R] with Rn and f* with an integral matrix A* : R n -* Rn. If V'CH»CM,R) 
is a j-dimensional invariant subspace for f̂  such that f̂  |V' is hyperbolic 
(expanding) , then we may identify V with an Â  invariant subspace V^CR0. 
We are now in the situation of our example. We keep all the notation and hypotheses 
from above. We call the identifying map i* : Rn •> H'CM,R) and i : H (M,R) + RR 

its transpose. Recall that R n is simultaneously Rn,H'l(Tn,R) and H,j(Tn,R) . 
Given two spaces X and Y , continuous map h : X •> Y and a striation S of Y 
the induced striation h*S of X is defined by (h*S) = h"1(S ) . We use a, 

J X X 
to denote universal covering spaces and maps lifted to universal covering spaces. 

Proposition 6. 
Let N be a compact, connected manifold, and let f : N •> N be a homeo-

morphism (continuous). Suppose that V C H (M,R) is a j-dimensional invariant 
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subspace for f , that f̂  : V •> V is hyperbolic (expanding) and that 
dimension H'(H,R) = n . Let f : M -* N be a lifting of f . Then there is a 
continuous map h : M + Rn such that Aj irh = irhf and h lifts a continuous 
map h : M ̂  T n such that h* = i* . 

Proof. 
Let ĥ  : M •> T n be a continuous map such that h* - i* . Let ĥ  : M Rn 

be a lifting of ĥ  to the universal covering spaces. We would like to find a map 
h , homotopic to and a lifting h of h such that 

commutes. 

V splits as a direct sum E S © E U with A|E S contracting and |Eu expanding. 
Let R S and R UC Rn be chosen such that TT : RS -* E S and IT : RU -* E U 

isomorphically. We may write R n as the direct sum of three spaces Rs © RU (±>Ker (IT ). 
We use coordinates (x,y,z) for this splitting. In this splitting A : Rn -> Rn 

is represented by 
(x,y,z) -* (Aj(x), Aj(y), A(z) + B(x,y)) 

where Â  on the first two coordinates comes from the identification with V 
and B : R S Q R U •> ker TT is linear. Now we may write 

Trhjf " A.*^ = (<j>s,<J>u) 
and 

h.f - Ah = (<f> , (j) , ) . 1 1 rs yu rKeriT 
We would like to change h , such that <J>s and (J>u are 0 . We write 
"h* = (h„ ,h„ ,h„ „ ) . We will make cf> zero, the case for 6 is similar 1 1s 1u 1 Kenr Yu Ys 
as in Proposition 5 by adding a function to h . We would like to solve 
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TT Ch1 + (O FY U.O)) f - A j TT (h1 + CO,YU.O)) = 0 

TT (h1 + (0,Yu-0)) f - A j TT (h1 + (0,Yu.03) = 

IT h1? " Aj7rh1 + 7rCO,YU.O) f - Aj TT(0,Yu.03 = U a**u 3 + (°*Yu*f) - CO,AjYlJ) 

So we would like to solve the equation 

A. Y - Y °? = <J> • 
j 'u Tu yu 

00 
— k—1 **k 

As usual Y u = £ Aj ^ u°^ which converges uniformly. Now we need to be 
sure that hA + (0,Yu,0) lifts a function h homotopic to ĥ  . Let p : M •> M 
be the projection. Since (<J> <J> ) is null homotopic on deck transformations 
there is a function [\b , lb ,jh„ ) : M -* RS © RU fi)Ker v . such that rs'ru rKenr 

Ts Yu rKer TT rs'Yu rKer TT K 

Thus 
CO,<J>u,0) = (0, û,0)op 

also is null homotopic on deck transformations and the same is true for 
00 

(0,Y ,0) - (0, 2 A"K~% °fK,0)«p . 
U R=o J U 

Thus hA + (0,Yu,0) is the lift of a function h homotopic to ĥ  

Corollary 1. 

The striation S of N given by Proposition 5 is h* j . 

Proof. 
Let v*,...fVj be a basis for Vt and î vjj) = v JJ,..., i* CvJ) = vj be a 

basis for V . The h % i represent the v£ and define S . Thus S is the 
intersection of the striations defined by the h*i|>. which are the h*^ and 

1 v.t h* 5 = S . * 
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Remarks. 
1) The estimates and calculations we have done are quite standard in the theory 
of Anosov maps and expanding maps. 
2) The striations we construct are usually far from smooth. It would be 
interesting to know how regular they can be made in the homotopy class of a 
given f : M M . In the case of a two manifold M of genus g > 0 the 
situation is already interesting. Hf(N,Z) is isomorphic to Z g 0 Z g . 
If A is any g x g integral matrix then 

/ A \ «\ : Z g ® Zg - Z g • Z g 

\ 0 (A~Vy 

2 
is realized by a homotopy class of homeomorphisms of M . Thus we can have a 
very rich eigenvalue structure and many invariant striations for every element 
of the homotopy class. In special cases these are sometimes Thurston's 
measured foliations for pseudo Anosov diffeomorphisms, but they exist more 
generally and there are many more of them. 
3) Uniqueness for H' in Proposition 3 and 5 made it convincing that there 
would be a classifying object for the Alexander cocycles and striations pro-

1 
duced. Since H' is represented by maps to S it was natural to consider 
linear maps of T n to represent endomorphisms of H' . Hindsight relates these 
to Anosov maps. It would be interesting to find a universal object which re­
presents the hyperbolic behaviour on the higher cohomology groups, if it exists. 
4) Alexander cochains give new dynamic invariants, for example their supports 
are invariant subsets for f . These invariants are not well understood. 

We return to Proposition 6 and Corollary 1. Since S is h*^ and is 
transversally transformed by A we may expect the topological entropy h(f) 
to be bounded from below by Elog|x^ | where the sum is taken over all eigen­
values of A of modulus bigger than one, but this will not be true unless we have 
some independence conditions on the striations h*^ t - This condition is 
expressed in terms of cup products. Suppose the space V has a basis v̂ ,...,Vj 
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such that the cup product vJj,U...UVj ̂  0 . This implies that for the map h 
of Proposition 6, irh : M •> V is surjective, by the following simple topologi­
cal argument. There are real cohomology classes v #̂..,,Vj in H'(Tn,R) 
such that h*(vj = v£ and h'tv̂ u...Uv̂ ) = v̂ ju...uVj ̂  0 . Thus there are 
integral classes w^,...,^ in H' (Tn,2) such that h*fw>JU.. .Vŵ ) ̂  0 and 
w^.a.jWj are induced from a quotient torus T̂  of T n and the foliation of 
Tn induced by the w„,...,w. is as close as we want to the foliation induced 
by the v,j,...,Vj .If Trh : M •+ V is not surjective then the image of h 
misses a plane transverse to the foliation induced by the v̂ ,-..,Vj . Thus if 
the w w . are well chosen the line is transverse to the foliation induced 1 j 
by the ŵ  ,... ,Wj . 

This contradicts the fact that h*(w.u...Uw.) J 0 . 
1 J 

Since h lifts h , h is uniformly continuous and the same is true for 
•nh . The topological entropy of h is the same as that of h and it is easy 
to establish that the topological entropy of h is bigger than or equal to the 
topological entropy of Aj . Manning carries out some of these arguments more 
carefully in his article in these proceedings where he proves a similar pro­
position. Also there is my seminar talk in the Orsay Thurston seminar. 
Altogether we have established the following proposition. 

Proposition 7. 
Let M be a compact, connected manifold. Let f : M M be a homeomorphism 

(continuous). Suppose that V'CH (M,R) is a j-dimensional invariant subspace 
for f* , that there is a basis vjj,...,vj of V with vj|4..uv! ? 0 and 
that f\ M9 -* V» is hyperbolic (expanding) . Then h(f) >_ E log|x| where 
the sum is taken over all eigenvalues X of f*|v with |x| > 1 * 

It seems that Gromov has a more general proposition. Our proof seems 
integrated with striations. 
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