A remark on vector fields on open manifolds

T. Nadzieja

Astérisque, tome 50 (1977), p. 315-322

<http://www.numdam.org/item?id=AST_1977__50__315_0>
A REMARK ON VECTOR FIELDS ON OPEN MANIFOLDS

by

T. NADZIEJA

Summary. A partial answer is given to the question in what circumstances for a vector field X on an open manifold M there exists a neighborhood U in C^0-Whitney topology, such that for every $Y \in U$ and compact $K \subset M$ the closure of positive semitrajectory $\bigcup_{t \geq 0} Y_t(K)$ is compact.

Let M be an open differentiable manifold / i.e. nen compact without boundary, with a countable basis / and let $X^1(M)$ be the class of all C^1 vector fields on M endowed with C^0-Whitney topology which is given by the neighborhoods of zero

$$\left\{ X \in X^1(M) : \|X(p)\| \leq \varepsilon(p) \right\}$$

where ε is a real positive continuous function on M and $\| \|$ is a Riemannian complete metric on M.

Throughout the paper X will denote a complete C^1 vector field on M and $\{X_t\}_{t \in \mathbb{R}}$ will be the corresponding flow generated by X. The positive semitrajectory of a point $p \in M$ will be denoted by $O^+_X(p) = \{X_t(p) : t \geq 0\}$, its ω-limit set by $\omega^X(p)$ and α-limit set by $\alpha^X(p)$.
Most of the notations and definitions used here are as in [1], [3]

DEFINITION 1. We say that $X \in X^1(M)$ is C-stable iff there exists a neighborhood U of X such that for every $Y \in U$ and every compact $K \subset M$ the closure of semitrajectory of K is compact.

EXAMPLES. Let $M = \mathbb{R}^2$ and let flow $\{X_t\}_{t \in \mathbb{R}}$ be given by

$$\frac{d}{dt} x^1 = x^2 \quad \frac{d}{dt} x^2 = -x^1$$

The vector field $(x^2, -x^1)$ is not C-stable. It is easy to see that the vector field on \mathbb{R}^2 given by

$$\frac{d}{dt} x^1 = -x^1 \quad \frac{d}{dt} x^2 = -x^2$$

is C-stable.

We ask: Which conditions imply C-stability of X?

In this paper we give a partial answer to this question. Proofs and ideas we use in this paper are similar to those used in studying the phenomenon of \mathcal{L}-explosion / see [2].

DEFINITION 2. A compact invariant subset A of M is called an attractor iff there exists a neighborhood V of A such that for every $p \in V$ its ω-limit set $\omega^X(p)$ is contained in A. The domain of attraction of A is a maximal subset D of M such that for every $p \in D$, $\omega^X(p) \subset A$.

DEFINITION 3. Let A be an attractor. We say that A is uniformly asymptotically stable if for every neighborhood U of A there exists neighborhood V of A such that $V \subset U$ and $X_t(V) \subset V$ for every $t \geq 0$.

316
Wilson [4] proved that if A is uniformly asymptotically stable and D is a domain of attraction of A then there exists a smooth function $L : D \rightarrow \mathbb{R}^+$ such that:

I. $L|_A = 0$

II. For any $c \in \mathbb{R}^+$ dist$(L^{-1}(c), A) < +\infty$ and

$$\lim_{c \to 0} \text{dist}(L^{-1}(c), A) = 0$$

here dist denotes the Hausdorff distance.

III. $\lim_{p_n \to \infty} L(p_n) = +\infty$ and $\lim_{p_n \to D} L(p_n) = +\infty$

and $p_n \to \infty$ means that dist(p_n, A) tends to $+\infty$.

IV. If $p \in D \setminus A$ then $\frac{d}{dt} L(x_t(p)) < 0$

The function L is called Lyapunov function.

DEFINITION 4. A filtration for X is a collection

$$\{ M_i : i = 1, 2, \ldots \}$$

of submanifolds of M / with boundaries / such that for every i

1. M_i is compact and $M_i \subset \text{Int } M_{i+1}$

2. $x_t(M_i) \subset M_i$ for every $t \geq 0$

3. X is transverse to the boundary ∂M_i of M_i

4. $\bigcup_{i \in \mathbb{N}} M_i = M$

It is clear that if a filtration for X exists then for every compact $K \subset M$ $\bigcup_{t \geq 0} x_t(K)$ is compact.

The following property which follows immediately from Definition 4 shows that the existence of filtration is an open property.

LEMMA 1. If $\{ M_i : i = 1, 2, \ldots \}$ is a filtration for X then there is a C^0-neighborhood U of X such that $\{ M_i : i = 1, 2, \ldots \}$ is also a filtration for every $Y \in U$. 317
In virtue of this Lemma the existence of a filtration implies C-stability of X.

LEMMA 2. Let $X \in X^1(M)$, $\bigcup_{t \geq 0} X_t(K)$ be compact for every compact $K \subset M$ and let A be an attractor with domain of attraction M. Then there is an uniformly assymptotically stable set B such that $A \subset B$.

PROOF. We present in detail an argument from [2].

Let $B = \{ p \in M : \chi^X(p) \cap A \neq \emptyset \}$. By definition, B is invariant and closed. Let W be the compact neighborhood of A. If $p \in M$ and $\chi^X(p) \cap A \neq \emptyset$ then there exists $t < 0$ such that $X_t(p) \in W$ hence $p \in \bigcup_{t \geq 0} X_t(W)$ so the set B is compact / being a closed subset of compact $\bigcup_{t \geq 0} X_t(W)$ / . It is clear that B is an attractor.

We show that B is uniformly asymptotically stable. Let U be the compact neighborhood of A. By definition of the set B, all points of $U \setminus B$ have their χ-limit sets empty. For every positive real number r denote $A_r = \bigcap_{0 \leq t \leq r} X_t(U)$. We note that the compact sets A_r are nested. We show that for sufficiently large r, $X_t(A_r) \subset \text{Int } A_1$ for $0 \leq t \leq 1$. Consider the sets

$$V_r = \bigcup_{0 \leq t \leq 1} X_t(A_r) \setminus \text{Int } A_1$$

which are a nested family of compact sets with empty intersection hence there exists \check{r} such that $V_{\check{r}} = \emptyset$. For such r and $0 \leq T \leq 1$ $X_T(A_r) \subset A_r$. This implies that $X_T(A_r) \subset A_r$ for every $T \geq 0$. We put $\text{Int } A_r = V$. Then $B \subset V \subset U$ and $X_t(V) \subset V$ for every $t \geq 0$.

318
THEOREM 1. Let \(X \in X^1(M) \) and let for every compact \(K \subset M \) the closure of positive semitrajectory \(\bigcup_{t \geq 0} X_t(K) \) and the set \(F = \bigcup_{p \in M} \omega^X(p) \) be compact. Then the vector field \(X \) is \(C \)-stable.

PROOF. \(F \) is an attractor with domain of attraction \(M \). By Lemma 2 there is an uniformly asymptotically stable set \(B \) with domain of attraction \(M \). Therefore \([4]\) there exists a smooth Lyapunov function \(L \) for \(B \). We define \(M_1 = L^{-1}([0, 1]) \). \(M_1 \) is a compact / being a closed, bounded subset of Riemannian manifold with complete metric / submanifold and \(X_t(M_1) \subset M_1 \) for every \(t \geq 0 \).

Now define a sequence of submanifolds \(\{M_i : i = 1, 2, \ldots\} \) by putting \(M_i = X_{-1}(M_i) \). It is then clear that \(\{M_i : i = 1, 2, \ldots\} \) is a filtration for \(X \), and by Lemma 1, \(X \) is \(C \)-stable.

Suppose that for a vector field \(X \) the set \(F = \bigcup_{p \in M} \omega^X(p) \) is a union of compact, invariant, isolated subset \(\omega_i \) i.e.

\[(\ast) \quad F = \omega_1 \cup \omega_2 \cup \omega_3 \cup \ldots\]

Let \(W^s \omega_1 = \left\{ p \in M : \omega^X(p) \subset \omega_1 \right\} \) and \(W^u \omega_1 = \left\{ p \in M : \omega^X(p) \supset \omega_1 \right\} \) and define in \(\{\omega_i : i = 1, 2, \ldots\} \) the relation

\[\omega_i \leq \omega_j \quad \text{iff} \quad W^s \omega_i \cap W^u \omega_j \neq \emptyset\]

LEMMA 3. Let \(\omega_1, \omega_2, \omega_3 \) be any sets appearing in \((\ast)\) and suppose that there exists a point \(p_0 \in \omega_2 \) such that \(\omega^X(p_0) = \omega_2 \).

If \(\omega_1 \supset \omega_2 \supset \omega_3 \) then in every neighborhoods \(U \) and \(V \) of \(X \) and \(\omega_1 \) respectively there are \(Y \in U \) and \(p \in V \) such that \(\omega^Y(p) \subset \omega_3 \).

This Lemma is consequence lemma 9 from \([2]\).
THEOREM 2. Let X be a vector field, $F = \bigcup_{p \in M} \omega_X(p) = \omega_1 \cup \omega_2 \cup \ldots$ be a union of infinitely many compact, invariant, isolated sets and let for every ω_1 there exists $p_i \in \omega_1$ such that $\gamma_X(p_i) = \omega_1$. Moreover let $\bigcup_{t \geq 0} X_t(K)$ be compact for every compact K. Then X is stable iff no infinite sequence

$$\omega_{i_1} \geq \omega_{i_2} \geq \omega_{i_3} \geq \ldots$$

exists.

PROOF. If suffices to show the existence of a filtration for X. We define a set

$$A_1 = \{ \omega_k : \text{there is a sequence } \omega_{i_1}, \ldots, \omega_{i_j} \text{ such that } \omega_{i_1} = \omega_1, \omega_{i_j} = \omega_k \text{ and } \omega_{i_j} \geq \omega_{i_2} \geq \ldots \geq \omega_{i_j} \}$$

Due to our assumption there is no infinite sequence

$$\omega_{i_1} \geq \omega_{i_2} \geq \omega_{i_3} \geq \ldots$$

and since $\bigcup_{t \geq 0} X_t(K)$ is compact for every compact K, A_1 is finite and $C_1 = \bigcup_{A_1} \omega_1$ is compact, therefore there is a neighborhood V of C_1 such that for every $p \in V$ $\omega_X(p)$ is contained in C_1. Hence C_1 is an attractor with a domain of attraction $D_1 = \bigcup_{A_1} \omega_1$. Let $B_1 = \{ p \in D_1 : \alpha_X(p) \cap C_1 \neq \emptyset \}$.

The set B_1 is compact invariant / see Lemma 2 / and $B_1 \subset D_1$ by definition of the relation \leq. In the same way as in Lemma 2 we may show that B_1 is uniformly asymptotically stable. Let L_1 be a Lyapunov function for B_1 and $M_1 = L_1^{-1}(\omega_1, \overline{1})$.

Starting with M_1 we construct a filtration M_1, M_2, M_3, \ldots by induction. Suppose that the submanifolds $M_1, M_2, M_3, \ldots, M_k$ are already done. To define M_{k+1}, put $N_k = X_{-1}(M_k)$.
We choose a set \(\omega_i \) not contained in \(N_k \) and define
\[
A_{k+1} = \left\{ \omega_k : \text{there is a sequence } \omega_{i_1}, \ldots, \omega_{i_j} \text{ such that } \omega_{i_1} = \omega_{i_0} \text{ and } \omega_k = \omega_{i_j} \text{ and } \omega_{i_1} \gg \omega_{i_2} \gg \ldots \gg \omega_{i_j} \right\}
\]
Again
\[
C_{k+1} = \bigcup_{\omega_i \in A_{k+1}} \omega_i \cup B_k \text{ is an attractor.}
\]
Let \(B_{k+1} \) be the uniformly asymptotically stable set such that \(C_{k+1} \subset B_{k+1} \) and let \(L_{k+1} \) be a Lyapunov function for \(B_{k+1} \).

Put \(M_{k+1} = L_{k+1}^{-1} \left([0, c_k] \right) \) where \(c_k \) is chosen such that \(N_k \subset M_{k+1} \).

The sequence \(M_1, M_2, M_3, \ldots \) of compact submanifolds is a filtration for \(X \), for it is clear that \(X_t(M_1) \subset M_1 \) for \(t > 0 \) and \(X \) is transverse to \(\partial M_1 \). To verify that \(i = 1 \) \(M_i = M \),
take \(p \in M \), by assumption \(\omega^X(p) \neq \emptyset \), hence there exists \(k \)
such that \(p \) is contained in domain of attraction of \(B_k \). By our construction \(X_i(M_k) \subset M_{k+1} \) so there exists \(l \) such that \(p \in M_1 \), hence \(\bigcup_{i=1}^{l} M_i = M \).

Suppose now that there exists an infinite sequence
\[
\omega_{i_1} \gg \omega_{i_2} \gg \omega_{i_3} \gg \ldots \ . \text{ We will show then that in every neighborhood of the vector } X \text{ there is a vector field } Y \text{ and a point } p \in M \text{ such that } \omega^Y(p) = \emptyset \ . \text{ Since the closure of the semitrajectory of every compact set is compact, we may choose from the sequence } \omega_{i_1}, \omega_{i_2}, \ldots \text{ a sequence } \omega_{i_k} \gg \omega_{i_2} \gg \omega_{i_3} \gg \ldots \text{ such that if only } k > l+1 \text{ then } \overline{\omega_{i_k}} \cap \overline{\omega_{i_l}} = \emptyset \}
Then choose for every $\tilde{\omega}_k$ a neighborhood V_{ik} of $\tilde{\omega}_k$ such that $V_{ik} \cap V_{i1} = \emptyset$ if $k \neq 1$. By Lemma 3 there are a vector field Y_1 and $p_{i1} \in V_{i1}$ such that $\omega Y_1(p_{i1}) \subseteq \tilde{\omega}_{i3}$.

$Y_1 = X$ off V_{i1} and $\sup_{p \in M} ||Y_1(p) - X(p)||$ is arbitrarily small. Similarly we change the vector field Y_1 on V_{i3} so that for this new vector field Y_2, $\omega Y_2(p_{i1}) \subseteq \tilde{\omega}_{i4}$ and then repeat this procedure for V_{i4}, V_{i5}, \ldots. In this way we get a vector field Y which is arbitrarily near to X and such that $\omega Y(p_{i1}) = \emptyset$.

This proves the necessity part of our theorem.

REFERENCES

1. P. Hartman Ordinary differential equations Wiley 1964
2. Z. Nitecki M. Shub Filtrations, decompositions and explosions Amer. Jour. of Math. 4 1975
3. S. Smale Differentiable dynamical systems Bull. Amer. Math. Soc. 73 1967

Tadeusz Nadzieja
Instytut Matematyczny, Uniwersytet Wrocławski
Pl. Grunwaldzki 2/4 50 234 Wrocław