EIRA J. SCOURFIELD

On the property \((f(n), g(n)) = 1\) for certain multiplicative functions

<http://www.numdam.org/item?id=AST_1977__41-42__273_0>
ON THE PROPERTY \((f(n),g(n)) = 1\) FOR CERTAIN MULTIPLICATIVE FUNCTIONS

by

Eira J. SCOURFIELD

The problem of investigating the sum

\[\Sigma_n(x) = \sum_{\substack{n \leq x \\text{ is an integer} \\text{ such that} \ (n,h(n)) = 1}} 1 \]

for certain integer-valued arithmetic functions \(h\) has been considered by several authors in cases when the arithmetic properties of \(n\) and \(h(n)\) are not too closely related, and the expected result

\[\Sigma_n(x) \sim \frac{6x}{\pi^2} \]

established; for references, see this author's paper [2]. Multiplicative functions, however, present a rather different problem, and in 1948 [1], Erdös obtained the result

\[\sum_{\varphi(x)} \sim e^{-\gamma} x / \log \log x \quad \text{as} \quad x \to \infty \]

for Euler's function \(\varphi\). In [2], we considered the sum (1) for a class of integer-valued multiplicative functions, called polynomial-like, that includes \(\varphi\) and the divisor functions \(\sigma_v (v \geq 0)\); \(f\) is polynomial-like if there exists a polynomial \(W \in \mathbb{Z}[x]\) such that
\[f(p) = W(p) \quad \text{for all primes } p. \quad (2) \]

For these functions, we proved in [2]:

THEOREM 1. If the polynomial \(W \) of (2) satisfies \(\deg W > 0 \), \(W(0) \neq 0 \), then there exist constants \(C > 0 \), \(\lambda \) \((0 < \lambda \leq 1, \lambda \text{ rational}) \), depending on \(f \), such that

\[
\sum_f(x) \sim C x (\log \log \log x)^{-\lambda} \quad \text{as } \quad x \to \infty.
\]

If \(W \) is a non-zero constant, then there exists a constant \(C \) \((0 < C \leq 1) \) such that

\[
\sum_f(x) \sim C x \quad \text{as } \quad x \to \infty.
\]

If \(W(0) = 0 \),

\[
\sum_f(x) = O(x^{1/2}).
\]

Example. \(f = \sigma_v \) \((v > 0) \). For \(v \) odd, \(\lambda = 1 \), \(C = e^{-v} \), whilst for \(v \) even, \(\lambda = 2^{-\beta} \), where \(2^\beta \| v \).

We obtain a generalization of the sum in theorem 1 by noting that \(n \) itself is a polynomial-like multiplicative function. Let \(f, g \) be multiplicative polynomial-like functions, and let \(W_1, W_2 \in \mathbb{Z}[x] \) be the polynomials such that

\[
f(p) = W_1(p), \quad g(p) = W_2(p) \quad \text{for all primes } p.
\]

Suppose that the following conditions hold:

(i) \(\deg W_i > 0 \quad (i = 1, 2); \)

(ii) \(W_1(x) = x^{a_1} W_1^*(x) \) where \(a > 0 \), \(W_1^*(0) \neq 0 \), \(\deg W_1^* > 0 \), and \(W_2(0) \neq 0 \);

(iii) \(W_1, W_2 \) are coprime polynomials.

It follows from (iii) that the set
MULTIPLICATIVE FUNCTIONS

\[S_0 = \{ p : p | (f(q), g(q)) \text{ for all primes } q \neq p \} \]

of primes is finite (possibly empty). If \(p \in S_0 \), \(p | (f(n), g(n)) \) whenever there exists a prime \(q \neq p \) with \(q \| n \), and hence for "most" \(n \). This suggests that for our generalization of the sum \(\Sigma_f(x) \), we consider

\[\Sigma_{f, g}(x) = \sum_{p | (f(n), g(n)) \forall p \in S_0} 1. \]

Using results from sieve theory, we can prove

THEOREM 2. If conditions (i), (ii), (iii) above hold, there exist constants \(C > 0 \), \(\lambda (0 < \lambda \leq 1 \text{, } \lambda \text{ rational}) \) such that

\[\frac{x}{\log x} \log \log x \ll \Sigma_{f, g}(x) \ll \frac{x}{\log x} \exp \left(\frac{C \log \log x}{(\log \log \log x)^\lambda} \right). \]

Conditions (i), (ii), (iii) ensure that the sum \(\Sigma_{f, g}(x) \) is not too small and does not reduce to the sum considered in theorem 1 or in other published papers.

Examples.

(i) \(f = \varphi \), \(g = \sigma_v \) \((v > 0)\), when \(S_0 = \{2\} \), \(\lambda = 2^{-\beta} \) where \(2^\beta \| v \).

(ii) \(f = \sigma_v \), \(g = \sigma_x \) \((v, x > 0 \text{, } \beta > \gamma \text{, where } 2^\beta \| v, 2^\gamma \| x)\), when \(S_0 = \{2\} \), \(\lambda = 2^{-\beta} \).

The method used to prove the upper bound in theorem 2 also establishes

THEOREM 3. The number of positive integers \(n \leq x \) with the property that \(n \) does not have a prime divisor in every residue class \((\text{mod } p)\) coprime to \(p \) for any odd prime \(p \) is

\[\ll \frac{x}{\log x} \exp \left(\frac{B \log \log x}{(\log \log \log x)} \right), \]

where \(B > 0 \) is constant.
BIBLIOGRAPHY

Eira J. SCOURFIELD
Westfield College
Department of Mathematics
LONDON NW3 7ST, England U.K.