DAVID A. GAY

Normal extensions defined by a binomial equation

Astérisque, tome 41-42 (1977), p. 215-218

<http://www.numdam.org/item?id=AST_1977__41-42__215_0>
NORMAL EXTENSIONS DEFINED BY A BINOMIAL EQUATION

by

David GAY*

Let F be a field and α a root of $x^n - a \in F[x]$. When is $F(\alpha)$ normal over F? When is $F(\alpha)$ the splitting field of $x^n - a$ over F? Consider the following examples (over the rational field \mathbb{Q}).

1. $x^2 - 2$ ($\mathbb{Q}(\alpha)$ is not normal for any root α).
2. $x^{12} - 1$ ($\mathbb{Q}(\alpha)$ is normal for any root α; there exists a root β such that $\mathbb{Q}(\beta)$ is the splitting field).
3. $x^6 + 3$ ($\mathbb{Q}(\alpha)$ is the splitting field for every root α).
4. $x^6 + 27$ ($\mathbb{Q}(\alpha)$ is the splitting field for every root α).
5. $x^{42} - 21^7$ (If $\sqrt[6]{21}$ is a real 6-th root of 21 and ζ a primitive 42-th root of 1, then $\sqrt[6]{21}$ and $\zeta\sqrt[6]{21}$ are roots of the binomial; $\mathbb{Q}(\sqrt[6]{21})$ is not normal; $\mathbb{Q}(\zeta\sqrt[6]{21})$ is the splitting field).
6. $x^4 - 9$ ($\mathbb{Q}(\alpha)$ is normal for every root; for no root is $\mathbb{Q}(\alpha)$ the splitting field).

* Partially supported by Battelle Institute, Columbus, Ohio.
Background. Darbi [1] found all irreducible, normal binomials over \(\mathbb{Q} \). Example (3) is from his list. Mann and Vélez [3] extended this list to include all binomials sharing the property of examples (3) and (4): \(\mathbb{Q}(a) \) is the splitting field for every root \(a \). They call such binomials uniformly normal. In case the exponent is a prime power, Schinzel [4; Proposition 1] has determined for an arbitrary field those binomials which are products of normal polynomials (thus including irreducible and uniformly normal binomials).

In this exposé we consider a binomial \(x^n - a \in \mathbb{Q}[x] \) satisfying the property (shared by examples (2) - (5)):

There exists a root \(a \) of \(x^n - a \) such that \(\mathbb{Q}(a) \) is the splitting field of \(x^n - a \).

Such a binomial is called partially normal and the special root \(a \) a generating root.

Results. In the theorem below we list all partially normal binomials (over \(\mathbb{Q} \)).

Without loss of generality, we consider only those binomials \(x^n - a \) with \(a \) an integer. For positive integer \(b \), let \(s(b) \) be the largest square integer dividing \(b \) and \(f(b) = b/s(b) \), the square-free part of \(b \). If \(c \) is a square-free integer \((s(c) = 1) \), we denote by \(i(c) \) the number of prime factors of the form \(4k+3 \).

Let \(\mathbb{N} \) denote the natural numbers.

Theorem. The partially normal binomials over \(\mathbb{Q} \) are

(A) \(x^m + b^m \), \(m, b \in \mathbb{N} \).

(B) \(x^{2m} \pm b^m \), \(m, b \in \mathbb{N} \) such that \(f(b) > 1 \) and, in case sign is negative and \(m = 2m' \) with \(m' \) odd, then \(f(b)|m' \) and \(i(f(b)) \) odd.

(C) \(x^{4m} - b^m \), \(m, b \in \mathbb{N} \), \(m \) odd, \(f(b)|m \), and \(i(f(b)) \) odd.

(D) \(x^{4m} + b^m \), \(m, b \in \mathbb{N} \), \(f(b) > 1 \), and

(a) if \(m \) is odd, then \(f(b)|m \) and \(i(f(b)) \) even.
(b) if m is even, then $f(b)|(m/2)$.

(E) $x^{6m} - b^m$, $m, b \in \mathbb{N}$, $(m, 6) = 1$, $3|f(b)$, $f(b)|3^m$, and $\delta(f(b))$ even.

(F) $x^{6m} + b^m$, $m, b \in \mathbb{N}$, $(m, 3) = 1$, 4^m, $3|f(b)$ and

(a) if m is odd, then $f(b)|3^m$ and $\delta(f(b))$ even,

(b) if m is even, then $2|f(b)$ and $f(b)|6^m$.

Moreover, the Galois group of a partially normal binomial is abelian iff it falls under case (A) or (B).

Remarks. A more detailed version of theorem (with proof) together with some consequences of the notion of partially normal binomial over real fields can be found in [2].

An investigation of normal extensions (of a field F) defined by a binomial equation might start with γ algebraic over F, $F(\gamma)$ normal over F, and $\gamma^m \in F$ for some m. From these assumptions, if n is the smallest positive integer such that $\gamma^n \in F$, one can show that a primitive n-th root of 1 is in $F(\gamma)$. It then follows that $x^n - \gamma^n$ is partially normal over F. The converse is not true: if $x^n - a$ is partially normal over F with generating root a, then it may be the case that $a^t \in F$ for some $t < n$. [2, p. 21].

217
BIBLIOGRAPHY

