JOHN E. FRANKE

Structural stability of smooth contracting endomorphisms on compact manifolds

Astérisque, tome 31 (1976), p. 141-188

<http://www.numdam.org/item?id=AST_1976__31__141_0>
 Structural Stability of Smooth Contracting Endomorphisms
on Compact Manifolds

by

John E. Franke*

Department of Mathematics
North Carolina State University
Raleigh, North Carolina 27607

*This paper is a revision of a part of the author's thesis, [3], which was completed at Northwestern University (and the Institute Des Hautes Etudes Scientifique) under the supervision of R. F. Williams.
§1. Introduction.

Many people including S. Smale [8] have been interested in the problem of finding structurally stable maps and classifying them. M. Shub in [7] studied expanding maps and Z. Nitecki in [6] increased the set to nonsingular endomorphisms. A singularity is a point where the derivative is not an isomorphism. Other mathematicians such as H. Whitney [9, 10, 11], J. Mather [5], R. Thorn and H. I. Levine [4] have studied maps between two manifolds which did have singularities and looked at the stability of such maps. In this paper we will use the structural stability of Smale because we are looking at maps from one manifold to itself. We will allow singularities, in fact, there are always singularities for contractions on a compact manifold.

In the paper M will always be a compact, C^∞, connected manifold without boundary and d will be a fixed metric on M. An endomorphism $f: M \to M$ is a contraction if for some λ, $0 < \lambda < 1$, $d(f(x), f(y)) \leq \lambda d(x, y)$ for all $x, y \in M$. By the compactness of M we see that the set of C^r contractions is an open subset of $C^r(M, M)$, the space of C^r maps from M to M with the C^r topology.

The endomorphism f is said to be topologically conjugate to another endomorphism g if there exists a homeomorphism h of M such that $h \cdot f = g \cdot h$. If f is in $C^r(M, M)$ then it is called C^r-structurally stable if there is a neighborhood N of f such that each g in N is topologically conjugate to f.

In [2] L. Block and I studied contracting endomorphisms on the circle and showed that the subset of all C^2-structurally stable contractions was open and dense in the C^2 topology. We also gave necessary and
sufficient conditions for a C^2 contraction to be C^2 structurally stable. The major purpose of the present work is to extend those results to two dimensional manifolds.

Theorem 1. The set of C^r-structurally stable contractions on any compact, connected, two dimensional, C^∞ manifold M without boundary is an open dense subset of all C^r contractions in the C^r topology for $r \geq 12$.

The reason for taking $r \geq 12$ is found in the work of H. Whitney [9, 10, 11] who showed that for $r \geq 12$ the set of maps W is $C^r(M,M)$ which satisfy the following properties is open and dense in $C^r(M,M)$:

A. At each point x and $f(x)$ there are coordinate charts such that f has one of the following normal forms:

1. regular $\begin{pmatrix} x \\ y \end{pmatrix} \rightarrow \begin{pmatrix} x \\ y \end{pmatrix}$
2. fold $\begin{pmatrix} x \\ y \end{pmatrix} \rightarrow \begin{pmatrix} x^2 \\ y \end{pmatrix}$
3. cusp $\begin{pmatrix} x \\ y \end{pmatrix} \rightarrow \begin{pmatrix} xy - x^3 \\ y \end{pmatrix}$

B. The images of folds intersect only pair-wise and transversally, whereas images of folds and cusps do not intersect.

H. Whitney also showed that f was in W if and only if given a neighborhood U of the identity in $C^0(M,M)$ there is a neighborhood V of f in $C^r(M,M)$ such that if $g \in V$ then there are two homeomorphisms h_1 and h_2 in U such that $f \cdot h_1 = h_2 \cdot g$.

143
We will call the maps in W Whitney maps.

J. Mather [5] extended these results to arbitrary dimensional manifolds by showing that there is an open dense set A of $C^\infty(M,M)$ such that if U is a neighborhood of the identity in $C^0(M,M)$ and $f \in A$ then there is a neighborhood U of f in $C^\infty(M,M)$ such that if $g \in V$ then there are two homeomorphisms h_1 and h_2 in U such that $f \cdot h_1 = h_2 \cdot g$. He calls such maps topologically stable.

Using Mather's results we will show the following:

Theorem 5. On every n-dimensional compact C^∞ manifold M without boundary there is a C^∞-structurally stable contraction.

Let us establish the following notation before we describe the C^∞-structurally stable contracting endomorphisms on two dimensional manifolds M. We will use Σ_f for the set of singularities of an endomorphism f and x_f for the unique fixed point if f is a contraction. Two distinct points, $x, y \in M$ are said to be coincident under f if there exist non-negative integers, i and j, such that $f^i(x) = f^j(y)$.

Let K be the subset of all Whitney maps f which are contracting endomorphisms and which satisfy the following conditions:

1. The unique fixed point x_f of f is regular and is not coincident with any singularity.

2. A cusp point is not coincident with any other singularity.

3. For any set of three singularities, there is at most one subset of two elements which are coincident.
4. If \(i < j \) and they are the smallest integers under which \(x \) and \(y \), two singularities, are coincident; then

\[
D^i_x(T_x f) \oplus D^j_y(T_y f) = T^i f(x).
\]

If \(i = 0 \) one has the added property that

\[
D^j_y(T_y f) \oplus \ker D^i_x = T^i x.
\]

From the possible forms of singularities it is clear that \(\Gamma_f \) is a one-dimensional manifold so that \(T^i_{y \Gamma_f} \) is defined as its tangent space at \(y \).

Theorem 2. \(K \) is an open dense subset of the \(C^r \) contractions on \(M \).

Theorem 3. \(K \) is the set of all \(C^r \)-structurally stable contractions on \(M \).

In the proof of the last theorem, one constructs a stratification \(S \) of \(M \) by using the singularities and distinguishing between cusps and folds. One then adds a finite number of images of the singularities and finally all the inverse images. These stratifications give information about the topological conjugacy classes.

Theorem 4. If \(f, g \in K \) are topologically conjugate, then the conjugating homeomorphism \(h \) is a strata preserving map between \(S(f) \) and \(S(g) \).
§II. Transversality Results

For definitions and theorems covering transversality theory see Abraham and Robbin [1]. In the notation of Levine [4], the one jet $J^1(M,M)$ can be divided into three regular submanifolds S_0, S_1 and S_2 which correspond to jets having rank two, one and zero, respectively. Every Whitney endomorphism f has the property that its 1-extension $J^1(f): M \to J^1(M,M)$ is transverse to S_1. Since $J^1(f)$ is basically the derivative of f, it is C^{r-1} and $(J^1(f))^{-1}(S_1)$ is a C^{r-1} submanifold of M. Note that $\Gamma_f = (J^1(f))^{-1}(S_1)$, hence the singularity set for any f in W is a C^{r-1} submanifold.

This is also the setting for the transversal isotopy theorem (TIT) see [1]. This theorem says that given a neighborhood N of the inclusion map I in $C^{r-1}(E_f,M)$, there is a neighborhood A of f such that, if $g \in A$ there is an $h \in N$ sending Γ_f to Γ_g. In fact, h is a section over Γ_f in a total tubular neighborhood of Γ_f whose image is C^{r-2} flow isotopic to Γ_f.

One should be aware of the following two theorems which will be used many times in the lemmas of this section:

[1, pp. 46-47] Openness of Transversal Intersection (OTI): Let A, X, and Y be C^1 manifolds with X finite dimensional, $W \subset Y$ is a closed C^1 submanifold, $K \subset X$ a compact subset of X, and $\rho: A \to C^1(X,Y)$ a C^1 representation. Then the subset $A_{KW} \subset A$ defined by

$$A_{KW} = \{a \in A: \rho_a \cap W \text{ for } x \in K\}$$

is open.
[1, pp. 47-50] Transversal Density Theorem (TDT): Let A, X, Y be C^r manifolds, $p: A \to C^r(X,Y)$ a C^r representation, $W \subset Y$ a submanifold and $ev_p: A \times X \to Y$ the evaluation map. Define $A_W \subset A$ by

$$A_W = \{ a \in A : p_a \cap W \}.$$

Assume that

1. X has finite dimension n and W has finite codimension q in Y.
2. A and X are second countable.
3. $r > \max(0, n-q)$.
4. $ev_p \cap W$.

Then A_W is residual (and hence dense) in A.

These basic transversality theorems will be used to prove Lemmas 1-5: Let W be the set of Whitney contracting endomorphisms.

Lemma 1: Let $K_1 = \{ f \in W :$ The unique fixed point of f, x_f, is regular and coincident with no singularities$\}$, then K_1 is open and dense in W.

Proof: (Openness) Let $f \in K_1$. Since x_f is a regular point and f a contraction, there is a compact neighborhood U of x_f on which f is a diffeomorphism and $f(U) \subset \text{int } U$. Since $f(U)$ is a finite distance from x_f and U is a finite distance from $f(U)$; there is a neighborhood N_1 of f in W such that if $g \in N_1$, then g is a diffeomorphism on U and $g(U) \subset \text{int } U$.

147
There is a positive integer n such that \(f^n(M) \subseteq \text{int } U \), since \(f \) is a contraction. By the noncoincidence between \(x_f \) and singularities, there exists an \(\varepsilon > 0 \) such that the distance between \(x_f \) and \(f^n(I_f) \) is greater than \(\varepsilon \). There is a neighborhood \(N_2 \) of \(f \) in \(\mathcal{W} \) such that, if \(g \in N_2 \) then \(d(x_g, x_f) < \frac{\varepsilon}{2} \) and the distance between \(g^n(I_g) \) and \(x_f \) is more than \(\frac{\varepsilon}{2} \). Also, \(g^n(M) \subseteq \text{int } U \).

To see that \(N_1 \cap N_2 \) is a subset of \(K_1 \), note that if \(g \in N_1 \cap N_2 \); then \(g^n(I_g) \subseteq \text{int } U \) and does not contain the fixed point \(x_g \). Also \(g \) maps \(U \) diffeomorphically into \(\text{int } U \). Thus no higher power of \(g \) can send an element of \(g^n(I_g) \) to \(x_g \), and there are no coincidences between \(x_g \) and elements of \(I_g \).

(Density) If there is coincidence between \(x_f \) and some \(x \) in \(I_f \), then the smallest integers for which this happens are of the form \(0, j \) with \(j > 0 \). The proof will be by induction on \(j \). Let \(C_0 = \{ f \in \mathcal{W} : x_f \text{ is regular} \} \); and for each \(j > 0 \), \(C_j = \{ f \in \mathcal{W} : x_f \text{ is regular and there are no coincidences between } x_f \text{ and points of } I_f \text{ with integers } 0 \text{ and } j \} \). Note that the proof of openness also shows that each of these sets is open.

Claim 1: \(C_0 \) is dense in \(\mathcal{W} \).

Proof: Let \(x_f \in I_f \) and take a neighborhood \(U \) of \(x_f \) on which \(f \) has a normal form. If \(x_f \) is a cusp, let \(h \) be a \(C^\infty \) diffeomorphism which moves \(x_{f'} \), and is the identity outside of \(U \). Note that \(hf \) has the same singularity set as \(f \) and each singularity retains its type. By taking \(h \) close to the identity, \(hf \) is in \(\mathcal{W} \), and the
fixed point of \(hf \) is still in \(U \) but is not \(x_f \). Hence \(x_{hf} \) is not a cusp. The remaining possibility is that the fixed point is a fold. In this case if \(T_{x_f} f \oplus Df_{x_f}(T_{x_f} f) \oplus T_{x_f} M \), take a \(C^\infty \) vectorfield \(V \), which is \((y,-x) \) in local coordinates at \(x_f \). Let \(h_\varepsilon \) be its time \(\varepsilon \) diffeomorphism.

By taking \(\varepsilon \) small, \(h_\varepsilon f \) is a small \(C^r \) perturbation of \(f \) and has the same fixed point and singularity set. It does, however, rotate the image of \(\Sigma_f \). Thus \(T_{x_f} f \oplus D(h_\varepsilon f)_{x_f}(T_{x_f} f) = T_{x_f} M \). So suppose \(f \) satisfies this condition. Now shrink \(U \), if necessary, to the extent that \(f(U \cap L_f) \cap \Sigma_f = x_f \). Let \(y \in U \cap L_f \cap \Sigma_f \). Look at the arc in \(U \cap L_f \) connecting \(x_f \) and \(y \) and the arc in \(U \cap f(\Sigma_f) \) connecting \(x_f \) and \(f(y) \). These two arcs form some angle at \(x_f \). Let \(v \) be the unit vector bisecting the angle. Let \(V \) be the \(C^\infty \) vectorfield that is constant at \(v \) in some neighborhood of \(x_f \) and zero outside some larger neighborhood. Let \(h_\varepsilon \) be the time \(\varepsilon \) diffeomorphism for \(V \). If \(\varepsilon \) is small enough, there is a neighborhood \(U_1 \) of \(x_f \) such that no point in \(U_1 \cap L_f \) is fixed under \(h_\varepsilon \cdot f \). But since this is a small \(C^r \) perturbation, the fixed point for \(h_\varepsilon \cdot f \) is in \(U_1 \). Thus the fixed point is regular and \(C_0 \) is dense in \(W \).
Claim 2: C_1 is dense in C_0.

Proof: Note that $f^{-1}(x_f) \cap E_f$ is a finite set because f is locally one to one on f_f. Thus only a finite number of perturbations will be needed. Suppose $f(x) = x_f$ with $x \in E_f$. The perturbation will consist of changing f on a compact neighborhood N of x which is contained in an open neighborhood where f has a normal form. From the normal forms, it is clear that there is only one point in N that is coincident with x_f. Thus $f(\partial N)$ is a finite distance away from x_f. Let V be a vectorfield that is zero on a neighborhood of $f(\partial N)$ and h_f its time ϵ diffeomorphism. Then changing f to $h_f \cdot f$ on N and keeping f on the complement of N gives a C^r perturbation of f. If x is a cusp, take a vectorfield V so that $V(x_f)$ is of unit length and in the opposite direction of the cusp. If x is a fold, take V so that $V(x_f)$ is of unit length and perpendicular to $f(E_f \cap N)$. Thus, in either case, the perturbed function has one less coincidence. Hence C_1 is dense in C_0.

One is now ready for the induction step. Assume C_j is open and dense in W. Thus if $x \in E_f$ is such that $f^i(x) \in E_f$ for $1 \leq i \leq j+1$, then $f^{j+1}(x)$ is at least as far from x_f as $f^j(E_f)$ is.
Hence there is an open set N about x, such that $f^{j+1}(N)$ is at least half as far from x_f as $f^j(x_f)$ is. Let A be the union of all these open sets. Then $\Sigma_f - A$ is a compact set on which f^{j+1} is locally one to one. Hence $f^{-1}(j+1)(x_f) \cap \Sigma_f$ is a finite set. The perturbations of f are like those in the proof that C_1 is dense in C_0 with the role of x_f played by $f(x)$ where $f^{j+1}(x) = x_f$. This is possible because $f^j(f(x))$ is equal to x_f after such perturbations and the orbit of $f(x)$ consists entirely of regular points. Thus each C_j is open and dense in \mathcal{W}. Since K_1 is the intersection of a countable number of open dense sets, it is dense.

Q.E.D

One should note that this lemma only uses the C^0 stability of the singularity set. The fact that it is C^1 stable will be used in the next lemma.

Lemma 2: Let $K_2 = \{ f \in K_1 : \text{for any } x, y \in \Sigma_f, \text{ a coincidence between them with integers } 0 \text{ and } j \text{ implies that neither } x \text{ nor } y \text{ is a cusp and } Df^j(T_{y_f}T_{x_f}) \oplus T_{x_f} = T_x M = Df^j(T_{y_f}T_{x_f}) \oplus \ker D_{x_f} \}$. Then K_2 is open and dense in K_1.

Proof: (Openness) Let $f \in K_2$, then there is a compact neighborhood U of x_f and an integer n such that f is diffeomorphism on U, $f(U) \subset \text{int } U$, and $f^n(M) \subset \text{int } U$. Thus the points of coincidence that we are interested in can only happen with $j < n$. Note that f has only a finite number of cusps and their first n images are disjoint from Σ_f. Also note that $f^j(\Sigma_f)$ is compact and a finite distance from the set of cusps. From Whitney's stability theorem
(see the introduction) it is clear that if g is close to f then g will also have these properties.

Now $f^i|E_f \in C^1(E_f, M)$. Since $f^i|E_f$ is transverse to I on E_f, $f^i|E_f \times I$ is transverse to the diagonal Δ in $M \times M$. One can now apply the Openness of Transversal Intersection Theorem, because E_f is compact and Δ is closed. This theorem says that there are neighborhoods N_1 of f^i in $C^1(E_f, M)$ and N_2 of I in $C^1(E_f, M)$ such that if $\phi \times \psi \in N_1 \times N_2$, then ϕ is transverse to ψ. If g is a small enough perturbation of f, and h is the diffeomorphism close to I such that $h(E_f) = E_g$ given by TIT; then $g^i h \in N_1$ and $h \in N_2$. Hence $g^i h$ is transverse to h. This means that $g^i|E_g$ is transverse to E_g.

Since E_f is one dimensional, $f^i(E_f) \cap E_f$ is zero dimensional and, in fact, finite, since E_f is compact. If g is a perturbation of f; then, as noted, $g^i(E_g)$ is transverse to E_g and the coincidence points can be made arbitrarily close to those for f. So suppose $x, y \in E_g$ and $g^i(y) = x$. Then by continuity of the eigen directions, one obtains that $Dg^i_y(T_y g)$ and Dg^i_x span $T_x M$. Hence K_2 is indeed open in K_1.

(Density) Let $C_j = \{f \in K_1: \text{for any } x \text{ and } y \in E_f; a$ coincidence between them with integers 0 and $i, i \leq j, \text{implies that neither } x \text{ nor } y \text{ is a cusp and } Df^i_y(T_y g) \text{ together with either } T_x E_f$ or $ker D_x f \text{ span } T_x M\}$. Note that the openness of C_j in K_1 is proven above. Also note that $C_g = K_1$, so it is dense in K_1. One now proceeds by induction on j to show that each C_j is dense in K_1.

152
CONTRACTING ENDOMORPHISMS

Suppose C_j is dense in K, and let $f \in C_j$. Let A be an open neighborhood of I in $\text{Diff}^\mathbb{R}(M)$ such that, for $h \in A$, $hf \in C_j$.

Now consider the representation $\rho: A \to C^2(\mathcal{I}_f, M)$ given by $\rho(h) = (hf)^{j+1}$. This representation is at least C^2, because the evaluation $\text{ev}_\rho: A \times \mathcal{I}_f \to M$ can be thought of as first sending h to (hf, \ldots, hf) and then evaluating it $j+1$ times.

Composition on the left is smooth and evaluation is C^2. Since the first three conditions stated in the Transversal Density Theorem are clearly satisfied, the only one of interest is the last. To check the last one, let $h \in A$ and $y \in \mathcal{I}_f$. If $(hf)^{j+1}(y) \notin \mathcal{I}_f$, then ev_ρ is transverse to \mathcal{I}_f at (h, y). So suppose $(hf)^{j+1}(y) = x \in \mathcal{I}_f$. If there is an integer i between 0 and $j+1$ such that $(hf)^i(y) = z \in \mathcal{I}_f$, then the inductive hypothesis says that $D(hf)^i_y(T^*_{\mathcal{I}_f})$ together with either $T^*_{\mathcal{I}_f}hf$ or $\ker D^*_{\mathcal{I}_f}hf$ span T^*_M. Note that $\mathcal{I}_f hf = \mathcal{I}_f$ and $\ker D^*_{\mathcal{I}_f} hf = \ker D^*_{\mathcal{I}_f} f$. Thus $D(hf)^{j+1}_y(T^*_{\mathcal{I}_f}) = D(hf)^{j+1-i}_y(T^*_{\mathcal{I}_f})$, and by the inductive hypothesis $D(hf)^{j+1-i}_y(T^*_{\mathcal{I}_f})$ together with either $T^*_{\mathcal{I}_f} x$ or $\ker D^*_{\mathcal{I}_f} x$ span $T^*_x M$. So we can suppose that the orbit of y under hf is regular between y and x. Take a smooth vector field V that is zero outside a small neighborhood of $hf(y)$ and constant on some smaller neighborhood. Look at the curve of diffeomorphisms $\phi_t h$ through h where ϕ_t is the flow of V. Now ev_ρ acting on the curve $(\phi_t h, y)$ gives a curve in M at x which corresponds to some element in $T^*_x M$. Since the orbit of y is made up of regular points, any vector in $T^*_x M$ can be realized by an appropriate choice of V. Hence ev_ρ is transverse to \mathcal{I}_f at (h, y), and therefore it is...
transverse everywhere. Thus there is an open dense set of
diffeomorphisms in A, such that if h is one of these, then
$(hf)^{j+1}$ is transverse to Σ_f. In particular, there is one
arbitrarily close to the identity. Since $\Sigma_{hf} = \Sigma_f$, we have been
successful in perturbing f to an endomorphism that satisfies
the first transversality condition.

Suppose $f \in C_j$ such that a coincidence between $x, y \in \Sigma_f$ with
integers 0 and $j+1$ implies that $Df_{j+1}^y(T_y \Gamma_f) \oplus T_x \Gamma_f = T_x \mathcal{M}$. Note
that such maps are open in C_j. If $Df_{j+1}^y(T_y \Gamma_f) \oplus \ker Df = T_x \mathcal{M}$,
then the inductive hypothesis says that the orbit of y between y
and x consists of regular points. Let V be the vectorfield which
is zero outside a small neighborhood of $t(y)$ and is $(x, y) \to (y, -x)$
in local coordinates at $t(y)$. $D(\phi_t f)^{j+1} (T_{t(y)} \Gamma_f)$ is basically
rotated from $Df_{j+1}^y(T_y \Gamma_f)$ and $\ker Dx_t f = \ker Df$. Thus taking
θ small gives a perturbation of f which satisfies the spanning
condition. Since there are only a finite number of intersections
of this form and the spanning condition is open, we can do a
small perturbation and obtain the desired property.

Let $f \in C_j$ and satisfy the two spanning conditions. If y
is a cusp then $Df_{j+1}^y (T_y \Gamma_f) = 0$, so y must not be coincident with
any singularity. To remove intersections between $f^{j+1}(y)$, $y \in \Sigma_f$,
and a cusp, use perturbations similar to those used in removing
coincidences between singularities and the fixed point. Thus one
sees that each C_j is open and dense in K_1. Since $K_2 = \bigcap_{j=0}^\infty C_j$,$K_2$ is dense in K_1. Q.E.D

It should be noted that if $f \in K_2$, then f^i, for any i, is
locally one to one on Σ_f; and $f^i|\{folds\}$ is an immersion.
Lemma 3: Let $K_3 = \{ f \in K_2 : \text{If } x,y,z \in \mathcal{E}_f, \text{ then there do not exist integers } i,j \text{ such that } x = f^i(y) = f^j(z) \}$. K_3 is open and dense in K_2.

Proof: Let $K_{ij} = \{ f \in K_2 : \text{If } x,y,z \in \mathcal{E}_f, \text{ then } \{x\} \cap \{f^i(y)\} \cap \{f^j(z)\} = \emptyset \}$. Order the ordered pairs of non-negative integers (i,j), $i \leq j$, by $(a,b) < (c,d)$ if $b < d$ or $b = d$ and $a < c$. One now proceeds by induction to show that each K_{ij} is open and dense in K_2. Note that if $i = 0$, then $K_{ij} = K_2$.

(Openness) Consider the representation $\rho: C^2(M,M) \times C^2(M,M) \times C^2(M,M) \to C^2(\mathcal{E}_f \times \mathcal{E}_f \times \mathcal{E}_f - U_{ij}, M \times M \times M)$ given by $(g_1,g_2,g_3) \mapsto \mathcal{E}_f \times \mathcal{E}_f \times \mathcal{E}_f - U_{ij}$, where $f \in K_{ij}$ and $U_{ij} = \emptyset$ if $i \neq j$. Here $U_{ii} = \Sigma_f \times V_{ii}$ where V_{ii} is a small neighborhood of the diagonal in $\mathcal{E}_f \times \mathcal{E}_f$. Note if V_{ii} is small enough, there is a neighborhood N of f such that if $g \in N$ and $h: \mathcal{E}_f + V_g$, the map given by TIT, then $g^i h \times g^j h: V_{ii} \to M \times M$, such that if $(x,y) \in V_{ii}$, then $g^i h(x) = g^j h(y) \Rightarrow x = y$. This follows from the local stability of Whitney maps and Lemma 2. Since $f \in K_{ij}$, $\rho(\text{id}, f^i, f^j) \cap \Delta_M$ where $\Delta_M = \{(x,x,x) : x \in M \}$. Now by the openness of transversal intersection, there is a neighborhood $N_1 \times N_2 \times N_3$ of (id, f^i, f^j) in $C^2(M,M) \times C^2(M,M) \times C^2(M,M)$ such that if $(g_1,g_2,g_3) \in N_1 \times N_2 \times N_3$, then (g_1,g_2,g_3) also misses Δ_M on $\mathcal{E}_f \times \mathcal{E}_f \times \mathcal{E}_f - U_{ij}$. Now if g is close enough to f and $h: \mathcal{E}_f + V_g$ is given by TIT, then $(h, g^i h, g^j h) \in N_1 \times N_2 \times N_3$ and hence $g \in K_{ij}$. Thus all the K_{ij} are open in K_2. Now since $f \in K_2$, there is a neighborhood N of f in K_2 and an integer n such that
if \(g \) is in \(N \), then \(g^n(M) \) is contained in a neighborhood of \(x_g \) that gets mapped diffeomorphically into itself. Thus if \(j \geq n \), there are clearly no coincidences of the type we are discussing; and \(K_{ij} \) contains \(N \). Thus \(K_3 \) is open in \(K_2 \).

(Density) For \(i = j \), by the inductive hypothesis the orbit of \(x \) between \(x \) and \(f^i(x) \) consists of regular points if \(x \in \mathcal{I}_f \) and \(f^i(x) \in \mathcal{I}_f \). Since \(f^i : \mathcal{I}_f \to M \) is transverse to \(\mathcal{I}_f \), the number of such \(x_i \) is finite, and the TIT says that for \(g \) close to \(f \) there are corresponding points \(y_i \) close to the \(x_i \). Suppose there are two points, say \(x_1 \) and \(x_2 \), such that \(f^i(x_1) = f^i(x_2) \). Change \(f \) in a small neighborhood \(U \) of \(x_1 \) by composing \(f \) with \(\varphi_t \).

Here \(\varphi_t \) is a small time diffeomorphism coming from a vectorfield \(V \) that is zero outside a small neighborhood of \(t(x_1) \). At \(f(x_1) \), \(V \) should be in the direction which corresponds to the tangent space to \(\mathcal{I}_f \) at \(f^i(x_1) \). In other words, \(Df(x_1)^{-1} V \in T_{f^i(x_1)} \mathcal{I}_f \).

Note that \((f^i \varphi_t)^{-1} (\mathcal{I}_f \cap U) \cap f^i(x_1) = \emptyset \). Thus the point in \(\mathcal{I}_f \cap U \) that goes to \(\mathcal{I}_f \) under the perturbation does not go to \(f^i(x_2) \). In this way, the number of such intersections can be reduced to zero.

Suppose \(i \neq j \). Note that \(f^{j-1} (\mathcal{I}_f) \cap \mathcal{I}_f, f^i(\mathcal{I}_f) \cap \mathcal{I}_f, \) and \(f^j(\mathcal{I}_f) \cap \mathcal{I}_f \) because \(f \in K_2 \). Let \(\{x_k\}, \{y_{\ell}\}, \) and \(\{z_m\} \) be the finite set of points in \(\mathcal{I}_f \) that are mapped to \(\mathcal{I}_f \) under \(f^{j-1}, f^i, \) and \(f^j \) respectively. By the inductive hypothesis, \(\{f^{j-1}(x_k)\} \) and \(\{f^i(y_{\ell})\} \) are in one to one correspondence with \(\{x_k\} \) and \(\{y_{\ell}\} \) respectively. Suppose there is an \(x_s \) such that \(f^{j-1}(x_s) = y_{\ell} \).

Note that the orbit of \(y_{\ell} \) is regular between \(y_{\ell} \) and \(f^i(y_{\ell}) \).
Thus one can do a perturbation of f in a neighborhood of y_ℓ so that $g^{i_1}(y_\ell) \not\in f_\ell = g_\ell$. Since g is a small perturbation of f, the sets $\{x_k', y_\ell', z_m'\}$, and $\{g^{j_1}(x_k'), g^{i_1}(y_\ell')\}$, $\{g^j(z_m')\}$ are arbitrarily close to the corresponding sets for f. Thus if $f^{j_1}(x_k') \not\in \{y_\ell\}$, then $g^{j_1}(x_k') \not\in \{y_\ell\}$; and g has at most one less point, namely, $x_s' = x_s$, such that $g^{j_1}(x_s') \not\in \{y_\ell\}$. In this way one can reduce the number of such coincidences to zero. In neighborhoods of y_ℓ where $f^i(y_\ell) = f^j(z_m)$, one can do similar perturbations so that $f_g = f_f$, $g^j(z_m) = f^j(z_m)$ but no singularity in the neighborhood goes to $g^j(z_m)$. Thus K_{ij} is dense in K_2. Since $K_3 = \bigcap K_{ij}$, the Baire Category Theorem says that K_3 is dense in K_2. Q.E.D.

Lemma 4: Let $K_u = \{f \in K_3$: if x and y, two singularities, are coincident and if i and j are the smallest integers under which they collide, then $Df^i_x(T_x f) \oplus Df^j_y(T_y f) = T^i_\ell(x)\}$. Then K_u is open and dense in K_3 and hence in K_2.

Proof: Let $K_{ij} = \{f \in K_3$: if x and y are two singularities and $f^i(x) = f^j(y)$, then $Df^i_x(T_x f) \oplus Df^{j'}_y(T_y f) = T^i_\ell(x)\}$ where i' and j' are the smallest integers under which x and y are coincident). One can also take $i < j$ and order the ordered pairs by $(a,b) < (c,d)$ if $b < d$ or $b = d$ and $a < c$. One now proceeds by induction to show that each K_{ij} is open and dense in K_2.

The first step is done because $K_\infty = K_0 = K_3$. So assume all $K_{i',j'}$ are open and dense in K_2 for $(i',j') < (i,j)$. The inductive step breaks into two cases: first $i = j$, and second $i < j$. 157
Case 1: Let $i = j$. Since the Whitney maps satisfy this transversality condition with $i = j = 1$ (see introduction), K_{11} is open and dense in K_2. If $i > 1$, let $f \in K_3 \cap \bigcap_{(i',j') < (i,i)} K_{i',j'}$, and A be an open neighborhood of the identity in $\text{Diff}^r(M)$, such that if $h \in A$ then $hf \in K_3 \cap \bigcap_{(i',j') < (i,i)} K_{i',j'}$. Consider the representation

$$p: A + C^2(\Sigma_f' \times \Sigma_f - \Delta, M \times M) \text{ given by } p(h) = ((hf)^1, (hf)^1)|_{\Sigma_f' \times \Sigma_f - \Delta}$$

where Δ is the diagonal. The interesting question to check before applying the TDT is that ev_{ρ, Δ_M}, where Δ_M is the diagonal in $M \times M$. Let $(x,y) \in \Sigma_f' \times \Sigma_f - \Delta$ such that $(hf)^1(x) = (hf)^1(y)$.

Let i' be the smallest integer such that $(hf)^1(x) = (hf)^1(y)$. If $i' + i$, then $D(hf)^1'(x)(T_{x'}\Sigma_f') \oplus D(hf)^1'(y)(T_{y'}\Sigma_f) = T_{i'}M$ since $hf \in K_3$. Note also that $hf \in K_3$, and thus $f_1(x)$ is regular and its orbit is regular. This tells us that the transversality property is passed along to give $D(hf)^1_x(T_{x'}\Sigma_f') \oplus D(hf)^1_y(T_{y'}\Sigma_f) = T_{i'}M$.

Hence ev_{ρ, Δ_M} at this point. So let us suppose $i' = i$. If the orbit of y does not consist of regular points, let z be the singularity. Note that there can be at most one singularity, and it must be less than i iterates from y. Let us say that

$$(hf)^k(y) = z.$$

Then $D(hf)^1_y(T_{y'}\Sigma_f) = D(hf)^{1-k}_{z}(T_{z'}\Sigma_f)$ and $D(hf)^{i-k}_{z}(T_{z'}\Sigma_f) \oplus D(hf)^{i}_{x}(T_{x'}\Sigma_f) = T_{i}M$, since $hf \in K_{1-k,1}$.

So again ev_{ρ, Δ_M}. Now suppose the orbit of y is regular. Look at the curve of functions $\phi_t h$ through h, where ϕ_t is the flow of a smooth vectorfield that is zero outside a small neighborhood of $hf(y)$. $T(ev_{\rho, \Delta_M})$ sends the curve over to a vector of the
form \((V,0)\) and since \(D(hf)^{i-1}\) is an isomorphism, one gets every such vector. Thus \(ev\Delta_M\), and there is an \(h\) arbitrarily close to the identity that \((hf)^i - (hf)^i|_{\Sigma_f^- \times \Sigma_f^+} - \Delta\) is transverse to \(\Delta_M\). This says that \(K_{ii}\) is dense in \(K_2\) and in every \(K_{i',j}\), where \((i',j') < (i,i)\).

To see the openness of \(K_{ii}\) in \(K_2\), consider the representation \(\rho: C^2(M,M) \times C^2(M,M) \to C^2(\Sigma_f^- \times \Sigma_f^+ \setminus V_{ii}, M \times M)\), given by
\[
(g_1, g_2) \mapsto (g_1, g_2)|_{\Sigma_f^- \times \Sigma_f^+ \setminus V_{ii}};
\]
where \(V_{ii}\) is as defined in the proof of Lemma 3 and \(f\) is in \(K_{ii} \cap \bigcap_{(i',j') < (i,i)} K_{i',j'}\). Now since \(f \in K_{ii}\), \(\rho(f^i, f^{i'})\) \(\Delta_M\) on \(\Sigma_f^- \times \Sigma_f^+ \setminus V_{ii}\). By OTI, there is a neighborhood \(N_1 \times N_2\) of \((f^i, f^{i'})\) in \(C^2(M,M) \times C^2(M,M)\) such that if \((g_1, g_2) \in N_1 \times N_2\), then \(\rho(g_1, g_2)(\Delta_M)\) on \(\Sigma_f^- \times \Sigma_f^+ \setminus V_{ii}\).

If \(g\) is close enough to \(f\) and \(h: \Sigma_f^- \to \Sigma_g\) is the map given by TIT, then \((g^i h, g^i h) \in N_1 \times N_2\). Also, if \((x, y) \in \Sigma_f^-\Sigma_f^+\) and \(g^i h(x) = g^i h(y)\) then \(x = y\). Thus \(K_{ii}\) is open in \(K_2\).

Case 2: (Density) In this case \(i < j\). The set of singular points \(\{x_k\}\), such that \(f^{j-i}(x_k) \in \Sigma_f\) is finite for \(f \in K_3 \cap \bigcap_{(i',j') < (i,i)} K_{i',j'}\). In fact the orbit of such an \(x\) is regular except at \(f^{j-i}(x)\). Note that \(Df^j_i\) \(\Sigma_f^+\) \(Df^j_i\) \(\ker Df^j_i\) \(M\) and \(Df^j_i\) \(\Sigma_f^-\) \(Df^j_i\) \(M\). Thus the normal form for the fold tells one that there are neighborhoods \(N_2\) of \(x\) and \(N_1\) of \(f^{j-i}(x)\) such that, if \((a, b) \in N_1 \times N_2 \cap \Sigma_f^- \times \Sigma_f^+\) then \(f^{j-i+1}(b) = f^j(a) \Rightarrow b = x\) and \(a = f^{j-i}(x)\). Since the orbit of \(f^{j-i}(x)\) is made up of regular points, one obtains that
\[f^j(b) = f^i(a) \Rightarrow b = x \text{ and } a = f^{j-i}(x). \] In fact, the OTI tells us that if \(g \) is in a small neighborhood of \(f \) and \(h : \Sigma_f \to \Sigma_g \) is given by TIT, then \(g^j h(b) = g^i h(a) \Rightarrow h(b) \) is the unique point in \(\Sigma_g \cap N_1 \) such that \(g^{j-i}(h(b)) \in \Sigma_g \). Find such neighborhoods in \(M \times M \) for each \(x_k \) and let \(U \) be the union. Now consider the representation \(\rho : A \to C^2(\Sigma_f \times \Sigma_f - U, M \times M) \) given by
\[
 h \mapsto ((hf)^i, (hf)^j)_{\Sigma_f \times \Sigma_f - U},
\]
where \(A \), an open neighborhood of the identity in \(\text{Diff}^\infty(M) \), is such that if \(h \in A \) then \(hf \) is close enough to \(f \) to satisfy the conditions in defining \(U \) and
\[hf \in K_3 \cap \bigcap (i', j') \times (i, j) K_{i', j'} \]. The important condition to check before applying TDT is that \(\text{ev}_\rho \bigcap \Delta_M \). Suppose \((x, y) \in \Sigma_f \times \Sigma_f - \Delta \) such that \((hf)^i(x) = (hf)^j(y) \). If the orbit of \(x \) between \(x \) and \((hf)^i(x) \) contains a singularity \(z \), then \(D(hf)^i_x(T_x \Sigma_f) = D(hf)^j_z(T_z \Sigma_f) \) where \((hf)^i(x) = z \). By the inductive hypothesis
\[
 D(hf)^i_z(T_z \Sigma_f) \oplus D(hf)^j_y(T_y \Sigma_f) = T_{(hf)^j(y)} M.
\]
Hence \(\text{ev}_\rho \bigcap \Delta_M \) at this point.

So suppose the orbit of \(x \) consists of regular points. If there is an integer \(\ell \) between 0 and \(i \) such that \((hf)^{j-\ell}(y) = (hf)^i-x(\ell) \), then the inductive hypothesis says that
\[
 D(hf)^j_y(T_y \Sigma_f) \oplus D(hf)^i_x(T_x \Sigma_f) = T_{(hf)^j-y} M.
\]
But since the orbit of \(x \) consists of regular points, this is translated to \((hf)^j(y) \) and \(\text{ev}_\rho \bigcap \Delta_M \) at this point.

So suppose the smallest integers under which \(x \) and \(y \) are coincident are \(i \) and \(j \). If the orbit of \(y \) contains a singularity, then one obtains \(\text{ev}_\rho \bigcap \Delta_M \) at this point just as when the orbit
of \(x \) contained a singularity. Thus we can assume the orbits of \(x \) and \(y \) are both made up of regular points. Look at the curve \(\phi_t h \) of diffeomorphisms through \(h \) where \(\phi_t \) is the flow of a vector-field that is zero outside a small neighborhood of \(hf(y) \).

\[D(ev_{\rho})(h,x,y) \]

sends this curve to a vector of the form \((0,V)\).

Since \((hf)^{j-1}\) is regular at \(hf(y) \), one can obtain all such vectors in this manner. Hence \(ev_{\rho} \bigcap \Delta_M \). Thus TDT says that there exists \(h \) arbitrarily close to the identity such that \(hf \) is in \(K_{ij} \) and that \(K_{ij} \) is dense in \(K_3 \bigcap \bigcup_{(i',j')<(i,j)} K_{i',j'} \), and hence in \(K_2 \).

(Openness) To see the openness of \(K_{ij} \) consider the representation \(\rho : C^2(M,M) \times C^2(M,M) \rightarrow C^2(\Sigma_f \times \Sigma_f - U,M \times M) \) given by

\[(g_1,g_2) \mapsto (g_1,g_2) \bigcap_{\Sigma_f \times \Sigma_f - U} \text{ where } f \in K_3 \bigcap \bigcup_{(i',j')<(i,j)} K_{i',j'}, \text{ and } U \]

is as above. Since \((f^i,f^j) \bigcap \Delta_M \), the OTI says that there is a neighborhood \(N_1 \times N_2 \) of \((f^i,f^j)\) such that if \((g_1,g_2) \in N_1 \times N_2\), then \((g_1,g_2) \bigcap \Delta_M \). Now if \(g \) is close enough to \(f \); then

\[(g^1 h,g^2 h) \in N_1 \times N_2, \text{ where } h: \Sigma_f \rightarrow \Sigma_f \text{ is given by TIT. By the definition of } U, \text{ the points } (x,y) \in U \bigcap \Sigma_f \times \Sigma_f \text{ such that } \]

\[g^1 h(x) = g^2 h(y) \text{ are also coincident in the form } g^{j-1} h(y) = x. \]

Hence \(g \in K_{ij} \), and \(K_{ij} \) is open in \(K_3 \bigcap \bigcup_{(i',j')<(i,j)} K_{i',j'} \), and thus in \(K_2 \).

Now \(K_4 = K_3 \bigcap \bigcup_{(i,j)} K_{ij} \). Thus \(K_4 \) is dense in \(K_2 \). To see that \(K_4 \) is open in \(K_2 \), let \(f \in K_4 \). There is an integer \(n \) such that \(f^n(M) \) is in a neighborhood \(A \) of \(x_f \) on which \(f \) is a diffeomorphism.

Then \(f^n(M) - f^{n+1}(M) = F \) is a fundamental domain of \(x_f \). There is an integer \(J \) such that \(f^J(F) \) contains an iterate of every singularity. Thus this set expresses all of the different types
of intersections between singularities. That is, any intersection in $f^{J+n+1}(M)$ of iterates of singularities is an iterate of such an intersection in $f^J(F)$, and if the one in $f^J(F)$ is transverse, the one in $f^{J+n+1}(M)$ is also transverse. Thus a neighborhood of f in K_i is just a finite intersection of neighborhoods of f in $K_{i,j}$ with $j \leq J+n+1$. Hence K_i is open and dense in K_2. Q.E.D.

It should be noted that the endomorphisms in K_i have the property that if $x,y \in f^i$, $f^i(x) = f^j(y)$, and $x \neq f^{j-1}(y)$ then $Df^i_x(T_x f) \oplus Df^j_y(T_y f) = T_x M$. This is because $f^i(x)$ is regular and its orbit is also regular. i' and j' are the smallest integers under which x and y are coincident. This also shows that a cusp x is coincident with no other singularity, because $Df^i_x(T_x f) = 0$.

We are now ready to prove Lemma 5 which can be done with a finite number of perturbations.

Lemma 5: Let $K_5 = \{ f \in K_i : \text{for any set of three singularities there is at most one subset of two elements which are coincident} \}$. K_5 is open and dense in K_i and hence in K_2.

Proof: Order the set of triples $\{(i,j,k) \in \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z} : 0 \leq i \leq j \leq k \}$ by $(a,b,c) < (a',b',c')$ if $c < c'$ or $c = c'$ and $b < b'$; or $c = c'$, $b = b'$, and $a < a'$. Let $K_{(i,j,k)} = \{ f \in K_i : \text{if } x, y \text{ and } z \text{ are different singularities of } f \text{ and } (i',j',k') < (i,j,k) \text{ then } \{f^i(x)\} \cap \{f^j(y)\} \cap \{f^k(z)\} = \emptyset \}$. We will prove by induction that each $K_{(i,j,k)}$ is open and dense in $K_{(i',j',k')}$. If
(i', j', k') < (i, j, k). Note that Lemma 3 shows that \(K(0, j, k) \) is open and dense in \(K_2 \), which shows that the first step is finished. So suppose \((i, j, k)\) is an arbitrary triple. There are three sets \(((a, b, f), (c, d, f), \) and \((e, f, f) \) of points in \(\Sigma_f \times \Sigma_f - \Delta \) which are the points of intersection between \(f^i \) and \(f^j \), \(f^i \) and \(f^k \), and \(f^j \) and \(f^k \) respectively. Lemma 4 says that each of these sets is finite and that the intersections are transverse, except when \(f^j-i(b, f) = a, f^j-k(d, f) = c, \) or \(f^k-j(f, f) = e \). Thus a small perturbation will keep the number of such points the same and their position and \(k \) iterates arbitrarily close. We will do a

Figure 3
finite number of perturbations to obtain that no a_ξ is a c_τ.

Suppose that some $a_\xi = c_\tau$. By the inductive hypothesis, either $f^{j-i}(b_\xi) \neq a_\xi$ or $f^{k-i}(d_\tau) \neq c_\tau$ and the orbit of a_ξ is regular.

Suppose $f^{k-i}(d_\tau) \neq c_\tau$. If $f^{j-i}(b_\xi) = a_\xi$, let V be the vector-field that is zero outside of a small neighborhood of $f(a_\xi)$ and $V(f(a_\xi)) \in Df_a(T_{a_\xi}f)$. Let $h = \phi_\varepsilon$ for some small ε. Now consider the perturbation of f which is f outside of a small neighborhood of a_ξ and hf on the neighborhood.

Note that the perturbed map has $f^j(b_\xi) = f^i(a_\xi)$, but $f^i(a_\xi) \neq f^k(E_f)$. There is, however, a singularity very close to a_ξ that does go to $f^k(E_f)$. In this way, one can decrease the number of a_ξ that equal c_τ. Note that this perturbation also works in the case where $f^{k-i}(d_\tau) = c_\tau$. If $f^{j-i}(b_\xi) \neq a_\xi$ and $f^{k-i}(d_\tau) \neq c_\tau$, we use the same type of perturbation, except that $V(f(a_\xi))$ is perpendicular to $Df_a(T_{a_\xi}f)$. Under this perturbation $f^k(d_\tau) = f^j(b_\xi)$, but $f^i(a_\xi) \neq f^k(d_\tau)$ and neither does any point in a neighborhood of a_ξ in E_f. In this case, we have also reduced the number of points where $a_\xi = c_\tau$. Thus in a finite number of steps, we change f so that it is in $K_{(i,j,k)}$. Hence $K_{(i,j,k)}$ is dense in all other $K_{(i',j',k')}$ with $(i',j',k') < (i,j,k)$ if $i \neq k$. If $i = k$ this type of perturbation can also be used to reduce the number of triple intersections to zero.

Figure 4
To see the openness of \(K(i,j,k) \), consider the representation
\[
\rho: C^2(M,M) \times C^2(M,M) \times C^2(M,M) \to C^2(\Sigma_f \times \Sigma_f \times \Sigma_f - U_{ijk}. \quad \text{Here} \]
\(f \in K(i,j,k) \) and

\[
U_{ijk} = \emptyset \text{ if } i \neq j \neq k
\]

\[
U_{ijk} = V_{ii} \times \Sigma_f \text{ if } i = j \neq k
\]

\[
U_{ijk} = \Sigma_f \times V_{jj} \text{ if } i \neq j = k
\]

\[
U_{ijk} = \{(x,y,z): (x,y), (x,z), \text{ or } (y,z) \in V_{ii}\} \text{ if } i = j = k,
\]

where \(V_{ii} \) was defined in Lemma 3 as an open neighborhood of \(\Delta \) in
\(\Sigma_f \times \Sigma_f \). Now since \((f^i,f^j,f^k) \) \(\Delta_f \) on \(\Sigma_f \times \Sigma_f \times \Sigma_f - U_{ijk}' \), there is a neighborhood \(N_1 \times N_2 \times N_3 \) such that, if

\[
(g_1,g_2,g_3) \in N_1 \times N_2 \times N_3, \text{ then } (g_1,g_2,g_3) \Delta_f \text{ on } \Sigma_f \times \Sigma_f \times \Sigma_f - U_{ijk}'.
\]

Thus if \(g \) is close to \(f \) and \(h: \Sigma_f \to \Sigma_f \) is given by TIT, then

\[
(g^i h,g^j h,g^k h) \in N_1 \times N_2 \times N_3. \quad \text{Hence } (g^i h,g^j h,g^k h) \Delta_f \text{ on } \Sigma_f \times \Sigma_f \times \Sigma_f - U_{ijk}.
\]

But by the definition of \(U_{ijk}' \), there can be no triple coincidences from \(U_{ijk} \) either. Hence \(K_{ijk} \) is open in each \(K_{i',j',k'} \) where

\[
(i',j',k') < (i,j,k).
\]

As in Lemma 4, there is an integer \(n \) such that \(f^n(M) = f^{n+1}(M) \)
is a fundamental domain \(F \); and there is an integer \(J \) such that
\(f^J(F) \) contains an image of each singularity. Thus if there are no triple intersections with \(k \leq n + J \), there will be no triple coincidences. This finiteness property tells us that \(K_5 \) is open in \(K_4 \) and hence in \(K_2 \). The density of \(K_5 \) follows from the Baire Category Theorem since

\[
K_5 = \bigcap_{(i,j,k)} K_{ijk}. \quad \text{Q.E.D.}
\]
These lemmas combine to give the following theorem:

Theorem 2: \(K \) is an open dense subset of \(C^r \) contractions on \(M \).

§III. **Stratifications and Density of \(C^r \)-Structurally Stable Contractions.**

In the first part of this section, subdivisions of \(M \) are constructed and shown to be stratifications. These stratifications are then used to show necessary and sufficient conditions for a contraction to be \(C^r \)-structurally stable and also to give many topological invariants of the topological conjugacy class. The last part deals with the problem of generalizing these results to higher dimensions.

Definition: A stratification of \(M \) is a finite collection of connected disjoint submanifolds without boundary \(\{ L_i \} \) such that

1. \(\bigcup_i L_i = M \) and
2. if \(L_i \cap L_j \neq \emptyset \), then \(L_i \supset L_j \) and \(\dim L_j < \dim L_i \).

When one has a stratification \(S \) and an endomorphism \(f \), there are three basic operations that can be performed to give different subdivisions of \(M \). In certain cases these subdivisions are stratifications. The first new subdivision is indicated by \(f(S) \).

To obtain the stratum of \(f(S) \) that contains \(x \), let \(P \) be the set of all points \(y \) such that there is a one to one correspondence between \(f^{-1}(x) \cap L_i \) and \(f^{-1}(y) \cap L_i \) for each stratum \(L_i \) in \(S \). The connected component of \(P \) that contains \(x \) is the desired set.
The second operation is indicated by intersection. To find the stratum of \(S \cap f(S) \) which contains a given point \(x \), take the connected component of the set of points that belong to exactly the same strata as \(x \). The strata of the third subdivision, \(f^{-1}(S) \), are the connected components of the inverse images of the strata in \(S \).

Let \(S_1 \) be the stratification of \(M \) using the singularities of an endomorphism \(f \) in \(K \) as follows: the zero dimensional strata are the cusps, the one dimensional strata are the connected components of \(i_f^{-1} \{ x \in I_f : x \text{ is a cusp} \} \), and the two dimensional strata are the connected components of \(M - i_f^{-1} \). From the normal forms, it is clear that \(S_1 \) is a stratification of \(M \).

Proposition 1: For \(f \in K \), each of the subdivisions of \(M \) in the following sequence is a stratification:

\[
S_1 \\
S_2 = f(S_1) \\
S_3 = S_1 \cap S_2 \\
\vdots \\
S_{2n} = f(S_{2n-1}) \\
S_{2n+1} = S_{2n} \cap S_1.
\]

Proof: Since \(S_1 \) is a stratification, one can proceed with the inductive step and show that \(S_{2n+1} \) is a stratification. Suppose \(i \) is even. Then the zero dimensional strata of \(S_i \) are \(f \) of the zero dimensional strata of \(S_{i-1} \) plus the first coincidences with
integers $\frac{1}{2}$ and $0 < j \leq \frac{1}{2}$. Since there are only a finite number of such coincidences, there are only a finite number of zero dimensional strata in S_1. The one dimensional strata are f of the one dimensional strata in S_{i-1}, which may be subdivided because of a new coincidence between singularities. There are only a finite number of one dimensional strata, and the closure of any one of them only adds at most two points which are zero dimensional strata. The two dimensional strata are the connected components of M minus the one and zero dimensional strata. There are only a finite number of such sets and they satisfy the conditions to make S_1 a stratification.

So suppose i is odd, then $S_1 = S_i \cap S_{i-1}$. The zero dimensional strata are the zero dimensional strata of S_i and S_{i-1} plus the points on I_f which are images of other singularities under j iterates of f where $0 < j \leq \frac{i-1}{2}$. The set of such coincidences is finite, and hence there are only a finite number of zero dimensional strata. The one dimensional strata are the one dimensional strata for S_i and S_{i-1} with some subdivision because of the coincidences. Since there are only a finite number of subdivisions, there are only a finite number of one dimensional strata and the closure of any one adds at most two zero dimensional strata. The two dimensional strata are the connected components of M minus the one and zero dimensional strata. Just as in the case where i was even, there are only a finite number of such strata, and they satisfy the necessary conditions to make S_1 a stratification. Q.E.D.
It should be noted that this proposition is a simple consequence of the lemmas proved in §11 as is the next proposition.

Proposition 2: If \(f \in K \) then there is a positive integer \(N \) such that for any integer \(n > N \), each subdivision in the following sequence is a stratification of \(M \):

\[
\psi_1 = f^{-1}(S_{2n+1}) \cap S_{2n+1} \\
\psi_2 = f^{-1}(\psi_1) \cap \psi_1 \\
\vdots \\
\psi_n = f^{-1}(\psi_{n-1}) \cap \psi_{n-1}.
\]

Also,

\[
\psi_N = \psi_{N+1}.
\]

Proof: As in Lemma 4, there is an integer \(m \) such that \(f^m(M) = f^{m+1}(M) = F \), a fundamental domain; and there is an integer \(J \) such that \(f^J(F) \) contains an image of every singularity. So let \(N = m + J \). If \(n > N \), the difference between \(S_{2n+1} \) and \(S_{2n+3} \) is in \(f^N(M) \), where \(S_{2n+3} \) is a refinement of \(S_{2n+1} \). The new strata in \(S_{2n+3} \) are images of strata in \(S_{2n+1} \).

From the normal forms and the fact that \(M \) is compact, it is clear that \(f \) is finite to one. Thus \(f^{-1} \) of any zero dimensional strata is a finite number of points. There are several local pictures that should be studied at this point. First, if \(x \) is a regular point, \(f^{-1} \) of a neighborhood of \(f(x) \) in a neighborhood of \(x \) has the same subdivisions as the neighborhood of \(f(x) \).
is because f is a diffeomorphism in a neighborhood of x. If x is a cusp; then, from the normal form, we get the following picture:

$$\begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} xy - x^3 \\ y \end{pmatrix}$$

Figure 5

Note that in this local picture there are four two dimensional strata, four one dimensional strata and one zero dimensional
stratum. It is important to see that f is one to one on the closure of each of the two dimensional stratum.

If x is a fold point, then it is either a zero dimensional stratum or it is on a one dimensional stratum. If it is on a one dimensional stratum and $f(x)$ is also on a one dimensional stratum, then f^{-1} adds nothing to the local picture at x. If $f(x)$ is a zero dimensional stratum, then x and some other singularity are coincident at $f(x)$. Since this is the first time they are coincident, the intersection is transverse. Thus f^{-1} introduces a curve transversal to r_f at x. Actually, x becomes a zero dimensional stratum; and the curves break up into four one dimensional strata. In looking at the local picture for an arbitrary ψ_1, $f(x)$ would not have to be the coincident point between x and some other singularity. The other possibility is that $f(x)$ is the inverse image of the point of coincidence between x and some other singularity. But the picture at $f(x)$ would still be two curves intersecting transversely and hence f^{-1} would introduce the same picture at x.

If x is a fold which is a zero dimensional stratum, then there are two curves passing transversely through x which locally form four one dimensional strata. The local picture at $f(x)$ is two curves that are tangent at $f(x)$ giving four one dimensional strata and one zero dimensional stratum. Now each of the two one dimensional strata that are not first images of r_f have two inverse images near x. This gives six two dimensional, six one dimensional and one zero dimensional strata.
Thus \(f^{-1}(\psi_1) \) has a finite number of zero and one dimensional strata, and the closure of the one dimensional strata add at most two points which are zero dimensional strata. Since the two dimensional strata are the connected components of the complement of the union of the zero and one dimensional strata, \(f^{-1}(\psi_1) \) is a stratification of \(M \). \(f^{-1}(\psi_1) \cap \psi_1 \) is a refinement of \(f^{-1}(\psi_1) \), which one obtains by adding the zero and one dimensional strata of \(S_{2n+1} \) in \(f^N(M) \) whose images are not strata of \(S_{2n+1} \). Thus each \(\psi_1 \) is a stratification of \(M \).

To see that \(\psi_N = \psi_{N+1} \), one can think of obtaining the \(\psi_1 \) by adding inverse images to the stratification of \(f^N(M) \) given by \(S_{2n+1} \). A point \(x \) will be a zero dimensional strata for \(\psi_1 \) if \(f^j(x), \ j \leq i \), is a zero dimensional stratum. Let \(f^j(x) \) be a zero dimensional stratum. Then there is an integer \(k, 0 < k < N \), such that \(f^k(x) \in f^N(M) \) is a zero dimensional stratum of \(S_{2n+1} \). Hence \(x \) is a zero dimensional strata of \(\psi_N \) as well as \(\psi_{N+1} \). The same argument shows that the one dimensional strata of \(\psi_N \) and \(\psi_{N+1} \) are the same. Hence \(\psi_N = \psi_{N+1} \). Q.E.D.

Let us improve the notion slightly before continuing. Let \(f \in K \) and \(m \) the smallest integer such that \(f \) is a homeomorphism on \(f^m(M) \) and \(f^m(M) \cap \Gamma_f = \emptyset \). Let \(f^m(M) - f^{m+1}(M) = F \) and \(J \) be the smallest integer such that \(f^J(F) \) contains an image of each singularity. Let \(N = m + J \) and \(S(f) = \psi_N \) starting with \(\psi_1 = f^{-1}(S_{2N+3}) \cap S_{2N+3} \). There are several important properties of \(S(f) \) that should be noted.
Lemma 6: Let \(L \) be a stratum of \(S(f) \) outside of \(f^N(M) \), then \(f(L) \) is a stratum and \(f \) is a covering map from \(L \) to \(f(L) \).

Proof: Since \(L \) is outside \(f^N(M) \), \(L \) is a connected component of \(f^{-1}(L') \) for some stratum \(L' \). From the normal forms, one sees that \(f \) maps \(L \) locally diffeomorphically into \(L' \); thus \(f(L) \) is open and connected in \(L' \). If it is also closed in \(L' \), then \(f(L) = L' \).

To see that \(f(L) \) is closed in \(L' \) let \(x \in L' \cap f(L) \), and \(\{y_i\} \) be a sequence of points in \(L \) such that \(\{f(y_i)\} \to x \). Let \(z \) be a limit point of \(\{y_i\} \). By continuity, \(f(z) = x \); but \(z \in f^{-1}(L') \) and not in \(L \). This is impossible, so \(f(L) = L' \).

One now wants to show that the cardinality of \(f^{-1} \), \(\card f^{-1} \), is locally constant on \(L' \) with \(f|_L \). Since \(f \) is a local diffeomorphism onto \(L' \), \(\card f^{-1} \) cannot locally decrease. So suppose there is a point \(x \) where \(\card f^{-1} \) increases. That is, there is a sequence \(\{y_i\} \to x \) such that \(\card f^{-1}(x) < \card f^{-1}(y_i) \). Take neighborhoods of each point of \(f^{-1}(x) \) on which \(f \) is a diffeomorphism. Outside of these neighborhoods, there is a set of points \(\{z_i\} \) such that \(f(z_i) = y_i \). Let \(b \) be a limit point of \(\{z_i\} \). By continuity, \(f(b) = x \); but \(b \) is not one of the inverse images of \(x \). This contradiction shows that \(f^{-1} \) is locally constant on \(L' \). Since \(L' \) is path connected, each point has the same number of inverse images. Hence \(f \) is a covering map. Q.E.D.

One would expect that if two maps in \(K \) were close then the stratifications of \(M \) that they produce should be close in some sense. This is the content of the next proposition.
Proposition 3: Let \(f \in \mathcal{K} \) and \(U \) be a neighborhood of the identity in \(C^0(M,M) \). Then there is a neighborhood \(N \) of \(f \) in \(K \) such that if \(g \in N \) then there exists a homeomorphism \(h \in U \) that sends strata of \(S(f) \) to those of \(S(g) \).

Proof: The first step is to construct an open neighborhood of the union of the zero and one dimensional strata of \(S(f) \). For the zero dimensional strata, \(L_1 \), pick open sets \(V_1 \) whose closures are disjoint and for which there are diffeomorphisms \(\phi_1 : V_1 \to \mathbb{R}^2 \) with \(\phi_1(L_1) = 0 \) which give the normal local picture depending on the type of zero dimensional strata. Let \(U_1 \) be \(\phi_1^{-1} \) of the open unit disk in \(\mathbb{R}^2 \). Since the one dimensional strata are \(C^r \) submanifolds, they have tubular neighborhoods which can be taken to be disjoint. The union of the \(U_1 \) and the tubular neighborhoods give us an open set containing the zero and one dimensional strata of \(S(f) \). The open set we want is obtained from this one by shrinking the tubular neighborhoods if necessary so that if \(x \) is on a one dimensional stratum outside of \(U_1 \) then the fiber of the tubular neighborhood through \(x \) is outside of \(\phi_1^{-1}(B(\frac{1}{2})) \) where \(B(\frac{1}{2}) \) is the open ball of radius \(\frac{1}{2} \) centered at the origin in \(\mathbb{R}^2 \).

Now in each \(\phi_1(U_1) \) let \((x_1, \ldots, x_n) \) be the intersection of the circle of radius \(\frac{1}{2} \) with the images under \(\phi_1 \) of the one dimensional strata in \(S(f) \). Since we have the normal picture in \(\phi_1(U_1) \) there will be one and only one such point for each one dimensional strata whose closure contains the origin. Let \(a \) be the minimum distance between the \(x_i \)'s. Now if \(0 < a < a \) then the set of points inside \(B(\frac{1}{2}) \) that are a distance \(a \) from the zero and one dimensional strata forms a finite number of curves \(\{c_1, \ldots, c_n\} \).
In fact there are as many such curves as there are x_1's. The set of points in $B(l) \setminus B(\frac{1}{2})$ which are a distance α from the one dimensional strata is a finite number of curves \(\{\ell_1, \ldots, \ell_{2n}\} \) the number being twice the number of x_1's. Two of these combine with each c_i to give n curves. By choosing α small enough the ℓ_j will be in the tubular neighborhood of the one dimensional strata and will be contained in the image of some section.

Let \(\{x'_1, x'_2, \ldots, x'_n\} \) be the intersection of $B(\frac{3}{4})$ with the one dimensional strata in $\phi_i(U_i)$. By choosing α even smaller if necessary we can assume that the fiber through x'_1 intersects two of the ℓ_j's and this part of the fiber stays in $B(l) \setminus B(\frac{1}{2})$. Now the part of the fibers through the x'_1's connecting the ℓ_j's union the part of the ℓ_j's from these intersections to the c_i's union the c_i's gives the boundary of an open set containing the origin which is homeomorphic to a disk. If we take out the images of the strata we get n open sets each homeomorphic to a disk.

Figure 6
Before continuing with the proof of this proposition let us consider the following lemma which establishes some of the properties of the maps near f.

Lemma 7: Let \(f \in K \) then there is a neighborhood \(N \) of \(f \) such that if \(g \in N \) then

1. \(S(g) \) has the same number of zero and one dimensional strata as \(S(f) \).
2. \(g \) has the same normal structures on each \(U_i \) as \(f \) does.
3. each \(\phi_i \) maps the zero and one dimensional strata of \(S(g) \) in \(U_i \) into the neighborhood of those for \(S(f) \).
4. outside of \(\bigcup_i \phi_i^{-1}(B(\frac{1}{2})) \), the one dimensional strata of \(S(g) \) are in the tubular neighborhoods and are images of sections.

Proof: In defining \(S(f) \) the smallest integer \(m \) such that \(f^m(M) \) contained no singularities and \(f \) was a homeomorphism on \(f^m(M) \) was found. Since \(\xi_f \) was defined by a transversal intersection, and \(\xi_f \) is a finite distance, say \(\varepsilon \), from \(f^m(M) \); there is a neighborhood \(N_1 \) of \(f \) such that if \(g \in N_1 \), then \(\lambda_g \) is within \(\frac{\varepsilon}{2} \) of \(\lambda_f \) and \(g^m(M) \) is within \(\frac{\varepsilon}{2} \) of \(f^m(M) \). Thus \(g^m(M) \cap \xi_g = \emptyset \).

Now since \(\xi_f \) is a finite distance from \(f^m(M) \), \(f \) is a local diffeomorphism on any open neighborhood of \(f^m(M) \) that does not intersect \(\xi_f \). In fact, by choosing a small open neighborhood of \(f^m(M) \), \(f \) is a diffeomorphism. Now by using the openness of diffeomorphisms on compact manifolds we see that there is a
neighborhood N_2 of f such that if $g \in N_2$ then g is a diffeomorphism on a fixed manifold that contains $f^m(M)$. By shrinking N_2 if necessary we can make sure that $g^m(M)$ is contained in the fixed manifold. Thus g is a homeomorphism on $g^m(M)$ and m satisfies the two conditions for every map in a neighborhood of f.

We now want to make sure m is the smallest integer that will work. If $f^{m-1}(M) \cap i_f \neq \emptyset$ then the interior of $f^{m-1}(M)$ contains a singularity x because an intersection of the boundary of $f^{m-1}(M)$ and i_f would be transverse. Now by taking a small neighborhood N_3 of f we can guarantee that if $g \in N_3$ then $g^{m-1}(M)$ contains a fixed neighborhood of x and i_g also has a point in this neighborhood. Thus $m-1$ will not work if $f^{m-1}(M) \cap i_f \neq \emptyset$. So suppose $f^{m-1}(M) \cap i_f = \emptyset$ but f is not a homeomorphism on $f^{m-1}(M)$. The only way for this to happen is for f to fail to be one to one. In fact f must send two interior points to the same point. For suppose the intersection is the image of one interior point with a boundary point. Then since f is a local diffeomorphism and there are interior points in every neighborhood of the boundary points we could find two interior points that have the same image. If the intersection was between two boundary points, this would be the first coincidence between two fold and thus be transversal. Hence in this case we can again find two interior points which have the same image. Now pick disjoint open sets about each of these points whose closures are in the interior of $f^{m-1}(M)$. Now there is a neighborhood N_4 of f such that if $g \in N_4$ then the two closed neighborhoods are in $g^{m-1}(M)$ and the images of the two sets intersect. Thus m is indeed locally constant.
The other number that was used in defining $S(f)$ was J, the smallest integer such that $f^J(f^{m+1}(M) - f^m(M))$ contained an image of each singularity. Notice that if g is close to f then Σ_f is homeomorphic to Σ_g and the number of zero dimensional strata of Σ_f and Σ_g are the same because they come from transversal intersections. We can, therefore, also assume they are of the same type and pointwise close. Since their images must also be close the boundary of $f^m(M)$ and $g^m(M)$ must be made up of corresponding one dimensional strata. Thus the boundary of each $f^J(f^{m+1}(M) - f^m(M))$ corresponds with that of $g^J(g^{m+1}(M), g^m(M))$. Thus all other strata have images in the interior of $f^J(f^{m+1}(M) - f^m(M))$. So by C^0 stability the corresponding strata in Σ_f have images in the interior of $g^J(g^{m+1}(M) - g^m(M))$. Also, since J was the smallest integer for some strata under f it must also be the smallest for the corresponding strata for g. Hence J is also locally constant.

As we have noticed the subdivision of Σ_f and Σ_g corresponded in both number and type. Since $S(f)$ and $S(g)$ are arrived at by taking the same number of forward iterates and then all the inverse iterates, we see that the number and type of zero and one dimensional strata in $S(f)$ and $S(g)$ are the same.

Parts 2 and 3 of this lemma now follow easily from the C^3 stability of the normal forms while 4 is a result of the higher stability of the one dimensional strata.

Now let us return to the proof of Proposition 3.

To define the homeomorphism h, let h be the identity outside of the union of the tubular neighborhoods and the U_f. On the
tubular neighborhoods between two x_i, the new one dimensional stratum is a section. Thus we can reparameterize the fibers so it is the zero section. This reparameterization can be viewed as a homeomorphism of this part of the tubular neighborhood that takes the old zero section to the new one. We can choose the reparameterization so that the homeomorphism is the identity outside of any fixed open set that contains the two sections and the parts of the fibers between them. Defining it this way we see that the homeomorphism will extend to the identity. Now since in $B(1) - B(\frac{1}{2})$ the new zero section is within a of the old, we can take the reparameterization to be the identity on each of the ℓ_i. Let D_i be the closed disk in U_i bounded by the C_i, the parts of the fibers through the x_i's connecting the ℓ_i's and the parts of the ℓ_i's connecting these intersections and the C_i. On U_i outside of D_i union the parts of the tubular neighborhoods where h is already defined we defined the map to be the identity. On the closed set we use the definition we already have on the fiber through x_i, and the identity on the ℓ_i's and C_i's. Since the part of the stratum connecting x_i and the origin is homeomorphic to a straight line and the part of the stratum for g connecting the image of x_i under the homeomorphism and the zero dimensional stratum for g in U_i is also homeomorphic to a straight line, we send the one to the other. We now fill in the rest any way we want. This can be done because we have defined a homeomorphism from the boundary of a set that is homeomorphic to a disk to the boundary of another set that is homeomorphic to a disk. It is clear that this gives us a homeomorphism that sends strata to strata.
By taking the diameter of each U_i less than ϵ and the
arclength of each fiber in the tubular neighborhoods less than
ϵ, the homeomorphism will move each point at most ϵ. Thus the
homeomorphisms can be taken to be in any neighborhood of the
identity. Q.E.D.

We are now ready to see the density of C^r-structurally
stable contractions.

Theorem 1: The set of C^r-structurally stable contractions on
any compact two dimensional, C^∞ manifold M without boundary is an
open dense subset of all C^r contractions in the C^r topology for
$r > 12$.

Proof: The openness of the set is clear from the definition.
Density will be shown by proving that every endomorphism f in K
is C^r-structurally stable. If U is a small neighborhood of f
in K and $g \in U$ then $g^m(M) - g^{m+1}(M) = G$ is a fundamental domain
and $g^J(G)$ contains an image of each singularity. Here m and J
are the integers used to define F and $S(f)$. From the last
proposition there is a homeomorphism h close to the identity which
sends the strata of $S(f)$ to the strata of $S(g)$. Although h does
not have to be a topological conjugacy, being close to the identity
gives it another property that looks like a strata conjugacy. That
is, if L and $f(L)$ are strata of $S(f)$; then $h(L)$ and $h(f(L))$ are
strata of $S(g)$ and $gh(L) = hf(L)$ as sets. Thus if L is a point
stratum, then h is a conjugacy at this point.
Let L be a one dimensional strata that is in the boundary of $f^N(M)$. Define another map from L to $h(L)$ by $g^{-1} \cdot h \cdot f$. This can be done because $f(L)$ is a stratum of $S(f)$ and g is a diffeomorphism from $h(L)$ to $h(f(L))$. Note that this new map is also close to the identity and would agree with h on $\tilde{L} - L$. There is an open neighborhood A of L which contains no other one dimensional strata and no zero dimensional strata. The closure of A contains $\tilde{L} - L$ and also L, but these are the only zero and one dimensional strata it contains. Using h on the boundary of A and the new map on L, one can construct a new homeomorphism on A to $h(A)$ that is strata preserving. Now construct similar homeomorphisms on corresponding neighborhoods of each one dimensional strata in the boundary of $f^N(M)$. Note that the new strata preserving homeomorphism H is a conjugacy on the boundary of $f^N(M)$. Then change H on $f^{J+i}(F)$ to g^iHF^{-1} where f^{-1} is taken in $f^J(F)$. Also send x_f to x_g. One should note that the new map K is a conjugacy on $f^N(M)$.

To define the conjugacy outside of $f^N(M)$, we will send the strata of $S(f)$ to the strata of $S(g)$ that have already been identified by K. To get the desired map, remember that f^i and g^i are close and are covering maps on a given stratum L. They also have their images in $f^J(F)$ and $g^J(G)$ for some $i < N$. Since K is close to the identity and sends $f^i(L)$ to $g^i(K(L))$, there is a unique lift close to the identity sending L to $K(L)$. It should be noted that this lift is independent of i as long as $f^i(L) \subseteq f^N(M)$, because K is a conjugacy on $f^N(M)$. Doing this on each stratum gives a new map of M that is one to one, onto, close to the
identity, and preserves strata. In fact, it is a homeomorphism on each stratum and satisfies the appropriate commutative diagram to be a topological conjugacy. The only thing that needs to be checked is that it is continuous where two different strata come together. To see this one should look at the different local pictures as in Proposition 2. Since the map is arbitrarily close to the identity, it sends local strata to local strata correctly. Since \(f \) is one to one on the closure of every local stratum, the map is indeed continuous and hence a homeomorphism. Q.E.D.

Although this is the basic result it can also be considered as the first part of the next theorem, which gives necessary and sufficient conditions for a contraction to be \(C^r \)-structurally stable.

Theorem 3: \(K \) is precisely the \(C^r \)-structurally stable contractions on \(M \).

Proof: From the proof of Theorem 1, we know that every endomorphism in \(K \) is \(C^r \)-structurally stable. The \(C^r \) endomorphism of \(M \), which are stable using two different homeomorphisms, are the Whitney endomorphisms. Thus the \(C^r \)-structurally stable contractions must also be Whitney endomorphisms.

Suppose \(g \) is a \(C^r \)-structurally stable contraction on \(M \). Since \(K \) is dense in the set of contractions, there is an \(f \in K \) such that \(f \) and \(g \) are topologically conjugate. If \(h \) is a topological conjugacy, then \(h(x) \) is regular, a fold, or a cusp according to whether \(x \) is respectively regular, a fold, or a cusp. This is
because a topological conjugacy must preserve the number of points that go to a given point in a neighborhood of \(x \). If \(x \) is regular, it is one to one; at a fold, it is two to one; and at a cusp, three to one. The fixed points and all orbits are also preserved by \(h \). Thus, \(x \) and \(y \) are coincident under \(f \) if \(h(x) \) and \(h(y) \) are coincident under \(g \). This establishes that \(g \) satisfies the following three conditions:

1. The fixed point \(x_g \) of \(g \) is regular and is not coincident with any singularity.

2. A cusp point is not coincident with any other singularity.

3. For any set of three singularities there is at most one subset of two elements which are coincident.

It also shows that the folds for \(g \) have the same number and type of intersections. Since \(g \) is \(C^r \)-structurally stable, there is a neighborhood of \(g \) which also satisfies these conditions. Indeed, if \(g \) did not satisfy one of the transversality conditions, an arbitrarily small perturbation could change the number of intersections of a given type, which is a contradiction. Hence \(g \in K \).

Q.E.D.

Using methods very similar to the ones used in this proof, one can prove the following:

Theorem 4: If \(f \) and \(g \) are two \(C^r \)-structurally stable contractions which are topologically conjugate, then a conjugating homeomorphism \(h \) is strata preserving between \(S(f) \) and \(S(g) \).
Proof: Theorem 3 says that f and $g \in K$ and hence $S(f)$ and $S(g)$ can be defined. In the proof of the last theorem, it was pointed out that h must send singularities to singularities; hence h is a homeomorphism from \mathbb{E}_f to \mathbb{E}_g. The zero dimensional strata of \mathbb{E}_f are cusps and folds which are coincident with other folds. As was pointed out in the last theorem, this finite set of special points also has to be preserved by h. Since the one dimensional strata of $S(f)$ in \mathbb{E}_f are the connected components of \mathbb{E}_f minus the finite set of special points, h must preserve these strata. Since h preserves orbits, $h(f^i(M)) = g^i(M)$. If $f^i(M)$ contains no singularities, then neither does $g^i(M)$. Also if f is one to one on $f^i(M)$, then g is also one to one on $g^i(M)$. Thus if m is the smallest integer for which $f^m(M) - f^{m+1}(M) = F$ is a fundamental domain, then it is also the smallest integer for which $g^m(M) - g^{m+1}(M) = G$ is a fundamental domain. The smallest integer J such that $f^J(F)$ contains an image of each singularity also holds for g and, in fact, h sends $f^J(F)$ to $f^J(G)$. Thus the integers used to define $S(f)$ and $S(g)$ are the same.

The zero and one dimensional strata of $S(f)$ and $S(g)$ are obtained from \mathbb{E}_f and \mathbb{E}_g respectively by taking N iterates and then the inverse images. Since h preserves orbits, the images of strata in \mathbb{E}_f must go to images of the corresponding strata in \mathbb{E}_g and similarly for all inverse images. It is this orbit preserving ability of h that guarantees that the zero and one dimensional strata of $S(f)$ go to zero and one dimensional strata of $S(g)$. The two dimensional strata are the connected components of the complement of the zero and one dimensional strata. Hence h must
CONTRACTING ENDMORPHISMS

must preserve these strata also, and h is strata preserving between \(S(f) \) and \(S(g) \).

It should be noted that this theorem and its proof give many invariants of the topological conjugacy class of an endomorphism in \(K \), some of which are the numbers \(m, J, \) and \(N \), and the numbers of circles of singularities, of cusps, and folds that are coincident with other folds. Since \(f \) is a covering map from one stratum to another, its covering number is also an invariant. It seems quite reasonable that the topological conjugacy classes could be characterized by using these invariants.

To begin studying the \(n \) dimensional case, we shall show that there are structurally stable contractions on every \(n \) dimensional manifold. This will be done for \(C^\infty \) contractions with the help of Mather's topological stability of maps.

Theorem 5: On every \(n \) dimensional compact \(C^\infty \) manifold \(M \) without boundary, there is a \(C^\infty \)-structurally stable contraction.

Proof: Start with a topologically stable map \(f: M \to \mathbb{R}^n \) [see 5]. Since such maps have many regular values, let \(y \) be one of them and let \(x \in f^{-1}(y) \). Let \(U \) be an open neighborhood of \(x \) such that \(f \) is a diffeomorphism on \(\bar{U} \), and \(h \) be a diffeomorphism from \(\mathbb{R}^n \) into \(U \) sending \(y \) to \(x \). By taking \(h \) to be a strong contraction, one can make sure that \(hf = g \) is a contraction. Since \(y \) is a regular value, \(x \) is a regular value as well as the fixed point of \(g \). Because \(g \) maps \(U \) diffeomorphically inside itself and contains the first image of every singularity, we see that \(x \) is coincident.
with no singularities. Also \(g(M) - g^2(M) = G \) is a fundamental domain. There is an integer \(J \) such that \(g^J(G) \) contains an image of every singularity. Now consider the map \(g^{J+1} \). It has the property that \(g^{J+1}(M) - (g^{J+1})^2(M) \) is a fundamental domain and contains an image of each of the singularities. Let \(H \) be a topologically stable map which is close to \(g^{J+1} \). Since the singularity set for \(H \) is close to the one for \(g^{J+L} \), \(H(M) - H^2(M) \) is a fundamental domain that contains an image of each singularity. In fact, \(H \) and any contraction \(F \) close to \(H \) map \(U \) diffeomorphically inside itself. Since \(F(M) - F^2(M) \) as well as \(H(M) - H^2(M) \) contain the first image of each singularity, \(H^2(M) \) and \(F^2(M) \) are contained in the interior of \(H(M) \) and \(F(M) \) respectively. There also exist two homeomorphisms \(h_1 \) and \(h_2 \) of \(M \) such that \(Fh_1 = h_2F \) and the homeomorphisms are arbitrarily close. Since \(H^2(M) \) is contained in the interior of \(H(M) \), there is an open neighborhood \(V \) of \(H(M) \) in \(U \) such that \(H(V) \), which is a neighborhood of \(H^2(M) \), contains no first images of singularities. Since \(h_1 \) and \(h_2 \) can be made arbitrarily close, a simple isotopy in \(V \) gives a new homeomorphism \(h_3 \) of \(M \) which is \(h_1 \) outside of \(V \) and \(h_2 \) on \(H(M) \). Change \(h_3 \) on \(H(V) - H^2(M) \) to be \(Fh_3H^{-1} \) where \(H^{-1} \) is taken in \(V \). Note this agrees with \(h_2 \) on \(H(V) \). Now iterate this map inwards to \(x_H \) and send \(x_H \) to \(x_F \). This homeomorphism \(h_a \) is a conjugacy everywhere except on \(H^{-1}(H(V)) - V \). Since \(H(V) \) consists entirely of regular values, \(H \) on the connected components of \(H^{-1}(H(V)) \) is a covering map and \(F \) is a covering map from \(h_1 \) of the connected components to \(h_2H(V) = h_4H(V) \). One can take all of the homeomorphisms close
CONTRACTING ENDOMORPHISMS

to the identity so that there is a unique lift of h_u. Note that the lift agrees with h_1 on the boundaries of the connected components of $H^{-1}(H(V)) - V$. This is because h_u agrees with h_2 on the boundary of $H(V)$. Using these lifts on $H^{-1}(H(V))$ gives the topological conjugacy. Hence H is topologically conjugate to F and is, in fact, C^∞-structurally stable. Q.E.D.

It should be noted that this proof gives sufficient conditions for a C^∞ contraction to be C^∞-structurally stable.

Corollary 1: If f is a C^∞ contraction on M which is topologically stable and $f(M) - f^n(M)$ is a fundamental domain which contains no singularities but does have an image of each singularity, then f is C^∞-structurally stable.

These are certainly not all of the structurally stable contractions. It is even reasonable to conjecture that the structurally stable contractions are dense in the set of all contractions as is true in the one and two dimensional cases.
BIBLIOGRAPHY

North Carolina State University
Raleigh, North Carolina 27607