On square roots of class C^m of nonnegative functions of one variable

JEAN-MICHEL BONY, FERRUCCIO COLOMBINI
AND LUDOVICO PERNAZZA

Abstract. We investigate the regularity of functions g such that $g^2 = f$, where f is a given nonnegative function of one variable. Assuming that f is of class C^{2m} ($m > 1$) and vanishes together with its derivatives up to order $2m - 4$ at all its local minimum points, one can find a g of class C^m. Under the same assumption on the minimum points, if f is of class C^{2m+2} then g can be chosen such that it admits a derivative of order $m + 1$ everywhere. Counterexamples show that these results are sharp.

Mathematics Subject Classification (2010): 26A15 (primary); 26A27 (secondary).

Introduction

In this paper we study the regularity of functions g of one variable whose square is a given nonnegative function f.

For a function f of class C^2, first results are due to G. Glaeser [6] who proved that $f^{1/2}$ is of class C^1 if the second derivative of f vanishes at the zeros of f, and to T. Mandai [8] who proved that one can always choose g of class C^1. More recently in [1] (and later in [7]), for functions f of class C^4, it was proved that one can find g of class C^1 and twice differentiable at every point.

F. Broglia and the authors proved in [3] that this result is sharp in the sense that it is not possible to have in general a greater regularity for g. They also showed that if f is of class C^4 and vanishes at all its (local) minimum points, one can always find g of class C^2 and that the result is sharp. Later, in [4] it was proved that for f of class C^6 vanishing at all its minimum points one can find g of class C^2 and three times differentiable at every point.

In this paper we generalize these results. First we prove that for f of class C^{2m}, $m = 1, 2, \ldots, \infty$, vanishing at its (local) minimum points together with all its derivatives up to order $(2m - 4)$ one can find g of class C^m (Theorem 2.2). If the derivatives vanish only up to order $2m - 6$ at all the minimum points, the other assumptions being unchanged, g can be chosen m times differentiable at every point (Theorem 3.1, where m is replaced by $m + 1$).
Counterexamples are given to show that these assumptions cannot be relaxed and that the regularity of \(g \) cannot be improved in general.

1. Precised square roots

In this paper, \(f \) will always be a nonnegative function of one real variable whose regularity will be precised below. Our results being of local character, we may and will assume that the support of \(f \) is contained in \([0, 1]\).

Definition 1.1. Assuming \(f \) of class \(C^{2m} \), \(m = 1, 2, \ldots, \infty \), we say that \(g \) is a square root of \(f \) precised up to order \(m \), if \(g \) is a continuous function satisfying \(g^2 = f \) and if, for any (finite) integer \(k \leq m \) and for any point \(x_0 \) which is a zero of \(f \) of order exactly \(2k \), the function \(x \mapsto (x-x_0)^k g(x) \) keeps a constant sign near \(x_0 \).

It is clear that \(g \) cannot be \(m \) times differentiable at every point if this condition is not fulfilled.

It is easy to show the existence of square roots precised up to order \(m \) and even to describe all of them. Let us consider the closed set

\[
G = \{ x \in \mathbb{R} \mid f(x) = 0, f'(x) = 0, \ldots, f^{(2m)}(x) = 0 \},
\]

with the convention that all derivatives vanish if \(m = \infty \). Its complement is a union of disjoint intervals \(J_\nu \). In \(J_\nu \), the zeros of \(f \) are isolated and of finite order \(\leq 2m \). For a square root precised up to order \(m \), one should have \(|g| = f^{1/2} \) and the restriction of \(g \) to \(J_\nu \) should be one of two well defined functions \(+g_\nu \) and \(-g_\nu \) thanks to the condition on the change of sign. There is a bijection between the set of families \((\epsilon_\nu)\) with \(\epsilon_\nu = \pm 1 \) and the set of square roots precised up to order \(m \): one has just to set \(g(x) = \epsilon_\nu g_\nu(x) \) for \(x \in J_\nu \) and \(g(x) = 0 \) for \(x \in G \).

A modulus of continuity is a continuous, positive, increasing and concave function defined on an interval \([0, t_0]\) and vanishing at \(0 \). Any continuous function \(\varphi \) defined on a compact set \(K \) has a modulus of continuity, i.e. a function \(\omega \) as above such that for every \(t_1, t_2 \) with \(|t_2 - t_1| < t_0\), one has \(|\varphi(t_2) - \varphi(t_1)| < \omega(|t_2 - t_1|)\). One says that \(\varphi \in C^k(K) \) if \(\varphi \in C^k(K) \) and if \(\omega \) is a modulus of continuity of \(\varphi^{(k)} \), one says that \(\varphi \in C^{k,\omega}(K) \).

We now state two lemmas taken almost literally from [2, Lemme 4.1, Lemme 4.2 and Corollaire 4.3]. Note that in the rest of this section \(m \) will not be allowed to take the value \(\infty \).

Lemma 1.2. Let \(\varphi \in C^{2m}(J) \) be nonnegative, where \(J \) is a closed interval contained in \([-1, 1]\), and let \(M = \sup |\varphi^{(k)}(x)| \) for \(0 \leq k \leq 2m \) and \(x \in J \). Assume that for some \(j \in \{0, \ldots, m\} \), the inequality \(\varphi^{(2j)}(x) \geq \gamma > 0 \) holds for \(x \in J \) and that \(\varphi \) has a zero of order \(2j \) at some point \(\xi \in J \).

Let us define \(H \) and \(\psi \) in \(J \) by

\[
\varphi(x) = (x-\xi)^{2j} H(x), \quad \psi(x) = (x-\xi)^{j} H(x)^{1/2}.
\]
Then, $H \in C^{2m-2j}(J)$ and $\psi \in C^{2m-j}(J)$. Moreover, there exists C_1, depending only on m, such that

$$
\left| \psi^{(k)}(x) \right| \leq C_1 \gamma^{1/2-k} M^k, \quad k = 1, \ldots, 2m - j.
$$

(1.2)

Lemma 1.3. Let φ be a nonnegative function of one variable, defined and of class C^{2m} in the interval $[-1, 1]$ such that $|\varphi^{(2m)}(t)| \leq 1$ for $|t| \leq 1$ and that $\max_{0 \leq j \leq m-1} \varphi^{(2j)}(0) = 1$.

(i) There exists a universal positive constant C_0, such that

$$
\left| \varphi^{(k)}(t) \right| \leq C_0, \quad \text{for } |t| \leq 1 \text{ and } 0 \leq k \leq 2m.
$$

(1.3)

(ii) There exist universal positive constants a_j and r_j, $j = 0, \ldots, m-1$, such that one of the following cases occurs:

(a) One has $\varphi(0) \geq a_0$ and then $\varphi(t) \geq a_0/2$ for $|t| \leq r_0$.

(b) For some $j \in \{1, \ldots, m-1\}$ one has $\varphi^{2j}(t) \geq a_j$ for $|t| \leq r_j$ and φ has a local minimum in $[-r_j, r_j]$.

In the following proposition, G is defined by (1.1) and $d(x, G)$ denotes the distance of x from G. When $G = \emptyset$, (a) and (b) are always true and condition (1.4) disappears.

Proposition 1.4. Assuming that f is of class C^{2m}, the three following properties are equivalent.

(a) There exists $g \in C^m$ such that $g^2 = f$.

(b) Any function g which is a square root of f precised up to order m belongs to C^m.

(c) There exists a modulus of continuity ω such that

$$
\left| \frac{d^k}{dx^k} f^{1/2}(x) \right| \leq d(x, G)^{m-k} \omega(d(x, G)),
$$

(1.4)

for any x such that $f(x) \neq 0$ and any $k \in \{0, \ldots, m\}$.

Proof. It is clear that (b)\Rightarrow(a): as said above, precised square roots do exist. Under assumption (a), g and its derivatives up to order m should vanish on G. If ω is a modulus of continuity of $g^{(m)}$ one gets $\left| g^{(m)}(x) \right| \leq \omega(d(x, G))$. Successive integrations prove that the derivatives $g^{(k)}$ are bounded by the right hand side of (1.4). These derivatives being equal, up to the sign, to those of $f^{1/2}$ when f does not vanish, (a) \Rightarrow (c) is proved.

Let us assume (c) and consider any connected component J_ν of the complement of G. Near each zero of f in J_ν, which is of order exactly $2j$ for some $j \in \{1, \ldots, m\}$, the precised square root g_ν is given (up to the sign) by Lemma 1.2
and so it is of class C^m. Moreover, the estimate (1.4) extends by continuity to the points $x \in J_\nu$ where f vanishes and one has

$$\left| g_v^{(k)}(x) \right| \leq d(x, G)^{m-k} \omega(d(x, G))$$

for $x \in J_\nu$ and $k \in \{0, \ldots, m\}$.

If we define g equal to $\epsilon \nu g\nu$ in J_ν and to 0 in G, it remains to prove the existence and the continuity of the derivatives of g at any point $x_0 \in G$. By induction, the estimates above prove, for $k = 0, \ldots, m - 1$, that $g^{k+1}(x_0)$ exists and is equal to 0 and that $g^{k+1}(x) \to 0$ for $x \to x_0$. The proof is complete. \qed

Corollary 1.5. Let f be a nonnegative C^∞ function of one variable such that for any m there exists a function g_m of class C^m with $g_2^2 = f$. Then there exists g of class C^∞ such that $g^2 = f$.

Actually, if g is any square root of f precise up to order ∞, it is precise up to order m for any m and thus of class C^m for any m by the proposition above.

2. Continuously differentiable square roots

We start with an auxiliary result which contains the main argument. The function $f \in C^{2m}$, $m \geq 2$, and the set $G \neq \emptyset$ are as above, and Γ is a closed subset of G. We will use this lemma for $p = 0$, in which case Γ can be disregarded, and for $p = 1$.

Lemma 2.1. Assume that $m \neq \infty$ and f and all its derivatives up to order $2m - 4$ (included) vanish at all its local minimum points. Assume moreover that there exist a modulus of continuity α and constants $C > 0$ and $p \geq 0$ such that

$$\left| f^{(2m)}(x) \right| \leq C d(x, \Gamma)^{2p} \alpha(d(x, G)).$$

Then, there exists a constant \tilde{C} such that

$$\left| \frac{d^k}{dx^k} f^{1/2}(x) \right| \leq \tilde{C} d(x, \Gamma)^p d(x, G)^{m-k} \alpha(d(x, G))^{1/2}$$

for any x such that $f(x) \neq 0$ and any $k \in \{0, \ldots, m\}$.

Proof. Let J be any connected component of the complement of G and for $x \in J$, let \tilde{x} be (one of) the nearest endpoint(s) of J. The distance between x and \tilde{x} is thus equal to $d(x, G)$ and we remark that, for y between x and \tilde{x}, we have $d(y, \Gamma) \leq 2d(x, \Gamma)$. Integrating $2m - k$ times the estimate for $f^{(2m)}$ between \tilde{x} and x we get

$$| f^{(k)}(x) | \leq C' d(x, \Gamma)^{2p} d(x, G)^{2m-k} \alpha(d(x, G))$$

for $k = 0, \ldots, 2m$, the constant C' being independent of J.
Next, for x in J such that $f(x) \neq 0$, we define as in $[2]$,
\[\rho(x) = \max_{0 \leq k \leq m-1} \left\{ \left[\frac{f^{(2k)}(x)}{C'd(x, \Gamma)^2 p \alpha(d(x, G))} \right]^{\frac{1}{2m-2k}} \right\}. \]

One has thus $\rho(x) \leq d(x, G)$ and
\[|f^{(k)}(x)| \leq C'd(x, \Gamma)^2 p \alpha(d(x, G)) \rho(x)^{2m-k} \]
for $k = 0, \ldots, 2m$. The auxiliary function
\[\varphi(t) = \frac{f(x + t\rho(x))}{C'd(x, \Gamma)^2 p \alpha(d(x, G)) \rho(x)^{2m}} \]
is defined in $[-1, 1]$ and satisfies the assumptions of Lemma 1.3. Two cases should be considered.

1. — One has $\varphi(0) \geq a_0$ and then $\varphi(t) \geq a_0/2$ for $|t| \leq r_0$ while the derivatives of φ are uniformly bounded by C_0. Thus, there exists an universal constant C'' such that $\left| \frac{d^k}{dx^k} \varphi^{1/2}(t) \right| \leq C''$ in this interval. We have thus, by the change of variable $t \mapsto x + t\rho(x)$,
\[\left| \frac{d^k}{dx^k} f^{1/2}(x) \right| \leq C'' d(x, \Gamma)^p \rho(x)^{m-k} \alpha(d(x, G))^{1/2} \]
which implies (2.2).

2. — We are in case (b) of Lemma 1.3: all the derivatives of φ are bounded by C_0 and for some $j \in \{1, \ldots, m-1\}$ one has $\varphi^{2j}(t) \geq a_j$ for $|t| \leq r_j$ and φ has a local minimum at some point $\xi \in [-r_j, r_j]$. Our assumptions imply that $\varphi^{2k}(\xi)$ vanishes for $k \in \{0, \ldots, m-2\}$ so j is necessarily equal to $m - 1$. We can thus set $\varphi(t) = (t - \xi)^{2m-2} H(t)$ and $\psi(t) = (t - \xi)^{m-1} H(t)^{1/2}$ as in Lemma 1.2. There is a universal constant C''' (computed from C_0 and a_{m-1}) such that $\left| \frac{d^k}{dx^k} \psi(t) \right| \leq C'''$ for $|t| \leq r_{m-1}$. In particular, for $t = 0$, these derivatives coincide up to the sign with those of $\varphi^{1/2}$. The change of variable $t \mapsto x + t\rho(x)$ gives again the estimates (2.2) on the derivatives of $f^{1/2}(x)$. The proof is complete. \hfill \square

Theorem 2.2. Let f be a nonnegative function of one variable of class C^{2m} with $m \geq 2$ such that, at all its minimum points, f and its derivatives up to the order $(2m - 4)$ vanish. Then any square root of f precised up to order m is of class C^m.

Proof. The result is evident if G is empty and we can thus assume $G \neq \emptyset$. If α is a modulus of continuity of $f^{(2m)}$, we have $\left| f^{2m}(x) \right| \leq \alpha(d(x, G))$ which is the assumption (2.1) for $p = 0$. By the preceding lemma, we have the estimates
\[\left| \frac{d^k}{dx^k} f^{1/2}(x) \right| \leq C d(x, G)^{m-k} \alpha(d(x, G))^{1/2} \]
when $f(x) \neq 0$. By Proposition 1.4, this implies that all the square roots precised up to order m are of class C^m. The case $m = \infty$ follows now from Corollary 1.5. \hfill \square
Remark 2.3. It is certainly not necessary to assume that f vanishes at all its minimum points. For instance, we could also allow nonzero minima at points $\bar{x}_i, i \in \mathbb{N}$, provided that the values $f(\bar{x}_i)$ be not “too small”. With the notations of Lemma 2.1, it suffices to have $f(\bar{x}_i) \geq C\alpha(d(\bar{x}_i, G))\rho(\bar{x}_i)^{2m}$ for some uniform positive constant C.

It is clear that the assumption $f \in C^{2m}$ of Theorem 2.2 cannot be weakened to $f \in C^{2m-1.1}$ (take $f(t) = t^{2m} + 1/2 t^{2m-1}|t|$). The two following counterexamples show that in the general case no stronger regularity is possible (Theorem 2.4) and that the vanishing of $2m - 4$ derivatives cannot be replaced by the vanishing of $2m - 6$ derivatives (Theorem 2.5).

Theorem 2.4. For any given modulus of continuity ω there is a nonnegative function f of class C^∞ on \mathbb{R} such that, at all its minimum points, f and all its derivatives up to the $(2m - 4)$-th one vanish, but there is no function g of class C^m,ω such that $g^2 = f$.

Proof. Let $\chi \in C^\infty(\mathbb{R})$ be the even function with support in $[-2, 2]$ defined by $\chi(t) = 1$ for $t \in [0, 1]$ and by $\chi(t) = \exp\{1/(t-2)e^{t/(t-1)}\}$ for $t \in (1, 2)$. We note that the logarithm of χ is a concave function on $(1, 2)$. For every $(a, b) \in [0, 1] \times [0, 1]$, $(a, b) \neq (0, 0)$, and every $m \geq 1$ the function $t \mapsto \log(at^{2m} + bt^{2m-2})$ is concave on $(0, +\infty)$ and thus the function

$$t \mapsto \chi^2(t)(at^{2m} + bt^{2m-2})$$

has only one local maximum point and no local minimum points in $(1, 2)$, for its logarithmic derivative vanishes exactly once. Set

$$\rho_n = \frac{1}{n^2}, \quad t_n = 2\rho_n + \sum_{j=n+1}^\infty 5\rho_j,$$

$$I_n = [t_n - 2\rho_n, t_n + 2\rho_n], \quad \alpha_n = \frac{1}{2n}$$

and

$$\epsilon_n = \omega^{-1}(\alpha_n), \quad \beta_n = \alpha_n\epsilon_n^2.$$

Notice that the I_n’s are closed and disjoint and that, for $n \geq 4$, one has

$$\epsilon_n \leq \alpha_n \leq \rho_n.$$

Define

$$f = \sum_{n=4}^\infty \chi^2(\frac{t-I_n}{\rho_n})\alpha_n(t-t_n)^{2m} + \beta_n(t-t_n)^{2m-2}).$$

Clearly, f is of class C^∞; this is obvious at every point except perhaps at the origin, but for small $t \in I_n$ and a suitable positive constant C_k one has that

$$|f^{(k)}(t)| \leq C_k\rho_n^{2m-2-k}\alpha_n.$$
that converges to 0 as \(t \) goes to 0 (which implies that \(n \) goes to infinity). Moreover, \(f \) takes the value 0 at all its local minimum points, which are the points \(t_n \) and the points between \(I_n \) and \(I_{n+1} \).

We argue by contradiction and look for functions \(g \) of class \(C^{m, \omega} \) such that \(g^2 = f \); but any such \(g \) must be of the form

\[
g = \sum_{n=1}^{\infty} \sigma_n \chi \left(\frac{t - t_n}{\rho_n} \right) (t - t_n)^{m-1} \sqrt{\beta_n + \alpha_n(t - t_n)^2} \quad (2.5)
\]

for some choice of the signs \(\sigma_n = \pm 1 \). In order to evaluate \(g^{(m)} \), let us calculate first \((\sqrt{\beta_n + \alpha_n(t - t_n)^2})^{(h)} \) for \(h = 1, \ldots, m \). To this end, we will use Faà di Bruno’s formula (see [5]), with \(F(x) = x^{1/2} \) and \(\psi(t) \) given by \(\psi(t) = \beta + \alpha t^2 \):

\[
(F \circ \psi)^{(h)} = \sum_{j=1}^{h} (F^{(j)} \circ \psi) \sum_{p(h, j)} h! \prod_{i=1}^{h} \frac{\psi^{(j)}(\mu_i)}{(\mu_i!)^{(j)}},
\]

where:

\[
p(h, j) = \left\{ (\mu_1, \ldots, \mu_h) : \mu_i \geq 0, \sum_{i=1}^{h} \mu_i = j, \sum_{i=1}^{h} \mu_i = h \right\}.
\]

Now obviously we have:

\[
F^{(j)}(x) = (x^{1/2})^{(j)} = 2^{-j} (2j - 3)! (-1)^{j+1} x^{1/2-j},
\]

where, for \(n \) odd, \(n!! = 1 \cdot 3 \cdots n \) and, for \(n \) even, \(n!! = 2 \cdot 4 \cdots n \). Moreover, in our case, the only nonzero terms are those with \(i = 1 \) or \(i = 2 \) and \(\mu_1 = 2j - h, \mu_2 = h - j \), with \(\left\lfloor \frac{h+1}{2} \right\rfloor \leq j \leq h \). So we have:

\[
\left(\sqrt{\beta + \alpha t^2} \right)^{(h)} = \sum_{j=\left\lfloor \frac{h+1}{2} \right\rfloor}^{h} \frac{h! 2^{j-h} (2j - 3)! (-1)^{j+1} (\beta + \alpha t^2)^{1/2-j} \alpha^j t^{2j-h}}{(2j-h)! (h-j)!} \quad (2.6)
\]

We calculate now \(g^{(m)}(t) \) for \(t \in \tilde{I}_n := [t_n - \rho_n, t_n + \rho_n] \), with \(g \) given by (2.5).

We note that on \(\tilde{I}_n \) one has \(g(t) = \sigma_n (t - t_n)^{m-1} \sqrt{\beta_n + \alpha_n(t - t_n)^2} \), and so, for \(t \in \tilde{I}_n \):

\[
g^{(m)}(t) = \sigma_n \sum_{h=1}^{m} \frac{(m)!}{h!(m-h)!} (t-t_n)^{h-1} (m-1)! \left(\sqrt{\beta_n + \alpha_n(t - t_n)^2} \right)^{(h)} \quad (2.7)
\]
Now, set $t'_n = t_n + \lambda \varepsilon_n$, with λ to be chosen later, $1/2 \leq \lambda \leq 1$, so that, thanks to (2.4), $t'_n \in \tilde{I}_n$. Taking (2.6) and (2.7) into account, we have:

$$g^{(m)}(t'_n) = \sigma_n \alpha_n^{1/2} \sum_{h=1}^{m} \frac{(m)!}{h!(m-h)!} \frac{(m-1)!}{(h-1)!} \times \sum_{j=[\frac{h+1}{2}]}^{h} \frac{h!2^{j-h}(2j-3)!!(1+\lambda^2\lambda^{j-1})^{1/2-j}}{(2j-h)(h-j)!} = \sigma_n \alpha_n^{1/2} \mathcal{K}_m(\lambda).$$

Since $\mathcal{K}_m(\lambda)$ is a nonzero polynomial of degree $2m-1$ in $\frac{\lambda}{(1+\lambda^2)^{1/2}}$, we can choose a value λ_0, $1/2 \leq \lambda_0 \leq 1$, in such a way that $\mathcal{K}_m(\lambda_0) \neq 0$. But now since $g^{(m)}(t_n) = 0$ we have that

$$\frac{|g^{(m)}(t_n + \lambda_0 \varepsilon_n) - g^{(m)}(t_n)|}{\omega(\lambda_0 \varepsilon_n)} = \frac{|g^{(m)}(t_n + \lambda_0 \varepsilon_n)|}{\omega(\lambda_0 \varepsilon_n)} = \frac{\alpha_n^{1/2} |\mathcal{K}_m(\lambda_0)|}{\omega(\lambda_0 \varepsilon_n)} \geq \frac{\alpha_n^{1/2} |\mathcal{K}_m(\lambda_0)|}{\omega(\epsilon_n)} \geq \frac{|\mathcal{K}_m(\lambda_0)|}{\alpha_n^{1/2}}$$

that goes to infinity as $n \to \infty$. \hfill \Box

Theorem 2.5. There is a nonnegative function f of class C^∞ on \mathbb{R} such that, at all its minimum points, f and all its derivatives up to the $(2m-6)$-th one vanish, but there is no function g of class C^m such that $g^2 = f$.

Proof. Let χ be a function of class C^∞ as in Theorem 2.4 and define ρ_n, t_n, I_n and α_n as in (2.3); define also

$$\varepsilon_n = \alpha_n, \quad \beta_n = \alpha_n \varepsilon_n^2$$

and

$$f = \sum_{n=4}^{\infty} \chi^2 \left(\frac{t - t_n}{\rho_n} \right) \left(\alpha_n(t - t_n)^{2m-2} + \beta_n(t - t_n)^{2m-4} \right).$$

The function f is obviously of class C^∞ and satisfies our hypotheses. Again, any function g of class C^{m-1} such that $g^2 = f$ is of the form

$$g = \sum_{n=1}^{\infty} \sigma_n \chi \left(\frac{t - t_n}{\rho_n} \right) (t - t_n)^{m-2} \sqrt{\beta_n + \alpha_n(t - t_n)^2}$$

for some choice of the signs $\sigma_n = \pm 1$.

Now, set $t'_n = t_n + \lambda \varepsilon_n$, with $1/2 \leq \lambda \leq 1$: thanks to (2.4), $t'_n \in \tilde{I}_n$. Taking (2.6) and (2.7) into account we have again that

$$g^{(m)}(t'_n) = \sigma_n \frac{\alpha_n^{1/2}}{\varepsilon_n} \sum_{h=2}^{m} \frac{(m)!}{h!(m-h)!} \frac{(m-2)!}{(h-2)!} \times \sum_{j=\left[\frac{h+1}{2}\right]}^{h} \frac{h!2^{j-h}(2j-3)!(-1)^{j+1}\lambda^{2j-2}(1+\lambda^2)^{1/2-j}}{(2j-h)!(h-j)!} = \sigma_n \frac{1}{\alpha_n^{1/2}} \mathcal{H}_m(\lambda)$$

where \mathcal{H}_m is a polynomial function in $\frac{\lambda}{(1+\lambda^2)^{1/2}}$; for some good choice of λ, then, this expression goes to infinity as above. \qed

3. Differentiable square roots

Theorem 3.1. Let f be a nonnegative function of one variable of class C^{2m+2} ($2 \leq m \leq \infty$) such that, at all its minimum points, f and all its derivatives up to the order $(2m - 4)$ vanish. Then any square root g of f which is precised up to order $m+1$ is of class C^m and its derivative of order $m+1$ exists everywhere.

Proof. Since f is also a function of class C^{2m} and g is in particular precised up to order m we already know that g is of class C^m.

Let us consider the following closed set

$$\Gamma = \{x \in \mathbb{R} | f(x) = 0, f'(x) = 0, \ldots, f^{(2m+2)}(x) = 0\}. \quad (3.1)$$

If it is empty, the set G is made of isolated points where $f^{(2m+2)}(x) \neq 0$ and, thanks to the condition on the signs, g is of class C^{m+1}. So, we may assume $\Gamma \neq \emptyset$ and thus, for the same reason, g is of class C^{m+1} outside Γ. What remains to prove is that $g^{(m)}$ is differentiable at each point of Γ.

The function Φ defined by $\Phi(x) = d(x, \Gamma)^{-2} f^{(2m)}(x)$ outside Γ and by $\Phi(x) = 0$ in Γ is continuous and vanishes on G. If α is a modulus of continuity of Φ, one has thus

$$\left|f^{(2m)}(x)\right| \leq d(x, \Gamma)^2 \alpha(d(x, G)), \quad (3.2)$$

which is the assumption (2.1) of Lemma 2.1 with $p = 1$. Thanks to this lemma, we get

$$\left|g^{(m)}(x)\right| = \left|\frac{d}{dx} f^{1/2}(x)\right| \leq \tilde{C} d(x, \Gamma) \alpha(d(x, G))^{1/2}$$

for x such that $f(x) \neq 0$ and $k \in \{0, \ldots, m\}$. By continuity, the estimate of $g^{(m)}(x)$ is also valid for the isolated zeros of f, and it is trivial for $x \in \Gamma$. For $x_0 \in \Gamma$ one has thus $\left|g^{(m)}(x) - g^{(m)}(x_0)\right| / |x - x_0| \leq C \alpha(d(x, G))^{1/2}$ which converges to 0 for $x \to x_0$. This proves that $g^{m+1}(x_0)$ exists and is equal to 0, which ends the proof. \qed
Remark 3.2. We have already proved that, under the assumptions of the theorem, g is not of class C^{m+1} in general (Theorem 2.5 with m replaced by $m + 1$). Counterexamples analogous to those given above show that the hypotheses cannot be relaxed.

References