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Relaxation of Elastic Energies
with Free Discontinuities and Constraint on the Strain

ANDREA BRAIDES – ANNELIESE DEFRANCESCHI –

ENRICO VITALI

Abstract. As a model for the energy of a brittle elastic body we consider an
integral functional consisting of two parts: a volume one (the usual linearly elastic
energy) which is quadratic in the strain, and a surface part, which is concentrated
along the fractures (i.e. on the discontinuities of the displacement function) and
whose density depends on the jump part of the strain. We study the problem of the
lower semicontinuous envelope of such a functional under the assumptions that the
surface energy density is positively homogeneous of degree one and that additional
geometrical constraints, such as a shearing condition or a normal detachement
condition, are imposed on the fractures.
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1. – Introduction

Many variational problems in mechanics involve energies with bulk and in-
terfacial contributions. Such energies can be analytically represented as follows.
In the context of fracture mechanics, let � denote a reference configuration of
a (possibly brittle) elastic body in Rn (n = 1, 2 or 3) and let u parametrize its
displacement, which we regard as smooth outside a subset K ⊆ �. Denoting
by Hn−1 the (n − 1)-dimensional Hausdorff measure, assume that K itself is so
smooth that Hn−1-a.e. on K there exists a normal ν together with the traces
u± of u on both sides of K : then the elastic energy of this deformation may
be written in the form

(1.1)
∫

�\K
f (∇u) dx +

∫
K

g(u+ − u−, ν)dHn−1.

In this framework we may include Griffith’s theory of fracture, in which case K
is interpreted as the crack site and g is a constant, thus the surface integral
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is simply proportional to the area of the fracture. In Barenblatt’s model g =
g(|u+ − u−|) is a function of the opening of the crack.

Equilibrium configurations can be obtained by solving minimum problems
related to the energies (1.1) above. In order to attack such problems via the so-
called direct methods of the Calculus of Variations, suitable weak formulations
of the energies in (1.1) have been proposed in the spaces SBV (�; Rn) of
special functions of bounded variation (in the nonlinear setting) or SB D(�)

of special functions of bounded deformation (in the linear framework), see
e.g. Ambrosio-Braides [1], Ambrosio-Fusco-Pallara [3], Ambrosio-Coscia-Dal
Maso [2], Francfort-Marigo [16], Buliga [11]. In both cases u is interpreted as
a (possibly discontinuous) function defined in the whole � and the role of K
is played by the “jump” set Ju of essential discontinuity points for u. In these
spaces the smoothness of Ju and of u is sufficient to define Hn−1-a.e. on Ju

the normal νu and the traces u± of u on both sides of Ju , and to define a.e.
in � the approximate gradient ∇u. A weak formulation of the energy in (1.1)
can then be written as

(1.2)
∫

�

f (∇u) dx +
∫

Ju

g(u+ − u−, νu)dHn−1.

Notice that, since ∇u is defined almost everywhere on �, the first integral can
be directly computed on �.

In this paper we study the behaviour of the energies (1.2) under the addition
of some constraints on the singular part of the strain (u+ − u−) � νu on Ju ,
where � denotes the symmetric tensor product (see below). More precisely, we
consider a fixed closed cone K0 of matrices of the form a � b, and we require
that the condition

(u+ − u−) � νu ∈ K0

holds Hn−1-a.e. on Ju . Various interesting situations fall within this formulation,
among which we recall:

(i) K0 = {a � b : (a, b) = 0}: this is a zero-divergence condition on Ju , and
the discontinuity surface can be considered as a “slippage surface” of the
material;

(ii) K0 = {a � b : b = λa with λ ≥ 0}: this condition can be interpreted as
an infinitesimal non-interpenetration condition;

(iii) K0 = {a � b : (a, b) ≥ 0}: this is a detachment condition on the opening
of a crack.

We focus on the case of linearly elastic bulk energy densities, namely of the
form

(1.3)
1

2

∫
�

(
AEu, Eu

)
dx +

∫
Ju

g
(
(u+ − u−) � νu

)
dHn−1,

where Eu denotes the symmetrized gradient and A is a fixed fourth-order tensor.
If the energy in (1.3) satisfies suitable structure and growth conditions

(which are satisfied, e.g., if g is constant) and there exists a convex cone of
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symmetric matrices whose intersection with {a � b : a, b ∈ Rn} is K0, then
the addition of this constraint still gives a lower semicontinuous energy by the
closure properties of measures which take values in a convex cone (see Anzel-
lotti [4]). In general (for example for surface energy densities of Barenblatt’s
type) the constraint is not closed on sets of functions with equibounded energy,
and these energies are not lower semicontinuous. The study of their relaxation,
i.e., the computation of their lower semicontinuous envelope, allows to describe
the macroscopic behaviour of their minimizers. The main goal of this paper
is to describe this relaxation when g is positively homogeneous of degree one.
This model case is of particular importance, since in general a fundamental role
is played by the tangent cone of g at the origin, which defines a positively
homogeneous function of degree one.

The relaxation of the energies in (1.3) gives functionals defined on the space
of functions of bounded deformation, i.e., on those functions u ∈ L1(�; Rn)

whose strain Eu = (Du + (Du)T
)
/2, defined in the sense of distributions, is a

measure. For the measure Eu the Radon-Nikodým decomposition Eu = Eudx+
Esu holds. If g is positively homogeneous of degree one and non degenerate
(i.e., g(ξ) = 0 only if ξ = 0) then we show that the lower semicontinuous
envelope of the energy in (1.3) is finite only on the set U(�) of those functions
u ∈ B D(�) such that the projection PK⊥ Eu of the strain measure Eu on
the cone orthogonal to K (which denotes the convex hull of K0) is absolutely
continuous with respect to the Lebesgue measure and belongs to L2(�). On
U(�) the relaxed energy can be represented as

(1.4)
∫

�

ω(Eu)dx +
∫

�

ω∞
(

d Esu

d|Esu|
)

d|Esu|.

In Theorem 5.1 we give an explicit formula for the function ω in terms of g,
A and K . The complex form of ω is due to the interplay of the two energy
densities (Aξ, ξ) and g, which has a different effect on K and K ⊥. This relax-
ation theorem provides a microscopic interpretation of energies with constraint
on the strain studied by Anzellotti in [4]. As already observed in Braides-
Defranceschi-Vitali [10], energies obtained by relaxation are a strict subclass
of all energies of the form (1.4). Note that the energy density ω satisfies a
non-standard growth condition

c1(|ξ | − 1) ≤ ω(ξ) ≤ c2(|ξ |2 + 1),

so that this relaxation theorem does not fit in the framework of any of the gen-
eral integral representation results as in Buttazzo [12], Braides-Chiadò Piat [8],
Bouchitté-Fonseca-Mascarenas [7], Barroso-Fonseca-Toader [5].

An interesting limit case is when g = 0; i.e., when fracture is allowed only
if (u+ − u−) � νu ∈ K0 and in that case is not penalized at all. In this case
the relaxed energy is simply

1

2

∫
�

(
APK⊥Eu, PK⊥Eu

)
dx,
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i.e., macroscopical deformations with Eu taking values in K have energy zero.
By taking K0 as in (ii) or (iii) above we recover the masonry-like functionals
introduced by Giaquinta and Giusti in [17].

2. – Notation and preliminaries

In order to fix up the notation, let us briefly review some well-known
definitions and results.

We shall denote by ( ·, · ) and | · | the scalar product and the corresponding
norm in Rn , for any n ≥ 1. The same notation will be used in the vector space
Mm×n of m × n matrices with real entries, identified with the space Rmn. The
symbol M sym will stand for the subspace of Mn×n consisting of the symmetric
matrices, while M sym

0 will denote the subspace of M sym of the matrices with
null trace. If I is the identity matrix, it is easy to see that {t I : t ∈ R} is
the orthogonal space to M sym

0 in M sym; for every ξ ∈ M sym the corresponding
decomposition is given by ξ = ξ D + 1

n (tr ξ)I, where ξ D = ξ − 1
n (tr ξ)I is the

deviator of ξ.

If a, b ∈ Rn the tensor product a ⊗ b is the n × n matrix whose entries
are ai bj with i, j = 1, . . . , n. The symmetric tensor product is defined by
a � b = 1

2 (a ⊗ b + b ⊗ a). It turns out that |a � b|2 = 1
2

(|a|2|b|2 + (a, b)2
)
.

The Lebesgue measure on Rn will be denoted by Ln; if E is a Lebesgue
measurable set we shall also use |E | in place of Ln(E). We denote the integral
mean of a summable function f over the set E (with respect to Ln) by

−
∫

E
f dx = 1

|E |
∫

E
f dx

provided 0 < |E | < +∞. The open ball in Rn with centre x and radius ρ will
be denoted by Bρ(x).

In the sequel � will be an open subset of Rn.

The symbols L p(�; Rm) and W 1,p(�; Rm) will stand for the usual Lebesgue
and Sobolev spaces of Rm-valued functions, 1 ≤ p ≤ +∞; if m = 1 we shall
simply write L p(�) and W 1,p(�). For the spaces of compactly supported smooth
functions we shall use the notation Ck

c (�; Rm), 0 ≤ k ≤ ∞.

Convex functions

Let φ: Rm → [0, +∞] be convex (and proper, i.e., different from the con-
stant +∞); then the limit

φ∞(ξ) = lim
t→+∞

φ(tξ)

t

exists for every ξ ∈ Rm, and φ∞ is called the recession function of φ. The same
definition can be given if φ is defined only on a cone of Rm . Clearly, φ∞ is



RELAXATION OF ELASTIC ENERGIES 279

positively homogeneous of degree 1; moreover, if φ is lower semicontinuous,
so is φ∞.

If f1, f2: Rm → [0, +∞] are proper convex functions, then the infimal
convolution of f1 and f2 is defined as

( f1 f2)(ξ) = inf{ f1(ξ − η) + f2(η) : η ∈ Rm},

and it turns out to be a convex function (see [20], Theorem 5.4). Moreover, it is
not difficult to check (see [20], p. 38) that if ϕ and ψ are non-negative convex
functions on Rm, with ϕ(0) = 0 and ψ positively homogeneous of degree 1,

then the convex hull of ϕ ∧ ψ = min{ϕ, ψ} is given by ϕ ψ.

Measures

We shall denote by M+(�) the set of positive Radon measures on �,

i.e., the positive Borel measures on � which are finite on compact subsets, and
by M(�; Rm) the space of Rm-valued Borel measures. Given µ ∈ M(�; Rm)

we define the restriction µ B of µ to a Borel subset B ⊂ � by µ B(A) =
µ(B ∩ A) for every Borel subset A of �. It turns out that µ B ∈ M(�; Rm).

Notice (see, e.g., [3], Theorem 1.6) that if µ ∈ M(�; Rm) then |µ|(�) < +∞,

where the total variation measure |µ| is defined for every Borel subset E of
� by

|µ|(E) = sup
∞∑

h=1

|µ(Eh)|,

with (Eh) ranging over all sequences of pairwise disjoint Borel sets such that
E = ⋃h Eh .

Let ν ∈ M+(�) and µ ∈ M(�; Rm). The Radon-Nikodým Theorem and the
Besicovitch Derivation Theorem (see, e.g., [3] Theorem 1.28 and Theorem 2.22)
yield the representation

µ = hν + µs, with µs ⊥ ν, h(x) = lim
ρ→0

µ
(

Bρ(x)
)

ν
(

Bρ(x)
) for ν-a.e. x ∈ �.

The function h is called the Radon-Nikodým derivative of µ with respect to ν,

and denoted by dµ/dν or µ/ν.

Let µ and (µh) be a measure and a sequence of measures in M(�; Rm),

respectively. We say that (µh) locally weakly∗ converges to µ if

lim
h→+∞

∫
�

ϕ dµh =
∫

�

ϕ dµ

for every ϕ ∈ C0
c (�). If this equality holds for every ϕ which is the uniform

limit of a sequence in C0
c (�) then we say that (µh) converges weakly∗ to µ. It

is easy to see that the weak∗ convergence of a sequence (µh) is equivalent to
the local weak∗ convergence together with the condition suph |µh|(�)| < +∞.
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Let µ ∈ M(�; Rm) and let f : Rm → [0, +∞[ be a convex function. Then
we set

(2.1)
∫

�

f (µ) =
∫

�

f
(

dµa

dLn

)
dLn +

∫
�

f ∞
(

dµs

d|µs |
)

d|µs |,
where µ = µa + µs is the Lebesgue decomposition of µ, i.e., µa � Ln,

µs ⊥ Ln.

The (n−1)-dimensional Hausdorff measure in Rn will be denoted by Hn−1.

A subset E of Rn is said to be countably (n − 1)-rectifiable if it is contained,
up to a Hn−1-negligible set, in the union of a countable family (Sj ) of (n − 1)-
dimensional C1 submanifolds of Rn. The definition of an approximate tangent
space (hence, of an approximate normal direction) at Hn−1-a.e. point of E can
be given through the tangent spaces to the manifolds Sj .

Approximate discontinuity points and approximate jump points
If ν is a unit vector in Rn, we split any ball Bρ(x) into the two halves

B+
ρ (x, ν) = {y ∈ Bρ(x) : (y − x, ν) > 0} and B−

ρ (x, ν) = {y ∈ Bρ(x) :
(y − x, ν) < 0}.

Definition 2.1. Let u ∈ L1
loc(�; Rm) and x ∈ �. We say that u has

approximate limit at x if there exists z ∈ Rm such that:

lim
ρ→0

−
∫

Bρ(x)

|u(y) − z| dy = 0.

The set Su where this property fails is called approximate discontinuity set of u.

We say that x is an approximate jump point of u if there exist a, b ∈ Rm

and ν ∈ Rn with |ν| = 1, such that a 
= b and

lim
ρ→0

−
∫

B+
ρ (x,ν)

|u(y) − a| dy = 0, lim
ρ→0

−
∫

B−
ρ (x,ν)

|u(y) − b| dy = 0.

The set of approximate jump points of u is denoted by Ju .

The vector z is uniquely determined for any point x ∈ � \ Su and is called
the approximate limit of u at x and denoted by ũ(x). The triplet (a, b, ν),

which turns out to be uniquely determined up to a permutation of a and b and
a change of sign of ν, is denoted by (u+(x), u−(x), νu(x)). On � \ Su we set
u+ = u− = ũ.

The space BV
We recall that the space BV (�) of real functions of bounded variation is the

space of the functions u ∈ L1(�) whose distributional derivative is representable
by a measure in �, i.e.,∫

�

u
∂ϕ

∂xi
dx = −

∫
�

ϕ d Di u for every ϕ ∈ C
∞
c (�) and i = 1, . . . , n

for some Du = (D1u, . . . , Dnu) ∈ M(�; Rn). The space of Rm-valued func-
tions whose components are in BV (�) will be denoted by BV (�; Rm). We
again write Du = (Dj ui ) ∈ M(�; Mm×n).

For a thorough treatment of BV functions we refer to [3].
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Theorem 2.2 (Federer-Vol’pert). For any u ∈ BV (�; Rm) the set Su is count-
ably (n − 1)-rectifiable and Hn−1(Su \ Ju) = 0. Moreover, Du Ju = (u+ − u−)⊗
νuHn−1 Ju, and νu(x) gives the approximate normal direction to Ju for Hn−1-a.e.
x ∈ Ju .

The space SBV (�; Rm) of special functions of bounded variation, which
we simply denote by SBV (�) if m = 1, can be defined as the space of the
functions u ∈ BV (�; Rm) such that the singular part of their derivative with
respect to the Lebesgue measure Ln is given by (u+ − u−) ⊗ νuHn−1 Ju . For
such u, denoting by ∇u the density of the absolutely continuous part of Du,

we have:

(2.2) Du = ∇uLn + (u+ − u−) ⊗ νuHn−1 Ju .

It turns out (see [3], Proposition 4.4 or [15], Lemma 2.3) that SBV (�)

contains the bounded “piecewise Sobolev” functions. More precisely, if � is
bounded, K is a closed subset of Rn with Hn−1(K ∩�) < +∞ and u ∈ L∞(�)

with u ∈ W 1,1(� \ K ) then u ∈ SBV (�) and Hn−1(Su \ K ) = 0.

In particular, SBV (�; Rn) contains the following space S(�) of “piece-
wise C1 functions” (here m = n since u will be interpreted as a mechanical
deformation):

Definition 2.3. If � is a bounded open subset of Rn we define S(�) as
the set of all functions u ∈ L∞(�; Rn) satisfying the following conditions:

(i) there exists a closed set K in Rn with Hn−1(K ∩�) < +∞ and K = ⋃j S j ,
where (Sj )j∈J is a finite family of (n − 1)-dimensional C1 submanifolds of
Rn such that Hn−1(Sj \ Sj ) = 0, and u ∈ C1(� \ K ; Rn);

(ii)
∫
�\K |∇u| dx < +∞.

Since S(�) ⊆ SBV (�; Rn), it is convenient to rely on the previous theory
(though we could proceed more directly) to obtain the decomposition (2.2),
with Ju ⊆ K , for every u ∈ S(�).

The space B D

The space B D(�) of functions of bounded deformation is the space of the
functions u ∈ L1(�; Rn) whose symmetric distributional derivative

Eu = 1

2

(
Du + (Du)T )

is a measure in M(�; M sym). Clearly, BV (�; Rn) is a subspace of B D(�). If
u ∈ B D(�) the density of the absolutely continuous part of Eu with respect
to the Lebesgue measure is denoted by Eu. Thus

Eu = Eu Ln + Esu with Esu ⊥ Ln.
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We can further decompose Esu as Esu = E j u + Ecu, where E j u = Esu Ju

and Ecu = Esu (� \ Ju). It is proved in [2] that

E j u = (u+ − u−) � νuHn−1 Ju .

Moreover, |Ecu|(B)=0 whenever B is a Borel subset of � and Hn−1(B)<+∞.

The space SB D(�) of special functions with bounded deformation in � is
defined as the set of all u ∈ B D(�) with Ecu = 0 or, equivalently, with

Eu = Eu Ln + (u+ − u−) � νuHn−1 Ju .

We say that a sequence (uh) in B D(�) weakly converges to a function
u ∈ B D(�) if 

uh → u in L1(�; Rn)

(|Euh|(�)
)

h is bounded.

Remark 2.4. Let (uh) be a sequence in B D(�) converging in L1(�; Rn)

to a function u and such that
(|Euh|(�)

)
h is bounded. This implies the con-

vergence of (Euh) to Eu in D′(�; M sym); hence Eu is a measure, and∫
�

ψd Euh →
∫

�

ψd Eu

for every ψ ∈ C0
c (�; Rn). Therefore u ∈ B D(�) and (Euh) weakly∗ converges

to Eu.

If u ∈ S(�) then

Eu = Eu Ln + (u+ − u−) � νuHn−1 Ju .

In particular u ∈ SB D(�).

We refer to [22], [21] and [2] for a detailed study of the properties of B D
functions.

Relaxation

Let F : X → R be a functional on a topological space (X, τ ). The relaxed
functional F of F, or lower semicontinuous envelope of F, with respect to the
topology τ, is the greatest τ -lower semicontinuous functional which is less than
or equal to F. If (X, τ ) satisfies the first countability axiom then

F(x) = inf
{

lim inf
h→+∞

F(xh) : xh → x in X
}
,

and the infimum is attained. In the general case this formula really is the
definition of the so-called sequential lower semicontinuous envelope of F. For a
general treatment of this subject we refer to [12] and [14].



RELAXATION OF ELASTIC ENERGIES 283

3. – Convex cones

Let K be a cone in Rm, i.e., a subset which is closed under positive scalar
multiplication. Let us assume that a scalar product 〈 ·, · 〉, with the corresponding
norm ‖ · ‖, is defined in Rm . The orthogonal cone to K with respect to the
given scalar product is defined as:

K ⊥ = {η ∈ Rm : 〈 ξ, η 〉 ≤ 0 for every ξ ∈ K
}

.

Assume that K is closed and convex. Then we can consider the orthogonal
projection PK onto K , again with respect to 〈 ·, · 〉. Notice that K ⊥ turns out
to be closed and convex too, and for every ξ ∈ Rm

(3.1)
(a) ξ = PK ξ + PK⊥ξ, 〈 PK ξ, PK⊥ξ 〉 = 0;
(b) ξ = ξ1 + ξ2, ξ1 ∈ K , ξ2 ∈ K ⊥ ⇒ ‖PK ξ‖ ≤ ‖ξ1‖, ‖PK⊥ξ‖≤‖ξ2‖.

If µ ∈ M(�; Rm) we set

PK µ =
(

PK
dµ

d|µ|
)

|µ|.

This defines a measure in M(�; Rm), called the (orthogonal) projection of µ

onto K . Clearly, if ν ∈ M+(�) and |µ| � ν then

PK µ =
(

PK
dµ

dν

)
ν.

Property (a) above immediately yields µ = PK µ + PK⊥µ. Moreover, it is easy
to see that if µ1 ⊥ µ2 then PK (µ1 + µ2) = PK µ1 + PK µ2.

For reference convenience we state the following result ([4], Theorem 3.3):

Theorem 3.1. Let µ and (µh) be a measure and a sequence of measures
in M(�; Rm), respectively. Let K be a closed convex cone in Rm . Assume that
PK µh � Ln for every h ∈ N, and (d PK µh/dLn)h is bounded in L2(�; Rm). If
(µh) weakly∗ converges to µ, then PK µ � Ln, d PK µ/dLn ∈ L2(�; Rm), and∫

�

∣∣∣∣d PK µ

dLn

∣∣∣∣2 dx ≤ lim inf
h→+∞

∫
�

∣∣∣∣d PK µh

dLn

∣∣∣∣2 dx .

In the sequel we shall deal with closed convex cones in the vector space
M sym, which can be identified with a space Rm . In Section 9 we shall consider,
in M sym with n = 3, the scalar product determined by the operator A of the
stress-strain relation in the classic theory of linearized elasticity:

A: ξ �→ 2µξ + λ(tr ξ)I : M sym → M sym
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(λ and µ are the Lamé coefficients, I is the identity matrix). A is a positive
definite symmetric linear operator; hence 〈 ξ, η 〉 = (Aξ, η) defines a scalar
product in M sym.

For each of the following choices of K0 we shall be concerned with the
convex hull K of K0, and with the orthogonal cone K ⊥ (with respect to the
above defined scalar product):

(I) K0 = {a � b : a, b ∈ R3, (a, b) = 0};
(II) K0 = {a � a : a ∈ R3} = {a � b : a, b ∈ R3 with b = λa , λ ≥ 0};

(III) K0 = {a � b : a, b ∈ R3, (a, b) ≥ 0}.
Proposition 3.2. Let K0 be as above, and let K be the convex hull of K0.

In case (I)

K = M sym
0 = {ξ ∈ M sym : tr ξ = 0}, K ⊥ = {t I : t ∈ R}.

In case (II) K is the set M+ of the positive semi-definite symmetric matrices.
In case (III)

K = {ξ ∈ M sym : tr ξ ≥ 0
}
, K ⊥ = {t I : t ≤ 0

}
.

In any case K is closed.

Proof. The equality K = M sym
0 in case (I) follows immediately from the fact

that M sym
0 is a vector space spanned by the elements ei � ej for i, j ∈ {1, 2, 3}

with i 
= j, (e1 + e2) � (e1 − e2) and (e2 + e3) � (e2 − e3). Moreover the
decomposition ξ = ξ D + 1

3 (tr ξ)I easily yields that K ⊥ = {t I : t ∈ R}.
Let us consider case (II). The set K0 is contained in M+, hence the convex

hull of K0 is contained in M+ too. On the other hand, notice that for every
positive semi-definite symmetric matrix ξ there exists an orthogonal matrix Q
with the property that QT ξ Q is diagonal, say diag(λ1, λ2, . . . , λn), with λi ≥ 0.
Then

QT ξ Q = λ1e1 � e1 + . . . + λnen � en,

and

ξ = λ1 Q(e1 � e1)QT + . . . + λn Q(en � en)QT .

Since [Q(a �a)QT ] = (Qa)� (Qa), we conclude that ξ belongs to the convex
hull of K0.

As to case (III), notice that K ⊆ {ξ ∈ M sym : tr ξ ≥ 0} since the right-
hand side is a convex set. Moreover, K ⊇ M sym

0 since M sym
0 is the convex

hull of {a � b : (a, b) = 0}. The result now follows from the decomposition
ξ = ξ D + 1

3 (tr ξ)I.
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4. – Semicontinuous functionals with constraint on the jump

In the following we shall deal with the relaxation of energies which involve
a constraint on the jump of the form (u+ − u−) � νu ∈ K0, with K0 a fixed
cone. Before facing this problem we describe a class of energies which take
such a constraint into account and are lower semicontinuous.

Let K be a closed convex cone in Rm . We say that a measure µ ∈
M(�; Rm) is a K -valued measure if

dµ

d|µ| ∈ K |µ|-a.e. on �.

In the lemma below (see [4], Lemma 2.5) the closedness of the set of K -valued
measures with respect to weak∗ convergence is proved. It is worth pointing out
that this easily implies a lower semicontinuity result for functionals on SB D
or SBV .

Lemma 4.1. Let µ and (µh) be a measure and a sequence of measures in
M(�; Rm), respectively. Let µh be K -valued for every h ∈ N. If (µh) weakly∗
converges to µ then µ also is K -valued.

Let F : SB D(�) → [0, +∞] be sequential lower semicontinuous with re-
spect to the following convergence:

(4.1)


uh → u in L1(�; Rn)

Euh ⇀ Eu weakly in L1(�; M sym)

(u+
h − u−

h ) � νuhH
n−1 Juh ⇀ (u+ − u−) � νuHn−1 Ju

weakly∗ in M(�; M sym).

Let K be a closed convex cone in M sym and let FK : SB D(�) → [0, +∞]
be defined by

(4.2) FK (u) =
{

F(u) if (u+ − u−) � νu ∈ K for Hn−1-a.e. point in Ju,

+∞ otherwise.

Theorem 4.2. FK is sequential lower semicontinuous with respect to conver-
gence (4.1).

Proof. Let (uh) be a sequence in SB D(�) converging to a function u ∈
SB D(�) in the sense (4.1). We have to prove that

FK (u) ≤ lim inf
h→+∞

FK (uh).

We can assume that FK (uh) < +∞ for every h ∈ N. Therefore, (u+
h −u−

h )�νuh ∈
K on Juh up to a set of Hn−1-measure zero. By Lemma 4.1 we deduce that
(u+ − u−) � νu ∈ K for Hn−1-a.e. point in Ju . The lower semicontinuity of F
now concludes the proof.
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Remark 4.3. A perfectly analogous result holds for functionals on SBV,

provided Eu and (u+ − u−) � νu are replaced by ∇u and (u+ − u−) ⊗ νu,

respectively, in (4.1) and (4.2).

As an example we can consider the functional defined on SB D(�) as

F(u) =
∫

�

f (Eu) dx +
∫

Ju

g
(
(u+ − u−) � νu

)
dHn−1 + αHn−1(Ju),

where α > 0,

f : M sym → [0, +∞[ is convex

g: M sym → [0, +∞[ is convex and positively 1-homogeneous,

and there exist φ: [0, +∞[ → [0, +∞[ , with limt→+∞ φ(t)/t = +∞, and β > 0
such that

f (ξ) ≥ φ(|ξ |) and g(ξ) ≥ β|ξ | for every ξ ∈ M sym.

The lower semicontinuity of F with respect to the L1
loc(�)-convergence

follows from Corollary 1.2 in [6] (actually, there is lower semicontinuity of each
of the three terms separately). This paper also presents a compactness criterion
for sequences in SB D and some examples of existence theorems which they
give rise to. In view of the previous theorem the same applications can be
rephrased in terms of FK .

We can apply the results outlined above with f (Eu) = (AEu, Eu), g = 0
and K the convex hull of any of the three cones K0 considered in Section 3.
For instance, choose n = 3 and K0 as in (II) (notice that, by Proposition 3.2,
{a �b : a, b ∈ R3}∩ K = K0). In this way we obtain the existence of solutions
to the minimum problem

min
{∫

�

(AEu, Eu) dx + αH2(Ju) −
∫

�

(h, u) dx :

u ∈ C a.e., u+(x) − u−(x) = t (x)νu(x) with t (x) ≥ 0 for H2-a.e. x ∈ Ju

}
,

where C is any fixed compact set of R3 and h ∈ L1(�; R3) represents an
external force. Similarly, boundary conditions may be added.

On the line of Remark 4.3, analogous considerations can be made for
functionals on SBV .

In the remainder of the paper we shall study the case of the constraint K
when the surface energy density is a positively 1-homogeneous convex function
(clearly, the case without constraint falls in this setting too, taking K = M sym).
Hence we drop the term Hn−1(Ju) in the functional F (or, equivalently, we
choose α = 0), thus losing the lower semicontinuity.
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5. – Setting of the problem and main result

The main object of this paper is the computation of the lower semicontin-
uous envelope of the functional F defined below. In Section 9 we shall show
some results which can be obtained by a suitable choice of the function g and
the set K0.

Let � be a bounded open subset of Rn and let F : L1(�; Rn) → [0, +∞]
be given by

(5.1) F(u)=



1

2

∫
�

‖Eu‖2dx+
∫

Ju

g
(
(u+−u−) � νu

)
dHn−1 if u ∈ S(�) and

(u+−u−) � νu ∈ K0

for Hn−1-a.e. point

in Ju,

+∞ otherwise,

where S(�) is the space of “piecewise C1 functions” introduced in Defini-
tion 2.3, and:

– the norm ‖ · ‖ in the term 1
2

∫
� ‖Eu‖2 dx (the elastic part of the energy) is

defined as follows. Let A: M sym → M sym be a positive definite symmetric
linear operator, i.e., A is linear and

(a) (Aξ, η) = (ξ, Aη) for every ξ, η ∈ M sym;
(b) there exists α > 0 such that (Aξ, ξ) ≥ α|ξ |2 for every ξ ∈ M sym.

Then we can consider on M sym the scalar product 〈 ξ, η 〉 = (Aξ, η) and
the corresponding norm ‖ξ‖ = 〈 ξ, ξ 〉1/2. Clearly, ‖ · ‖ is equivalent to the
usual norm | · | in M sym, i.e.,

(5.2)
√

α|ξ | ≤ ‖ξ‖ ≤ M |ξ |

for a suitable M > 0.

– g: M sym → [0, +∞[ (the surface energy density) is a convex function pos-
itively homogeneous of degree 1.

– K0 describes the admissible singular part of the strain. We assume that K0
is a closed cone in M sym consisting of matrices of the form a � b.

We shall assume that � is a strictly star shaped Lipschitz bounded open
subset of Rn, i.e. (see [4]), � ⊆ ρ� for every ρ > 1. This regularity condition
will be used in Step 9 of the proof of Theorem 5.1 and in the proof of
Theorem 9.2 to apply an approximation result for B D functions proved in [4].

In the sequel, if H is a closed convex cone in M sym, we shall denote by
PH the orthogonal projection onto H with respect to the scalar product 〈 ·, · 〉
introduced above (see Section 3 for the definition of projection of a measure).
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Theorem 5.1. Let � be a strictly star shaped Lipschitz bounded open subset
of Rn.

Let F : L1(�; Rn) → [0, +∞] be the functional defined in (5.1) and let F be its
lower semicontinuous envelope with respect to the L1(�; Rn) topology.

Assume that g and K0 satisfy the following conditions:

(a) β = min|ξ |=1 g(ξ) > 0;
(b) the convex hull K of K0 is closed, and

(5.3) a � (b + c) ∈ K0 whenever a � b, a � c ∈ K0;

(c) the convex hull f1 of the function

f0(ξ) =
{

g(ξ) if ξ ∈ K0,

+∞ if ξ ∈ M sym \ K0

is Lipschitz on K .

Then

(i) F(u) < +∞ if and only if u belongs to the following space:

U(�) = {u ∈ B D(�) : PK⊥ Eu � Ln, PK⊥Eu ∈ L2(�; M sym)
}

= {u ∈ B D(�) : PK⊥ Esu = 0, PK⊥Eu ∈ L2(�; M sym)
}

.

(ii) F(u) =
∫

�

ω(Eu) dx +
∫

�

ω∞
(

d Esu

d|Esu|
)

d|Esu|

for every u ∈ U(�), with ω defined as follows: let

f2(ξ) =
{ 1

2
‖ξ‖2 if ξ ∈ K ,

+∞ if ξ ∈ M sym \ K

and let f be the convex hull of f1 ∧ f2 = min{ f1, f2}, then ω is the convex hull
of the function

ξ �→ f (PK ξ) + 1

2
‖PK⊥ξ‖2: M sym → [0, +∞[.

We defer the proof of Theorem 5.1 to the next sections. Here we gather
a few comments on the result.

Remark 5.2. F is a convex functional. Indeed, let u, v ∈ L1(�; Rn) and
0 < λ < 1. We may assume that F(u) < +∞ and F(v) < +∞. In particular
u, v ∈ S(�), thus also wλ = λu + (1 − λ)v ∈ S(�). Moreover Jwλ

⊆ Ju ∪ Jv

up to a set of Hn−1-measure zero and

(w+
λ − w−

λ ) � νwλ
= λ(u+ − u−) � νu + (1 − λ)(v+ − v−) � νv
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Hn−1-a.e. on Jwλ
. Since (u+ −u−)�νu, (v

+ −v−)�νv ∈ K0 for Hn−1-a.e. point
in Ju and Jv respectively, and νu = νv on Ju ∩ Jv up to a set of Hn−1-measure
zero, the convexity assumption (5.3) on K0 guarantees that Hn−1-a.e. on Jwλ

we have (w+
λ − w−

λ ) � νwλ
∈ K0. It is now immediate to get the inequality

F(wλ) ≤ λF(u) + (1 − λ)F(v).

Remark 5.3. Condition (b) of Theorem 5.1 is not automatically satisfied;
indeed, the convex hull of a closed cone in Rm need not be closed (consider,
e.g., the set {(x, y, z) ∈ R3 : z ≥ √x2 + y2} ∪ {(0, t, −t) : t ∈ R}). A sufficient
condition for the convex hull to be closed is contained in the following lemma.

Lemma 5.4. Let K0 be a closed cone in Rm, and K the convex hull of K0. If K
contains no lines then K is closed.

Proof. Let C be the convex hull of K0 ∩ Sm−1. We show that 0 /∈ C .
First notice that 0 cannot be an extreme point of C , otherwise 0 should

belong to K0 ∩ Sm−1 ([20], Corollary 18.3.1). Then, if 0 ∈ C we could find
two distinct points x1, x2 ∈ C and 0 < λ < 1 with λx1 + (1 − λ)x2 = 0. This
would imply that the line through x1 and x2 is contained in K , since K is
easily seen to be a cone. Thus 0 /∈ C .

The set K0 ∩ Sm−1 is compact, therefore C is compact, too ([20], The-
orem 17.2); therefore, we deduce the existence of a hyperplane separating 0
from C , i.e., the existence of ν ∈ Sm−1 and γ > 0 such that (ν, ξ − γ ) > 0 for
every ξ ∈ C . In particular

(5.4) (ν, ξ) ≥ γ |ξ | for every ξ ∈ K0.

Let now (ηh) be a sequence in K converging to a point ξ . Each ηh can be
written as a sum ξ h

1 + . . . + ξ h
m of points ξ h

i in K0. In view of (5.4) for every
h and i we have

γ |ξ h
i | ≤

∑
j

γ |ξ h
j | ≤
∑

j

(ν, ξ h
j ) = (ν, ηh).

The sequence (ξ h
i )h is therefore bounded for every i. As a consequence, we can

find an increasing sequence (hk) in N such that (ξ
hk
i )k converges for every i .

Since K0 is closed, each limit is in K0, which implies that ξ ∈ K .

The following proposition describes some properties of the function f1.

Proposition 5.5. Let g and f1 be as in Theorem 5.1. Let C be the convex
envelope of the set {ξ ∈ K0 : g(ξ) ≤ 1}. Then:

(a) C is closed and bounded, and f1 is the gauge function of the set C, i.e.,

f1(ξ) = inf{λ ≥ 0 : ξ ∈ λC}
for every ξ ∈ M sym. Moreover, C = {ξ ∈ M sym : f1(ξ) ≤ 1} and {ξ ∈ M sym :
f1(ξ) < +∞} = K ;

(b) if K does not contain any line, then there exists M0 > 0 such that f1(ξ) ≤ M0|ξ |
for every ξ ∈ K .
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Proof. (a) The set {ξ ∈ K0 : g(ξ) ≤ 1} is closed and bounded; by Theo-
rem 17.2 in [20] the same property is shared by its convex hull, i.e., C .

Define h(ξ) = inf{λ ≥ 0 : ξ ∈ λC} for every ξ ∈ M sym. We claim that
g(ξ) = h(ξ) for every ξ ∈ K0.

If ξ ∈ K0 \ {0} then ξ/g(ξ) ∈ C so that h(ξ/g(ξ)) ≤ 1 and, by the positive
homogeneity of h, we have h(ξ) ≤ g(ξ). On the other hand, if ξ ∈ K0\{0} then
h(ξ) > 0, and ξ/h(ξ) ∈ C ; it follows that g(ξ/h(ξ)) ≤ 1, i.e., g(ξ) ≤ h(ξ).

Since h is a convex function not greater than f0, then h ≤ f1. Let us
turn to the reverse inequality. It is enough to show that f1(ξ) ≤ h(ξ) when
ξ 
= 0 and h(ξ) < +∞; this implies that 0 < h(ξ) < +∞. Since ξ/h(ξ) ∈ C ,
we can express ξ/h(ξ) as a convex combination

∑
i αiξi of a finite number of

elements of the set {ζ ∈ K0 : g(ζ ) ≤ 1}. Thus

f1(ξ/h(ξ)) ≤
∑

i

αi f1(ξi ) ≤
∑

i

αi g(ξi ) ≤
∑

i

αi = 1.

The positive homogeneity of f1 now yields f1(ξ) ≤ h(ξ).
The property C = {ξ ∈ M sym : f1(ξ) ≤ 1} can be deduced from Corol-

lary 9.7.1 in [20]. This yields, in particular, that {ξ ∈ M sym : f1(ξ) <+∞}⊆ K .

The reverse inclusion is obvious.
(b) Let ξ ∈ K \{0} and λ = f1(ξ); then λ > 0. Since ξ/λ ∈ C we can write

ξ/λ = ξ1 + ξ2 + . . . + ξN for suitable ξi ∈ K0 with g(ξi ) ≤ 1. If g(ξi ) < 1 for
every i, then we could determine 0 < δ < 1 such that ξ/(δλ) =∑i (ξi/δ) ∈ C :
this contradicts the minimality of λ. Therefore g(ξi0) = 1 for some i0. Letting
M = max{g(ζ ) : |ζ | = 1} we have |ξi0 | ≥ 1/M.

Let us now use the assumption that K does not contain any line. As shown
in the proof of Lemma 5.4, formula (5.4) holds for suitable ν and γ. Therefore

|ξ |
λ

=
∑

i

(ξi , ν) ≥
∑

i

γ |ξi | ≥ γ |ξi0 | ≥ γ

M
.

We conclude that

f1(ξ) = λ ≤ M

γ
|ξ |.

Corollary 5.6. The functions f1 and f in Theorem 5.1 are lower semicontin-
uous.

Proof. The semicontinuity of f1 follows from the proposition above (since
the sublevel sets of f1 are closed). Moreover, f = f1 f2, (infimal convolution
of f1 and f2 : see Section 2). Therefore, the lower semicontinuity of f1 (and
f2) implies the lower semicontinuity of f by Corollary 9.2.2 in [20].

Proposition 5.7. Assume that K contains no lines. Let C be as in Proposi-
tion 5.5. Then f1 is Lipschitz on K if there exists γ0 > 0 such that every ξ ∈ C
with f1(ξ) = 1 admits a unit vector ν in the normal cone to C at ξ satisfying the
condition (ξ, ν) ≥ γ0|ξ |.



RELAXATION OF ELASTIC ENERGIES 291

Proof. Let ξ, η ∈ K be fixed. We have to prove that

| f1(ξ) − f1(η)| ≤ L|ξ − η|

for a suitable L independent of ξ and η. By the homogeneity of f1 and by (b)
of Proposition 5.5, it is enough to suppose f1(η) = 1 < f1(ξ). Let ξ ′ = ξ/ f1(ξ);
then f1(ξ

′) = 1, and, by assumption, we can find a unit vector ν in the normal
cone to C at ξ ′ such that (ξ ′, ν) ≥ γ0|ξ ′|. Moreover, if H denotes the supporting
hyperplane to C at ξ ′ determined by ν, then

|ξ − η| ≥ d(ξ, C) ≥ d(ξ, H) = (ξ − ξ ′, ν)

=
(

1 − 1

f1(ξ)

)
(ξ, ν) = ( f1(ξ) − 1

)
(ξ ′, ν) ≥ γ0

|ξ |
f1(ξ)

(
f1(ξ) − 1

)
.

By (b) of Proposition 5.5 we conclude that

f1(ξ) − 1 ≤ M0

γ0
|ξ − η|.

Remark 5.8. If ϕ: ξ �→ f (PK ξ): M sym → [0, +∞[ is convex, then the
function ω is given by

ω(ξ) = f (PK ξ) + 1

2
‖PK⊥ξ‖2 for every ξ ∈ M sym.

Indeed, ξ �→ 1
2‖PK⊥ξ‖2 is convex, as can be easily verified by means of

property (3.1)(b); it follows that ξ �→ f (PK ξ) + 1
2‖PK⊥ξ‖2 is convex, too.

An important simple case in which ϕ is convex is when K is a vector
subspace of M sym (see, e.g., the application to Hencky’s plasticity in Section
9); indeed, in this case, the projection PK is linear.

As to the general case we point out the following results.

Proposition 5.9. Let K be a closed convex cone in M sym, and let φ: K →
[0, +∞[ be a lower semicontinuous convex function. Then the following properties
are equivalent:

(a) ξ �→ φ(PK ξ): M sym → [0, +∞[ is convex;
(b) φ(PK (ξ + η)) ≤ φ(ξ) for every ξ ∈ K and for every η ∈ K ⊥.

Proof. (b)⇒(a) Let ξ0, ξ1 ∈ M sym, λ ∈ [0, 1] and ξλ = ξ0 + λ(ξ1 − ξ0) =
λξ1 + (1 −λ)ξ0. Since ξλ = [λPK ξ1 + (1 −λ)PK ξ0] + [λPK⊥ξ1 + (1 −λ)PK⊥ξ0],
property (b) yields

φ(PK ξλ) ≤ φ
(
λPK ξ1 + (1 − λ)PK ξ0

) ≤ λφ(PK ξ1) + (1 − λ)φ(PK ξ0),

from which (a) follows.
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(a)⇒(b) Let ξ and η be as in (b), and let λ ∈]0, 1[. By (a)

φ(PK (ξ + η)) = φ

(
PK

(
λ

ξ

λ
+ (1 − λ)

η

1 − λ

))
≤ λφ

(
PK

(
ξ

λ

))
+ (1 − λ)φ

(
PK

(
η

1 − λ

))
= λφ

(
ξ

λ

)
→ φ(ξ), for λ → 1−.

(Here we used the continuity of lower semicontinuous convex functions along
line segments: see Corollary 7.5.1 in [20]). We therefore get the inequality
contained in (b).

6. – A convergence lemma

In this section we prove a convergence lemma which will be crucial in the
estimate of the lower semicontinuous envelope of F from above. It generalizes
Reshetnyak’s Theorem (see below) to a case where the growth of the integrand
function is quadratic in some directions.

Let � be a bounded open subset of Rn. We recall that
∫

f (µ) is defined
in (2.1) when f is convex and µ is a measure.

Theorem 6.1 (Reshetnyak). Let f : Rm → R be a convex function such that
0 ≤ f (ξ) ≤ c(1 + |ξ |) for every ξ ∈ Rm and a suitable constant c ≥ 0. Let (µh) be
a sequence in M(�; Rm) which weakly∗ converges to a measure µ ∈ M(�; Rm).

Then ∫
�

f (µ) ≤ lim inf
h→+∞

∫
�

f (µh).

If, in addition, limh |µh|(�) = |µ|(�) then∫
�

f (µ) = lim
h→+∞

∫
�

f (µh).

Proof. In the case of f positively homogeneous of degree 1, see [3]
Theorems 2.38, 2.39 (the former result was originally proved in [18] Theorem 3
or [19] Theorem 2, while the latter was proved in [19] Theorem 3). In the
general case it is possible to reduce to f positively homogeneous of degree 1
by means of the auxiliary function f : Rm × [0, +∞[ → [0, +∞[ defined as

f (ξ, t) =
{

t f (ξ/t) if t > 0,

f ∞(ξ) if t = 0

(see, e.g., [18] Theorem 2′).
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In this section we shall only assume that the norm ‖ · ‖, the set K and
the function f satisfy the following conditions.

(A) 〈 ·, · 〉 is a scalar product in Rm with corresponding norm ‖ · ‖.
(B) K is a closed convex cone in Rm .

(C) f : K → [0, +∞[ is a lower semicontinuous convex function whose
recession function f ∞ is Lipschitz on K and such that there exist c0, c1 > 0
satisfying:

(6.1) f ∞(ξ) − c0 ≤ f (ξ) ≤ c1‖ξ‖ for every ξ ∈ K .

Moreover, we assume f (0) = 0.
Let us define ω as the convex envelope of the function

ξ �→ f (PK ξ) + 1

2
‖PK⊥ξ‖2: Rm → [0, +∞[.

We point out that ω is finite on the whole Rm .

Under these assumptions the following result holds.

Lemma 6.2. Let µ and (µh) be a measure and a sequence of measures in{
ν ∈ M(�; Rm) : PK⊥ν � Ln,

d PK⊥ν

dLn
∈ L2(�; Rm)

}
,

respectively. Assume that:

(a) (µh)h weakly∗ converges to µ;
(b)
(d PK⊥µh

dLn

)
h converges to

d PK⊥µ

dLn
in L2(�; Rm).

Then

lim inf
h→+∞

∫
�

ω(µh) ≥
∫

�

ω(µ).

Moreover, if in addition lim
h→+∞

|µh|(�) = |µ|(�), then

lim
h→+∞

∫
�

ω(µh) =
∫

�

ω(µ).

For the proof we need the following result.

Proposition 6.3.

(a) There exist L , γ > 0 such that

ω(ξ) − ω(ξ ′) ≤ L‖ξ − ξ ′‖ + ‖PK⊥ξ‖2 + γ

for all ξ, ξ ′ ∈ Rm.
(b) The subdifferential ∂ω is bounded on any set of the form Wr = {ξ ∈ Rm :

‖PK⊥ξ‖ ≤ r}, with r ≥ 0. In particular, for every r ≥ 0 there exists Lr > 0
such that

ω(ξ) − ω(ξ ′) ≤ Lr‖ξ − ξ ′‖
whenever ξ ∈ Wr and ξ ′ ∈ Rm . Moreover, ω is Lipschitz on Wr .
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Proof. Step 1. Assume, in addition, that the function f is Lipschitz. Let
us introduce the auxiliary function � = f f ⊥

2 (infimal convolution of f and
f ⊥
2 : see Section 2), where f is considered extended to the whole Rm with

value +∞ on Rm \ K , and

f ⊥
2 (ξ) =

{ 1

2
‖ξ‖2 if ξ ∈ K ⊥,

+∞ if ξ ∈ Rm \ K ⊥.

Then

(6.2) �(ξ) = inf
{

f (ξ1) + 1

2
‖ξ2‖2 : ξ1 ∈ K , ξ2 ∈ K ⊥, ξ1 + ξ2 = ξ

}
for every ξ ∈ Rm . It turns out that � is convex and the infimum in (6.2) is
attained ([20] Corollary 9.2.2).

We shall prove the following properties, where L f is a Lipschitz constant
for f on K :

(i) for every ξ ∈ Rm , if (ξ1, ξ2) ∈ K × K ⊥ is an optimal pair for ξ in (6.2)
then

(6.3) 〈 ξ2, ξ2 − PK⊥ξ 〉 ≤ L f ‖ξ2 − PK⊥ξ‖ ;

(ii) �(ξ) ≥ �(PK ξ) − L2
f , for every ξ ∈ Rm ;

(iii) � ≤ ω ≤ � + c0 on Rm , where c0 is the constant in (6.1);

(iv) there exists a constant c > 0 such that

�∞ − c ≤ � on K ,(6.4)

ω∞ − c ≤ ω ≤ ω∞ on K .(6.5)

Let ξ ∈ Rm and let (ξ1, ξ2) be as in (i). The pair (ξ1 + δ(PK ξ − ξ1), ξ2 +
δ(PK⊥ξ − ξ2), with 0 < δ < 1, is admissible in (6.2), hence

f (ξ1) + 1

2
‖ξ2‖2 ≤ f (ξ1 + δ(PK ξ − ξ1)) + 1

2
‖ξ2 + δ(PK⊥ξ − ξ2)‖2

≤ f (ξ1) + L f δ‖PK ξ − ξ1‖

+ 1

2
‖ξ2‖2 + δ〈 ξ2, PK⊥ξ − ξ2 〉 + 1

2
δ2‖PK⊥ξ − ξ2‖2.

It follows that

0 ≤ L f ‖PK ξ − ξ1‖ + 〈 ξ2, PK⊥ξ − ξ2 〉 + 1

2
δ‖PK⊥ξ − ξ2‖2.



RELAXATION OF ELASTIC ENERGIES 295

Letting δ tend to 0 and taking into account that PK ξ + PK⊥ξ = ξ1 + ξ2 we
conclude that

〈 ξ2, ξ2 − PK⊥ξ 〉 ≤ L f ‖PK ξ − ξ1‖ = L f ‖ξ2 − PK⊥ξ‖,
hence condition (6.3).

Let us consider (ii). Let ξ ∈ Rm and let ξ1, ξ2 be an optimal pair for ξ

in (6.2). Then, in view of (i),

‖ξ2 − PK⊥ξ‖2 = 〈 ξ2, ξ2 − PK⊥ξ 〉 − 〈 PK⊥ξ, ξ2 − PK⊥ξ 〉
≤ L f ‖ξ2 − PK⊥ξ‖ − 〈 PK⊥ξ, PK ξ − ξ1 〉 ≤ L f ‖ξ2 − PK⊥ξ‖,

from which ‖ξ2 − PK⊥ξ‖ ≤ L f . Then,

�(ξ) = f (ξ1) + 1

2
‖ξ2‖2 ≥ f (ξ1) ≥ f (PK ξ) − L f ‖ξ1 − PK ξ‖

= f (PK ξ) − L f ‖ξ2 − PK⊥ξ‖ ≥ �(PK ξ) − L2
f ,

i.e., property (ii).
Since � is convex and �(ξ) ≤ f (PK ξ) + 1

2‖PK⊥ξ‖2 for every ξ ∈ Rm ,
then � ≤ ω : the first part of (iii).

Let now ξ1 ∈ K and ξ2 ∈ K ⊥ be optimal for ξ in (6.2). Then, for every
0 < λ < 1,

ω(ξ) = ω

(
λ
ξ1

λ
+ (1 − λ)

ξ2

1 − λ

)
≤ λω

(
ξ1

λ

)
+ (1 − λ)ω

(
ξ2

1 − λ

)

≤ λ f
(

ξ1

λ

)
+ (1 − λ)

1

2

∥∥ ξ2

1 − λ

∥∥2

= λ f
(

ξ1

λ

)
+ 1

1 − λ

1

2
‖ξ2‖2 → f ∞(ξ1) + 1

2
‖ξ2‖2, as λ → 0+.

Thus, by (6.1),

ω(ξ) ≤ f (ξ1) + 1

2
‖ξ2‖2 + c0 = �(ξ) + c0.

Therefore, (iii) is proved.
Let ξ ∈ K be fixed, and let ξ1, ξ2 be an optimal pair for ξ in (6.2). We

have

�∞(ξ) − �(ξ) = �∞(ξ) − f (ξ1) − 1

2
‖ξ2‖2

≤ f ∞(ξ) − f (ξ1) ≤ f (ξ) − f (ξ1) + c0

≤ L f ‖ξ − ξ1‖ + c0 = L f ‖ξ2‖ + c0.
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Moreover, since ξ ∈ K , (6.3) implies that ‖ξ2‖2 ≤ L f ‖ξ2‖, hence ‖ξ2‖ ≤ L f .
We conclude that

�∞(ξ) − �(ξ) ≤ L2
f + c0,

i.e., property (6.4).
Finally, let us consider (6.5). The second inequality is immediate taking

into account the convexity of ω and the fact that ω(0) = 0; indeed, for every
ξ ∈ Rm and t > 1

ω(ξ) = ω
(1

t
tξ
) ≤ 1

t
ω(tξ) → ω∞(ξ) as t → +∞.

As to the first inequality, from (iii) and (6.4) it follows that for every ξ ∈ K

ω∞ ≤ �∞ ≤ � + c ≤ ω + c,

i.e., the first inequality in (6.5).

Step 2. Since ω is convex and finite on the whole Rm , for every ξ0 ∈ Rm

there exists ξ∗
0 ∈ Rm such that

(6.6) ω(ξ) ≥ ω(ξ0) + 〈 ξ∗
0 , ξ − ξ0 〉 for every ξ ∈ Rm .

It turns out that

(6.7) ‖PK ξ∗
0 ‖ ≤ c1,

where c1 is the constant in (6.1).
Indeed, taking ξ = tη in (6.6), with η ∈ Rm and t > 0, we have

ω(tη)

t
≥ ω(ξ0)

t
+ 〈 ξ∗

0 , η 〉 − 〈 ξ∗
0 , ξ0 〉

t
,

and, as t → +∞,

(6.8) ω∞(η) ≥ 〈 ξ∗
0 , η 〉, for every η ∈ Rm .

In particular, choosing η = PK ξ∗
0 , we obtain

‖PK ξ∗
0 ‖2 ≤ ω∞(PK ξ∗

0 ) ≤ f ∞(PK ξ∗
0 ) ≤ c1‖PK ξ∗

0 ‖,

which implies (6.7).

Step 3. Under the additional assumption that f is Lipschitz we prove that
the subdifferential ∂ω is bounded on K ; in particular, ω is Lipschitz on K .

Let ξ0 ∈ K be fixed, and ξ∗
0 ∈ Rm satisfy the subdifferential inequality (6.6).

By (6.7) it remains to estimate PK⊥ξ∗
0 .
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Take η = ξ0 in (6.8). By (6.5)

〈 ξ∗
0 , ξ0 〉 ≤ ω∞(ξ0) ≤ ω(ξ0) + c;

therefore, for every ξ ∈ Rm ,

ω(ξ) ≥ 〈 ξ∗
0 , ξ0 〉 − c + 〈 ξ∗

0 , ξ − ξ0 〉 = 〈 ξ∗
0 , ξ 〉 − c.

Let ξ = PK⊥ξ∗
0 /‖PK⊥ξ∗

0 ‖; then

ω

(
PK⊥ξ∗

0

‖PK⊥ξ∗
0 ‖
)

≥
〈

ξ∗
0 ,

PK⊥ξ∗
0

‖PK⊥ξ∗
0 ‖
〉

− c = ‖PK⊥ξ∗
0 ‖ − c.

Since ω is continuous, this yields

‖PK⊥ξ∗
0 ‖ ≤ c + sup

‖η‖=1
ω(η) < +∞.

Step 4. We prove (a) of the proposition under the additional assumption
that the function f is Lipschitz.

By (6.5) we have that for every ξ ∈ K

ω(2ξ) ≤ ω∞(2ξ) = 2ω∞(ξ) ≤ 2
(
ω(ξ) + c

)
,

therefore
1

2
ω(2ξ) ≤ ω(ξ) + c.

Taking into account the estimates (ii) and (iii) above and the Lipschitz property
of ω on K which we proved in Step 3, this implies for every ξ, ξ ′ ∈ Rm

ω(ξ) − ω(ξ ′) = ω

(
1

2
(2PK ξ) + 1

2
(2PK⊥ξ)

)
− ω(ξ ′)

≤ 1

2
ω(2PK ξ) + 1

2
ω(2PK⊥ξ) − �(ξ ′)

≤ ω(PK ξ) + c + 1

2
· 1

2
‖2PK⊥ξ‖2 − (�(PK ξ ′) − L2

f

)
≤ ω(PK ξ) − ω(PK ξ ′) + ‖PK⊥ξ‖2 + L2

f + c + c0

≤ Lω‖PK ξ − PK ξ ′‖ + ‖PK⊥ξ‖2 + L2
f + c + c0

≤ Lω‖ξ − ξ ′‖ + ‖PK⊥ξ‖2 + L2
f + c + c0,

where Lω is a Lipschitz constant for ω on K .

Step 5. We prove (b) of the proposition under the additional assumption
that the function f is Lipschitz.
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Let r > 0, and ξ0 ∈ Wr = {ξ ∈ Rm : ‖PK⊥ξ‖ ≤ r}. Let ξ∗
0 ∈ ∂ω(ξ0).

By (6.7) we only have to estimate ‖PK⊥ξ∗
0 ‖. Let ζ ∗

0 ∈ ∂ω(PK ξ0); by Step 3
we may assume that ‖ζ ∗

0 ‖ ≤ M, with M independent of ξ0. Then, if we set

P̂K⊥ξ∗
0 = PK⊥ξ∗

0 /‖PK⊥ξ∗
0 ‖,

ω(ξ0 + P̂K⊥ξ∗
0 ) ≥ ω(ξ0) + 〈 ξ∗

0 , P̂K⊥ξ∗
0 〉

≥ ω(PK ξ0) + 〈 ζ ∗
0 , PK⊥ξ0 〉 + ‖PK⊥ξ∗

0 ‖
≥ ω(PK ξ0) − M‖PK⊥ξ0‖ + ‖PK⊥ξ∗

0 ‖;
therefore

‖PK⊥ξ∗
0 ‖ ≤ ω(ξ0 + P̂K⊥ξ∗

0 ) − ω(PK ξ0) + Mr,

and by (a), which we proved in Step 4 if f is Lipschitz,

‖PK⊥ξ∗
0 ‖ ≤ L‖ξ0 + P̂K⊥ξ∗

0 − PK ξ0‖ + ‖PK⊥(ξ0 + P̂K⊥ξ∗
0 )‖2 + γ + Mr

≤ L(‖PK⊥ξ0‖ + 1) + (‖PK⊥ξ0‖ + ‖P̂K⊥ξ∗
0 ‖)2 + γ + Mr

≤ L(r + 1) + (r + 1)2 + γ + Mr.

Step 6. Let us show that (a) and (b) hold without the additional assumption
that f is Lipschitz on K .

Let ψ be the convex envelope of

ξ �→ f ∞(PK ξ) + 1

2
‖PK⊥ξ‖2: Rm → [0, +∞[.

Since f ∞ is Lipschitz by assumption, we can apply Step 4 and Step 5 with
f replaced by f ∞, and, consequentely, ω replaced by ψ . In particular, there
exist L , γ > 0 such that

ψ(ξ) − ψ(ξ ′) ≤ L‖ξ − ξ ′‖ + ‖PK⊥ξ‖2 + γ

for all ξ, ξ ′ ∈ Rm . On the other hand, by assumption (C) on f , we have

(6.9) ω ≤ ψ ≤ ω + c0 on Rm;
we conclude that

ω(ξ) − ω(ξ ′) ≤ ψ(ξ) − ψ(ξ ′) + c0

≤ L‖ξ − ξ ′‖ + ‖PK⊥ξ‖2 + γ + c0

for all ξ, ξ ′ ∈ Rm . Thus, property (a) is proved.
As for (b), let r ≥ 0, ξ0 ∈ Wr and ξ∗

0 ∈ ∂ω(ξ0). Define ξ̂∗
0 = ξ∗

0 /‖ξ∗
0 ‖; it

turns out that

ω(ξ0 + ξ̂∗
0 ) ≥ ω(ξ0) + 〈 ξ∗

0 , ξ̂∗
0 〉 = ω(ξ0) + ‖ξ∗

0 ‖,
hence, by (6.9),

‖ξ∗
0 ‖ ≤ ψ(ξ0 + ξ̂∗

0 ) − ψ(ξ0) + c0.

Since ξ0 + ξ̂∗
0 ∈ Wr+1 and, as pointed out above, property (b) holds with ω

replaced by ψ , we conclude that ‖ξ∗
0 ‖ ≤ M + c0, where M is a bound for ∂ψ

on Wr+1.

Before addressing the proof of Lemma 6.2 we state, for reference conve-
nience, the following result.
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Lemma 6.4. For every λ > 0 let ϕλ be the convex envelope of the function

ξ �→ ω(ξ) ∧ (λ‖ξ‖): Rm → [0, +∞[.

Let L , γ and Lr be as in Proposition 6.3. Then

(a) ϕλ = ω on Wr = {ξ ∈ Rm : ‖PK⊥ξ‖ ≤ r} whenever λ ≥ Lr ;
(b) (ϕλ)λ>0 is non-decreasing and converges pointwise to ω on Rm as λ → +∞;
(c) if λ ≥ L then

ω(ξ) ≤ ϕλ(ξ) + ‖PK⊥ξ‖2 + γ

for every ξ ∈ Rm.

Proof. Recall (see Section 2) that ϕλ = ω (λ‖·‖). Then, for every ξ ∈ Rm

we get

(6.10) ϕλ(ξ) = inf{ω(ξ1) + λ‖ξ2‖ : ξ1 + ξ2 = ξ}.

Let ξ ∈ Wr and ξ1, ξ2 ∈ Rm with ξ1 + ξ2 = ξ . By (b) of Proposition 6.3 we
have

ω(ξ1) ≥ ω(ξ) − Lr‖ξ1 − ξ‖ = ω(ξ) − Lr‖ξ2‖;
hence, if λ ≥ Lr ,

ω(ξ) ≤ ω(ξ1) + λ‖ξ2‖.
By the arbitrariness of ξ1 and ξ2 it follows that ω(ξ) ≤ ϕλ(ξ); since the opposite
inequality is obvious, the proof of (a) is complete. Clearly, (ϕλ)λ>0 is non-
decreasing as λ increases, therefore (b) follows immediately from (a) taking
into account that

⋃
r≥0 Wr = Rm .

Let λ > 0 and ξ, ξ1, ξ2 ∈ Rm , with ξ1 + ξ2 = ξ . By (a) of Proposition 6.3
we have

ω(ξ) ≤ ω(ξ1) + L‖ξ2‖ + ‖PK⊥ξ‖2 + γ.

The inequality in (c) follows from (6.10) by the arbitrariness of ξ1 and ξ2.

Proof of Lemma 6.2. Notice that if ν ∈ M(�; Rm), from the equality
PK⊥ν = PK⊥νa + PK⊥νs we deduce that PK⊥ν � Ln if and only if PK⊥νs is
the zero measure; in this case

d PK⊥ν

dx
= d PK⊥νa

dx
= PK⊥

dνa

dx
,

and, since νs = PK νs,

(6.11)
dνs

d|νs | = d PK νs

d|νs | = PK
dνs

d|νs | ∈ K |νs |-a.e. in �.

If µa and µa
h (h ∈ N) denote the absolutely continuous part of µ and µh,

respectively, we set dµa/dx = g and dµa
h/dx = gh .
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Let λ > 0 and let ϕλ be as in the preceding lemma. Since ϕλ ≤ ω, by
Theorem 6.1 we have

lim inf
h→+∞

∫
�

ω(µh) ≥ lim inf
h→+∞

∫
�

ϕλ(µh) ≥
∫

�

ϕλ(µ).

By property (a) of Lemma 6.4, ϕ∞
λ = ω∞ on K if λ ≥ L0 (the constant Lr

in (b) of Proposition 6.3 with r = 0). Therefore, by (6.11) applied with ν = µ,

we have ∫
�

ϕλ(µ) =
∫

�

ϕλ(g) dx +
∫

�

ω∞
(

dµs

d|µs |
)

d|µs |

if λ ≥ L0. An application of the monotone convergence theorem yields the
convergence to

∫
� ω(µ) as λ → +∞. The first part of Lemma 6.2 is thus

proved.
Assume now that lim

h→+∞
|µh|(�) = |µ|(�). It remains to prove that

lim sup
h→+∞

∫
�

ω(µh) ≤
∫

�

ω(µ).

Let λ ≥ L0, so that ϕ∞
λ = ω∞ on K . By (6.11) we have that |µs

h|-
a.e. dµs

h/d|µs
h|∈ K , which implies∫

�

ω(µh) =
∫

�

ω(gh) dx +
∫

�

ϕ∞
λ

(
dµs

h

d|µs
h|
)

d|µs
h|

=
∫

�

ϕλ(µh) +
∫

�

(
ω(gh) − ϕλ(gh)

)
dx .

Therefore, by Theorem 6.1 and the inequality ϕλ ≤ ω,

lim sup
h→+∞

∫
�

ω(µh) =
∫

�

ϕλ(µ) + lim sup
h→+∞

∫
�

(
ω(gh) − ϕλ(gh)

)
dx

≤
∫

�

ω(µ) + lim sup
h→+∞

∫
�

(
ω(gh) − ϕλ(gh)

)
dx .

Now it is enough to show that

(6.12) lim
λ→+∞

lim sup
h→+∞

(∫
�

ω(gh) −
∫

�

ϕλ(gh)

)
= 0.

Let r > 0 and λ ≥ Lr ∨ L (we may assume λ ≥ L0, too). By (a) and (c) of
Lemma 6.4

0 ≤
∫

�

(
ω(gh) − ϕλ(gh)

)
dx =

∫
{x∈�:‖P

K⊥ gh (x)‖>r}

(
ω(gh) − ϕλ(gh)

)
dx

≤
∫

{x∈�:‖P
K⊥ gh (x)‖>r}

(‖PK⊥gh(x)‖2 + γ
)

dx .
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Notice that

{x ∈ � : ‖PK⊥gh(x)‖ > r} ⊆
{x ∈ � : ‖PK⊥gh(x)‖ > r, ‖PK⊥g‖ ≤ r − 1} ∪ {x ∈ � : ‖PK⊥g‖ > r − 1}.

Since (PK⊥gh)h converges to PK⊥g in L2(�; Rm), it is easy to see that

lim
h→+∞

∫
{x∈�:‖P

K⊥ gh (x)‖>r,‖P
K⊥ g‖≤r−1}

(‖PK⊥gh(x)‖2 + γ
)

dx = 0;

hence

0 ≤ lim sup
h→+∞

∫
�

(
ω(gh) − ϕλ(gh)

)
dx ≤

∫
{x∈�:‖P

K⊥ g‖>r−1}

(‖PK⊥g(x)‖2 + γ
)

dx .

The last term tends to zero as r → +∞, thus yielding 6.12.

7. – Proof of the main theorem

The proof of Theorem 5.1 will be carried out through several steps.

Step 1. If F(u) < +∞ then u ∈ U(�).

By assumption there exists a sequence (uh) in S(�) converging to u in
L1(�; Rn) and such that F(uh) ≤ M for every h ∈ N and for a suitable
constant M . Then

1

2

(∫
�

‖Euh‖2 + β

∫
Ju

|u+
h − u−

h |dHn−1
)

≤ F(uh) ≤ M .

In particular,
(|Euh|(�)

)
is bounded; by Remark 2.4 we have that u ∈ B D(�)

and (Euh) weakly∗ converges to Eu. Let us now consider that PK⊥ Euh � Ln

for every h ∈ N and (‖PK⊥Euh‖L2) is bounded. Then we can apply Theorem 3.1
and conclude that u ∈ U(�).

Step 2. f ∞ = f1 on K , and there exist c0, c1 such that f ∞(ξ) − c0 ≤
f (ξ) ≤ c1‖ξ‖ for every ξ ∈ K .

We have f ∞(ξ) ≤ f ∞
1 (ξ) = f1(ξ) for every ξ ∈ K . By the Lipschitz

continuity of f1 on K there exists c1 such that f1(ξ) ≤ c1‖ξ‖ for ξ ∈ K . Since
f ≤ f1 on K , this immediately yields that f (ξ) ≤ c1‖ξ‖ for ξ ∈ K . Moreover,
for a suitable constant c0 > 0

1

2
‖ξ‖2 ≥ f1(ξ) − c0
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for every ξ ∈ K ; it follows that f1 ∧ f2 ≥ f1 − c0, from which f ≥ f1 − c0
on K . In particular, f ∞ ≥ f ∞

1 = f1, so that f ∞ = f1 on K (since f ≤ f1
on K ). Now, the inequality f ≥ f1 − c0 can be rewritten as f ≥ f ∞ − c0
on K .

Step 3. For every u ∈ U(�) let

G(u) =
∫

�

ω(Eu)dx +
∫

�

ω∞
(

Esu

|Esu|
)

|Esu| .

Here we prove that G is lower semicontinuous on U(�) with respect to the
L1(�; Rn) topology.

Let (uh) be a sequence in U(�) converging to a function u ∈ U(�) in
L1(�; Rn). We can assume that

(
G(uh)

)
h has a finite limit.

For every λ > 0 let ϕλ be the convex envelope of the function

ξ �→ ω(ξ) ∧ (λ‖ξ‖): M sym → [0, +∞[ .

Since f1(ξ) ≥ β|ξ | if ξ ∈ K , by Step 2 we deduce that

ω(ξ) ≥ β|PK ξ | + 1

2
‖PK⊥ξ‖2 for every ξ ∈ K

(the right-hand side is convex, see Remark 5.8). The boundedness of
(
G(uh)

)
implies that (Euh) is bounded in M(�; M sym). As we remarked in Step 1, the
weak∗ convergence of (Euh) to Eu follows.

Since ϕλ is convex and grows at most linearly, by Reshetnyak’s Theorem 6.1
we have ∫

�

ϕλ(Eu) ≤ lim inf
h→+∞

∫
�

ϕλ(Euh) ≤ lim inf
h→+∞

G(uh) .

By Step 2 we are in a position to apply Lemma 6.4. Therefore, (ϕλ)λ is non-
decreasing and converges to ω on M sym as λ → +∞, and ϕλ = ω on K . By
the monotone convergence theorem we get∫

�

ω(Eu)dx +
∫

�

ω∞(Esu) ≤ lim inf
h→+∞

G(uh) ,

i.e., G(u) ≤ lim infh→+∞ G(uh).

Step 4. G ≤ F on U(�).

Let u ∈ U(�) with F(u) < +∞, and let (uh) be a sequence in L1(�; Rn)

with lim infh→+∞ F(uh) = F(u). We can assume F(uh) < +∞ for every h ∈ N;
then uh ∈ S(�), (u+

h − u−
h ) � νuh ∈ K0 on Juh up to a set of Hn−1-measure

zero, and 1
2

∫
� ‖PK⊥Euh‖2dx ≤ F(uh) < +∞. In particular, uh ∈ U(�) for

every h. Notice now that

ω(ξ) ≤ f (PK ξ) + 1

2
‖PK⊥ξ‖2 ≤ 1

2
‖PK ξ‖2 + 1

2
‖PK⊥ξ‖2 = 1

2
‖ξ‖2

for every ξ ∈ M sym ,
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and
ω∞(ξ) ≤ f ∞

1 (ξ) = f1(ξ) ≤ g(ξ) for every ξ ∈ K0 .

Therefore, G(uh) ≤ F(uh) for every h ∈ N. Taking the lower semiconti-
nuity of G (established in Step 3) into account, we conclude that G(u) ≤
lim infh→+∞ G(uh) ≤ lim infh→+∞ F(uh) = F(u).

It is now useful to “localize” the functional F by defining for every open
subset A of �

F(u, A) =



1

2

∫
A
‖Eu‖2dx +

∫
Ju∩A

g
(
(u+ − u−) � νu

)
dHn−1

if u ∈ S(�) and

(u+ − u−) � νu ∈ K0

for Hn−1-a.e. point in Ju,

+∞ otherwise.

Moreover, for every u ∈ L2(�; Rn) ∩ U(�) and A ∈ A(�) (the family of all
open subsets of �) we set

(7.1)
F2(u, A) = inf

{
lim inf
h→+∞

F(uh, A) : (uh) in L2(�; Rn) ∩ U(�),

uh → u in L2(�; Rn)

}
.

In other words, F2(·, A) is the lower semicontinuous envelope of F(·, A) on
L2(�; Rn) ∩ U(�) with respect to the L2(�; Rn) topology.

We would like to represent F2 in integral form on W 1,2(�; Rn) × A(�).
To this aim we first need the following technical step:

Step 5. F2(u, ·) is the restriction to A(�) of a non-negative Borel measure
on � for every function u ∈ W 1,2(�; Rn).

Let u ∈ W 1,2(�; Rn) be fixed. By Theorem 14.23 in [14] the following
properties guarantee that F2(u, ·) is the restriction to A(�) of a non-negative
Borel measure on �: for any A, A1, A2 ∈ A(�)

F2(u, A1) ≤ F2(u, A2) if A1 ⊆ A2 ,(7.2)

F2(u, A1 ∪ A2) ≥ F2(u, A1) + F2(u, A2) if A1 ∩ A2 = ∅ ,(7.3)

F2(u, A) = sup{F2(u, A′) : A′ ∈ A(�), A′ ⊂⊂ A} ,(7.4)

F2(u, A1 ∪ A2) ≤ F2(u, A1) + F2(u, A2) .(7.5)

Properties (7.2) and (7.3) can be easily proved. As for the others, we need the
following fact:

(7.6)
F2(u, A′ ∪ B) ≤ F2(u, A′′) + F2(u, B)

whenever A′, A′′, B ∈ A(�) with A′ ⊂⊂ A′′ .
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Let (uh) and (vh) be two arbitrary sequences in L2(�; Rn) ∩ U(�) converging
to u in L2(�; Rn). Suppose that the limits

lim
h→+∞

F(uh, A′′), lim
h→+∞

F(vh, B)

exist and are finite; in particular we can assume that (uh) and (vh) are sequences
in L2(�; Rn)∩S(�), and that

∫
A′′ ‖Euh‖2dx,

∫
B ‖Evh‖2dx ≤ M for every h ∈ N

and a suitable constant M > 0.
By the arbitrariness of (uh) and (vh) the claim will be proved if we show

that
F2(u, A′ ∪ B) ≤ lim

h→+∞
F(uh, A′′) + lim

h→+∞
F(vh, B) .

Fix k ∈ N. Let A0 = A′ and let A1, . . . , Ak be open subsets of � with boundary
of measure zero and satisfying the property

A′ = A0 ⊂⊂ A1 ⊂⊂ . . . ⊂⊂ Ak ⊂⊂ A′′ .

For every i ∈ {1, . . . , k} let ϕi ∈ C∞
c (Ai ) with ϕi = 1 on Ai−1 and 0 ≤ ϕi ≤ 1.

Define for all h
wh,i = ϕi uh + (1 − ϕi )vh .

Then wh,i ∈ S(�). Moreover, up to a set of Hn−1-measure zero, Jwh,i ⊆
Juh ∪ Jvh , and

(w+
h,i − w−

h,i ) � νwh,i = ϕi (u
+
h − u−

h ) � νuh + (1 − ϕi )(v
+
h − v−

h ) � νvh

Hn−1-a.e. on Jwh,i . Since (u+
h − u−

h ) � νuh ∈ K0 and (v+
h − v−

h ) � νvh ∈ K0

for Hn−1-a.e. point in Juh and Jvh respectively, and νuh = νvh up to a set of
Hn−1-measure zero on Juh ∩ Jvh , we conclude that (w+

h,i − w−
h,i ) � νwh,i ∈ K0

is satisfied Hn−1-a.e. on Jwh,i by the convexity assumption on K0.

Let Ci = Ai \ Ai−1; then

(7.7)

F(wh,i , A′ ∪ B) = 1

2

∫
(A′∪B)∩Ai−1

‖Euh‖2dx

+
∫

Juh ∩(A′∪B)∩Ai−1

g
(
(u+

h − u−
h ) � νuh

)
dHn−1

+ 1

2

∫
B\Ai

‖Evh‖2dx +
∫

Jvh ∩(B\Ai )
g
(
(v+

h − v−
h ) � νvh

)
dHn−1

+ 1

2

∫
B∩Ci

‖Ewh,i‖2dx +
∫

Jwh,i ∩Ci

g
(
(w+

h,i − w−
h,i ) � νwh,i

)
dHn−1.



RELAXATION OF ELASTIC ENERGIES 305

As for the last integral in (7.7), by the convexity of g we have:

(7.8)

∫
Jwh,i ∩Ci

g
(
(w+

h,i − w−
h,i ) � νwh,i

)
dHn−1

≤
∫

Juh ∩Ci

g
(
(u+

h − u−
h ) � νuh

)
dHn−1

+
∫

Jvh ∩Ci

g
(
(v+

h − v−
h ) � νvh

)
dHn−1 .

Consider now the volume integral over B ∩ Ci in (7.7). The measure strain
Ewh,i is given by

Ewh,i = ϕi Euh + (1 − ϕi )Evh + (Dϕi ) � (uh − vh) .

Hence

1

2

∫
B∩Ci

‖Ewh,i‖2dx ≤c

(∫
B∩Ci

(‖Euh‖2+‖Evh‖2)dx+N 2
k

∫
B∩Ci

|uh − vh|2dx

)
,

where c > 0 is a constant independent of h and k, and Nk = sup{|Dϕi (x)| :
1 ≤ i ≤ k, x ∈ �}. Notice that for every h ∈ N

k∑
i=1

∫
B∩Ci

(‖Euh‖2 + ‖Evh‖2)dx ≤
∫

A′′∩B

(‖Euh‖2 + ‖Evh‖2)dx ≤ 2M ;

it follows that for a suitable ih ∈ {1, . . . , k}∫
B∩Cih

(‖Euh‖2 + ‖Evh‖2)dx ≤ 2
M

k
.

Therefore,

1

2

∫
B∩Cih

‖Ewh,ih ‖2dx ≤ c
(

2
M

k
+ N 2

k

∫
�

|uh − vh|2dx
)

.

This, together with (7.7) and (7.8), yields

F(wh,ih , A′ ∪ B) ≤ F(uh, A′′) + F(vh, B) + c
(

2
M

k
+ N 2

k

∫
�

|uh − vh|2dx
)

.

Since the sequence (wh,ih ) converges to u in L2(�; Rn) we have

F2(u, A′ ∪ B) ≤ lim
h→+∞

F(uh, A′′) + lim
h→+∞

F(vh, B) + 2c
M

k
.
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The claim is now immediate by taking the limit as k tends to infinity.
We can now turn to (7.4) and (7.5).
An approximation of u in W 1,2(�;Rn) by means of a sequence of C1(�;Rn)

functions gives that for every compact subset K of A

F2(u, A \ K ) ≤ 1

2

∫
A\K

‖Eu‖2 dx .

Hence, for every ε > 0 we can choose K such that F2(u, A \ K ) < ε. Let A′
and A′′ be open sets such that K ⊆ A′ ⊂⊂ A′′ ⊂⊂ A. By (7.6) with B = A\ K
it turns out that

F2(u, A) ≤ F2(u, A′′) + F2(u, A \ K ) ≤ F2(u, A′′) + ε .

By the arbitrariness of ε > 0, we get (7.4). Let us prove (7.5). Given ε > 0,
by (7.4) there exists G ⊂⊂ A1 ∪ A2 such that F2(u, A1 ∪ A2) − ε ≤ F2(u, G).
Let A′ ∈ A(�) with A′ ⊂⊂ A1 and G ⊆ A′ ∪ A2. Then (7.6) ensures that

F2(u, A1 ∪ A2) − ε ≤ F2(u, A′ ∪ A2) ≤ F2(u, A1) + F2(u, A2) .

Since ε > 0 is arbitrary, (7.5) holds.

Step 6. There exists a convex function ψ : Mn×n → R such that

F2(u, A) =
∫

A
ψ(Du)dx

for every u ∈ W 1,2(�; Rn) and for every open subset A of �.

Since F2(·, A) is easily verified to be convex (recall Remark 5.2), the
integrand function ψ in the representation of F2 has to be convex (use linear
functions).

By Theorem 1.1 in [13] there exists a Carathéodory function ψ : � ×
Mn×n → R such that the integral representation

(7.9) F2(u, A) =
∫

A
ψ(x, Du)dx

holds for every u ∈ W 1,2(�; Rn) and for every A ∈ A(�), provided the follow-
ing five properties are satisfied:

(i) (measure) F2(u, ·) is the restriction to A(�) of a Borel measure;
(ii) (locality property) F2(u, A) = F2(v, A) whenever u = v a.e. on A;

(iii) (growth condition) there exist a ∈ L1(�) and b ∈ R such that

F2(u, A) ≤
∫

A

(
a(x) + b|Du|2)dx ;
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(iv) (translation invariance) F2(u + c, A) = F2(u, A) for every c ∈ Rn;
(v) (semicontinuity) F2(·, A) is sequentially lower semicontinuous with respect

to the weak topology of W 1,2(�; Rn).

Step 5 guarantees that condition (i) is satisfied. Let us now verify (ii) through (v).

(ii) Fix A ∈ A(�) and u, v ∈ W 1,2(�; Rn) with u = v a.e. on A. Let (uh) be
a sequence in U(�) ∩ L2(�; Rn) converging in L2(�; Rn) to u and such
that limh→+∞ F(uh, A) = F2(u, A). Given A′ ⊂⊂ A, consider a function
ϕ ∈ C1

c (A) with ϕ = 1 on A′ and 0 ≤ ϕ ≤ 1. Define wh = ϕuh + (1−ϕ)v.
Then (wh) converges to v in L2(�; Rn) and

F2(v,A′)≤ lim inf
h→+∞

F(wh,A′)= lim inf
h→+∞

F(uh,A′)≤ lim
h→+∞

F(uh,A)= F2(u, A) .

Taking the supremum for A′ ⊂⊂ A and recalling that F2(v, ·) is a measure,
we conclude that F2(v, A) ≤ F2(u, A). The opposite inequality follows by
exchanging the roles of u and v.

(iii) Clearly there exists a constant c such that F(u, A) ≤ c
∫

A |Du|2dx for every
u ∈ C1(�; Rn) ∩ W 1,2(�; Rn) and A ∈ A(�). Hence, the same inequality
holds for F2 on W 1,2(�; Rn).

(iv) Translation invariance of F2 comes easily from the corresponding property
for F .

(v) For any A ∈ A(�) the function F2(·, A) is, by definition, lower semi-
continuous on W 1,2(�; Rn) with respect to the L2(�; Rn) topology. Since
F2(·, A) is convex we obtain the sequential lower semicontinuity with re-
spect to the weak topology of W 1,2(�; Rn), too.

Finally, let us show that we can assume ψ in (7.9) to be independent of x .
Let B(x0, r) and B(y0, r) be any pair of congruent balls contained in �. Since
the integrand functions defining F are independent of x , the evaluation of
F2 by means of its definition gives F2(u1, B(x0, r)) = F2(u2, B(y0, r)), where
u1: x �→ (ξ, x) and u2: x �→ (ξ, x + x0 − y0). Thus by the integral representation∫

B(x0,r)

ψ(x, ξ) dx =
∫

B(y0,r)

ψ(x, ξ) dx

for every ξ ∈ Mn×n . This equality implies that ψ(x0, ξ) = ψ(y0, ξ) at every
pair of Lebesgue points of the function ψ(·, ξ). Letting ξ vary in a countable
dense subset of Mn×n , and using the continuity of ψ(x, ·) we get the existence
of a set N ⊆ � with |N | = 0 such that ψ(x, ξ) = ψ(y, ξ) for every ξ ∈ Mn×n

and for every x , y ∈ � \ N . Therefore, we can assume that ψ is independent
of x .

Step 7. Let ψ be the function given by Step 6. Then

ψ(ξ) ≤ f (PK ξ sym) + 1

2
‖PK⊥ξ sym‖2



308 ANDREA BRAIDES – ANNELIESE DEFRANCESCHI – ENRICO VITALI

for every ξ ∈ Mn×n , where ξ sym = 1
2 (ξ + ξ T ) is the symmetric part of ξ .

Let ξ ∈ Mn×n be fixed. We would like to construct a suitable approximating
sequence for the function u: x �→ (ξ, x). Notice that (see Section 2) f = f1 f2;
hence

f (PK ξ sym) = inf
{

f1(η) + 1

2
‖PK ξ sym − η‖2 : η ∈ K , PK ξ sym − η ∈ K

}
,

and, by [20], Corollary 17.1.6,

f1(η) = inf

{
n∑

i=1

λi g(ai � bi ) : λi ≥ 0, ai � bi ∈ K0, |ai | = |bi | = 1,

n∑
i=1

λi ai � bi = η

}

for every η ∈ K .
Let η ∈ K be fixed, and λi ≥ 0, ai � bi ∈ K0 with |ai | = |bi | = 1, and∑n

i=1 λi ai � bi = η. For every h ∈ N let uh : Rn → Rn be defined as follows:

uh(x) = 1

2

n∑
i=1

λi

h

(
[h(bi , x)]ai + [h(ai , x)]bi

)
(here [s] denotes the integer part of s). Then uh is piecewise constant, Juh ⊆⋃n

i=1 S′
i,h ∪ S′′

i,h , where

S′
i,h = {x ∈ Rn : h(bi , x) ∈ Z}, S′′

i,h = {x ∈ Rn : h(ai , x) ∈ Z} ;
moreover, taking νuh = bi on S′

i,h and νuh = ai on S′′
i,h,

(u+
h − u−

h ) � νuh = 1

2

n∑
i=1

(
1S′

i,h
+ 1S′′

i,h

)λi

h
ai � bi , on Juh .

In particular, (u+
h − u−

h ) � νuh ∈ K0 on Juh .
Let u0(x) = (ξ − η, x) (x ∈ Rn), and let B be an open ball contained

in �. In the sequel it will not be restrictive to assume |B| = 1. The sequence
(u0 + uh)h converges uniformly to u: x �→ (ξ, x) on Rn; therefore,

F2(u, B) ≤ lim inf
h→+∞

F(u0 + uh, B).

Since the 1-homogeneous convex function g is subadditive, we have

F(u0+uh, B) ≤ 1

2
‖ξ sym−η‖2+

n∑
i=1

λi g(ai �bi )
Hn−1(S′

i,h ∩ B) + Hn−1(S′′
i,h ∩ B)

2h
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for every h ∈ N. Notice now that

lim
h→+∞

Hn−1(S′
i,h ∩ B)

h
= lim

h→+∞
Hn−1(S′′

i,h ∩ B)

h
= |B| = 1 .

By the integral representation of the previous step, for any η ∈ K such that
PK ξ sym − η ∈ K we get that

ψ(ξ) = F2(u, B) ≤ 1

2
‖ξ sym − η‖2 +

n∑
i=1

λi g(ai � bi )

≤ 1

2
‖PK ξ sym − η‖2 + 1

2
‖PK⊥ξ sym‖2 +

n∑
i=1

λi g(ai � bi ) .

By the arbitrariness of λi and ai � bi we conclude that

ψ(ξ) ≤ f1(η) + 1

2
‖PK ξ sym − η‖2 + 1

2
‖PK⊥ξ sym‖2 .

By the arbitrariness of η we finally obtain that ψ(ξ)≤ f (PK ξ sym)+1
2‖PK⊥ξ sym‖2.

Step 8. Let ψ be the function given by Step 6 and let ω be as in
Theorem 5.1. Then ψ(ξ) ≤ ω(ξ sym) for every ξ ∈ Mn×n.

Let us consider the following functions:

ϕ: ξ �→ f (PK ξ) + 1

2
‖PK⊥ξ‖2: M sym → [0, +∞[

ϕ̃: ξ �→ f (PK ξ sym) + 1

2
‖PK⊥ξ sym‖2: Mn×n → [0, +∞[ .

By the previous step ψ ≤ ω̃ on Mn×n , where ω̃ is the convex hull of ϕ̃. Thus,
it is enough to show that ω̃(ξ) ≤ ω(ξ sym) for every ξ ∈ Mn×n . Let

∑
αiηi

be a convex combination of elements of M sym, with
∑

αiηi = ξ sym. Then
ξ =∑αi (ηi + ξ a), where ξ a denotes the skew part of ξ, and

ω̃(ξ) ≤
∑

αi ϕ̃(ηi + ξ a) =
∑

αiϕ(ηi ) .

The arbitrariness of the convex combination yields the desired inequality.

Step 9. F ≤ G on U(�).

Let u ∈ U(�). By Theorem 10.2 in [4] there exists a sequence (uh) in
C∞(�; Rn) such that

uh → u in L1(�; Rn)

|Euh|(�) → |Eu|(�)

PK⊥Euh → PK⊥Eu in L2(�; M sym) .
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The first two conditions also imply the weak∗ convergence of (Euh) to Eu (see
Remark 2.4). By the definition of F2, and Steps 6 and 8 we have

F(u) ≤ lim inf
h→+∞

F(uh) ≤ lim inf
h→+∞

F2(uh, �) = lim inf
h→+∞

∫
�

ψ(Duh)dx

≤ lim inf
h→+∞

∫
�

ω(Euh)dx .

We are in a position to apply Lemma 6.2 with µh = Euh Ln , and µ = Eu.
Therefore

F(u) ≤
∫

�

ω(Eu)dx +
∫

�

ω∞
(

d Esu

d|Esu|
)

d|Esu| = G(u) .

The proof of Theorem 5.1 is thus complete.

8. – The degenerate case

In view of the applications to masonry-like materials we now study the
relaxation of the functional F in (5.1) when g is the null function. We shall
rely on Theorem 5.1 through a simple perturbation argument.

Theorem 8.1. Let � be a strictly star shaped Lipschitz bounded open subset
of Rn, with n ≥ 2. Let K0 be a closed cone in M sym consisting of matrices of the
form a � b and such that

a � (b + c) ∈ K0 whenever a � b, a � c ∈ K0 .

Moreover, we assume that the convex hull K of K0 does not contain any line.
Let F : B D(�) → [0, +∞] be defined by

F(u) =


1

2

∫
�

‖Eu‖2dx if u ∈ S(�) and

(u+ − u−) � νu ∈ K0 holds Hn−1-a.e. on Ju,

+∞ otherwise .

Denote by F its sequential lower semicontinuous envelope with respect to the weak
convergence in B D(�).

Then K is closed and
{

u ∈ B D(�) : F(u) < +∞} = U(�), where

U(�) = {u ∈ B D(�) : PK⊥ Esu = 0, PK⊥Eu ∈ L2(�; M sym)
}

.

Moreover,

F(u) = 1

2

∫
�

‖PK⊥Eu‖2 dx

for every u ∈ U(�).
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Proof. The set K is closed by Lemma 5.4. From the proof of the same
lemma, see (5.4), we obtain the existence of ν ∈ M sym and γ > 0 such that

(8.1) (ν, ξ) ≥ γ |ξ | for every ξ ∈ K0 .

Let g(ξ) = (ν, ξ), and, for every β > 0 and u ∈ L1(�; Rn) let

Fβ(u) =



1

2

∫
�

‖Eu‖2dx + β

∫
Ju

g
(
(u+ − u−) � νu

)
dHn−1

if u ∈ S(�) and

(u+ − u−) � νu ∈ K0 holds Hn−1-a.e. on Ju,

+∞ otherwise in L1(�; Rn) .

Moreover, we define

G(u) =


1

2

∫
�

‖PK⊥Eu‖2dx if u ∈ U(�),

+∞ otherwise in L1(�; Rn) .

Extend the definition of F to the whole L1(�; Rn) with value +∞. Clearly,
G ≤ F ≤ Fβ on L1(�; Rn). For every u ∈ L1(�; Rn) set

F(u) = inf
{

lim inf
h→+∞

F(uh) : (uh)in B D(�), uh → u in L1(�; Rn)

and
(|Euh|(�)

)
h bounded

}
(on B D(�) this is the sequential lower semicontinuous envelope of F with
respect to the weak convergence). Analogous definitions are given for G and
Fβ. By Theorem 3.1 (and Remark 2.4) G = G; hence

G ≤ F ≤ Fβ .

By the coerciveness of g, the functional Fβ coincides with the lower semicon-
tinuous envelope of Fβ with respect to the L1(�; Rn) topology, too.

We would like to apply Theorem 5.1 to Fβ . In view of (8.1) and the
closedness of K the only condition to be verified is that the convex hull f1 of

(8.2) f0(ξ) =
{

βg(ξ) if ξ ∈ K0,

+∞ if ξ ∈ M sym \ K0

is Lipschitz on K . We notice that βg ≤ f0, hence βg ≤ f1; moreover, every
ξ ∈ K can be obtained as a convex combination

∑
i αiξi , with ξi ∈ K0, so that

f1(ξ) ≤
∑

i

αi f1(ξi ) ≤
∑

i

αiβg(ξi ) = βg

(∑
i

αiξi

)
= βg(ξ)
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by the linearity of g. We conclude that f1 = βg on K ; in particular f1 is
Lipschitz on K .

We are now in a position to apply Theorem 5.1 to Fβ ; then Fβ is finite
on the set U(�), and

Fβ(u) =
∫

�

ωβ(Eu)dx +
∫

�

ω∞
β

(
d Esu

d|Esu|
)

d|Esu|

for every u ∈ U(�). Here ωβ is computed as prescribed in Theorem 5.1, with
f0 as above. It follows that

lim
β→0

ωβ(ξ) = 1

2
‖PK⊥ξ‖2 for every ξ ∈ M sym .

An easy application of the dominated convergence theorem yields now

lim
β→0

Fβ(u) = G(u)

for every u ∈ U(�). We conclude that F = G.

9. – Applications

In this section we apply Theorems 5.1 and 8.1 assuming that n = 3 and
A is the operator expressing the stress-strain relation in the classic theory of
linear elasticity. Let us recall the equation

(9.1) σ = 2µEu + λ(tr Eu)I ,

where u: � → R3 is the displacement field, σ, E are the stress and the strain
tensors, respectively. λ and µ are the Lamé coefficients, satisfying the relations
3κ = 3λ + 2µ > 0 and µ > 0 (κ is the modulus of compression). Therefore,
we shall consider the operator

(9.2) A: ξ �→ 2µξ + λ(tr ξ)I : M sym → M sym .

Clearly, A is a positive definite symmetric linear operator, thus satisfying the
requirement of Theorem 5.1. Moreover, we note that QT (Aξ)Q = A(QT ξ Q)

for any ξ ∈ M sym and Q orthogonal matrix.
The strain energy associated to the constitutive relation (9.1) is given by

(9.3) W (u)=
∫

�

(
µ|Eu|2+ λ

2
(trEu)2

)
dx = 1

2

∫
�

(
AEu, Eu

)
dx = 1

2

∫
�

‖Eu‖2dx ,
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where ‖ · ‖ is the norm induced by the scalar product 〈 ξ, η 〉 = (Aξ, η) in
M sym, according to Section 5.

Let us consider the functional F introduced in (5.1), with the operator A
given by (9.2). Thus, the volume integral represents the strain energy relative
to the elastic part of the body, while K0 is the constraint prescribed for the
fracture. In the sequel we shall consider different constraints K0 (see (I), (II)
and (III) below and in Section 3).

Hencky’s plasticity

Let us define

(I) K0 = {a � b : a, b ∈ R3, (a, b) = 0} = {a � b : tr a � b = 0} .

It turns out that the convex hull K of K0 is the subspace M sym
0 consisting of

the matrices with null trace and K ⊥ = {t I : t ∈ R} (see Proposition 3.2).
Hence

PK ξ = ξ D = ξ − 1

3
(tr ξ)I, PK⊥ξ = 1

3
(tr ξ)I

for every ξ ∈ M sym.

Let g: M sym → [0, +∞[ be given by g(ξ) = √
2c|ξ |, where c is a fixed

constant. Then
g(a � b) = c|a||b| if a � b ∈ K0 .

It is now easy to see that all the assumptions of Theorem 5.1 are satisfied
(K = M sym

0 is a vector space, hence f1 is Lipschitz on M sym
0 since it is a finite

convex function positively homogeneous of degree 1). Notice that

U(�) = {u ∈ B D(�) : div u � L3, div u ∈ L2(�)} .

Moreover, since K = M sym
0 is a vector space, we have (recall Remark 5.8)

ω(ξ) = f (PK ξ) + 1

2
‖PK⊥ξ‖2 = f (ξ D) + κ

2
(tr ξ)2 .

Therefore, we get the first part of the following Theorem 9.1; for the exact
computation of the function f we refer to [10] Corollary 3.2, where this result
was originally proved (for any bounded open Lipschitz set �). It is worth
noticing that

µ|ξ |2 + λ

2
(tr ξ)2 = µ|ξ D|2 + κ

2
(tr ξ)2 .

Theorem 9.1. Let F : L1(�; R3) → [0, +∞] be defined as follows:

F(u) =



∫
�

(
µ|Eu|2 + λ

2
(tr Eu)2

)
dx + c

∫
Ju

|u+ − u−| dH2

if u ∈ S(�) and

(u+ − u−) ⊥ νu holds H2-

a.e. on Ju,

+∞ otherwise .
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Then the lower semicontinuous envelope F of F with respect to the L1(�; R3)

topology is finite on U(�) = {u ∈ B D(�) : div u � L3, div u ∈ L2(�)} and for
every u ∈ U(�) we have

F(u) =
∫

�

(
f
(
(Eu)D)+ κ

2
(div u)2

)
dx +

∫
�

f ∞((Esu)D) ,
where f : M sym

0 → [0, +∞[ is the convex function whose conjugate is:

f ∗(σ ) =
{

(1/4µ)|σ |2 if σ ∈ C ∩ M sym
0 ,

+∞ otherwise ,

and C is Tresca’s convex set:

C = {σ ∈ M sym : λM(σ ) − λm(σ ) ≤ 2c}
(λM(σ )andλm(σ )denote the maximum and minimum eigenvalues ofσ respectively).

Masonry-like materials
In ideal masonry-like materials, which are incapable of sustaining tensile

stress, the amount of energy to create an admissible fracture is zero. Thus, we
now assume that the surface energy density g in functional (5.1) is the null
function, i.e., F : L1(�; R3) → [0, +∞] is given by

(9.4) F(u)=


∫

�

(
µ|Eu|2+ λ

2
(tr Eu)2

)
dx if u ∈ S(�) and (u+−u−)�νu ∈ K0

holds H2-a.e. on Ju,

+∞ otherwise .

We choose the admissible set K0 for the discontinuities according to one
of the following models:

• the relative displacement along a fracture is normal to the fracture surface
itself; therefore:

(II) K0 = {a � a : a ∈ R3} .

• The angle between the relative displacement along a fracture and the normal
to the fracture surface is less or equal to π/2; therefore:

(III) K0 = {a � b : a, b ∈ R3, (a, b) ≥ 0} .

When K0 is chosen as in (II), the computation of the relaxed functional (9.4)
is a simple corollary of Theorem 8.1. We explicitely note that the functional
F(u) = 1

2

∫
� ‖PK⊥Eu‖2 dx, with the norm ‖ · ‖ as in (9.3), is just the same as

that proposed in [17] and [4] in modelling masonry structures. Indeed, in [4]
the projection is onto the cone A−1 M−; but, by Proposition 3.2, K = M+,

thus K ⊥ = {η ∈ M sym : ∀ξ ∈ M+ (ξ, Aη) ≤ 0}, i.e., K ⊥ is the image through
A−1 of the orthogonal cone to M+ with respect to the standard scalar product
in M sym; hence we recover A−1 M−.

Finally, let us consider case (III), where K ⊥ = {t I : t ≤ 0}. Then, for
any ξ ∈ M sym it turns out that PK⊥ξ = 1

3κ
(tr ξ)− I, where α− is defined as

min{α, 0}.
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Theorem 9.2. Let F : B D(�) → [0, +∞] be defined by(9.4), with K0 as
in (II). Then the sequential lower semicontinuous envelope F with respect to the
weak convergence in B D(�) is finite on the set

U(�)={u ∈ B D(�) :(trEsu/|Esu|)− =0 |Esu|-a.e., (trEu)− ∈ L2(�; M sym)
}

.

Furthermore, for every u ∈ U(�),

F(u) = 1

6κ

∫
�

(
(tr Eu)−

)2 dx .

Proof. For every h ∈ N let K h
0 = {a � b : (a, b) ≥ 1

h |a||b|}. It is easy to
see that

K =
⋃
h

Kh ,

where Kh is the convex hull of K h
0 . Let Fh : B D(�) → [0, +∞] be defined by

Fh(u) =


1

2

∫
�

‖Eu‖2dx if u ∈ S(�) and

(u+ − u−) � νu ∈ K h
0 holds H2-a.e. on Ju,

+∞ otherwise .

Since K h
0 satisfies the requirements for K0 in Theorem 8.1, if we set

Uh(�) =
{

u ∈ B D(�) : PK⊥
h

Esu = 0, PK⊥
h
Eu ∈ L2(�; M sym)

}
,

we obtain that

Fh(u) =
{ 1

2

∫
�

‖PK⊥
h
Eu‖2 dx if u ∈ Uh(�),

+∞ otherwise .

Let

U(�) = {u ∈ B D(�) : PK⊥ Esu = 0, PK⊥Eu ∈ L2(�; M sym)}
= {u ∈ B D(�) :(trEsu/|Esu|)− =0 |Esu|-a.e., (trEu)− ∈ L2(�; M sym)

}
.

Fix u ∈ U(�). By Theorem 10.2 in [4] there exists a sequence (uj ) in
C∞(�; Rn) such that

uj → u in L1(�; Rn)

|Euj |(�) → |Eu|(�)

PK⊥Euj → PK⊥Eu in L2(�; M sym) .
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Fix j ∈ N. Since uj ∈ Uh(�) for every h, we have

F(uj ) ≤ Fh(uj ) = 1

2

∫
�

‖PK⊥
h
Euj‖2 dx .

It is easy to see that

PK⊥
h

ξ → PK⊥ξ for every ξ ∈ M sym.

By the dominated convergence theorem it turns out that

F(uj ) ≤ 1

2

∫
�

‖PK⊥Euj‖2 dx .

Therefore, taking the convergence of (uj ) into account,

F(u) ≤ lim inf
j→∞

F(uj ) = 1

2

∫
�

‖PK⊥Eu‖2 dx .

Let G be as in the proof of the previous theorem. Clearly, the inequality G ≤ F
still holds on B D(�). This concludes the proof.
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