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A Generalization of the Sizes of Differential Equations
and its Applications to G-Function Theory

MAKOTO NAGATA

Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)
Vol. XXX (2001),

Abstract. The aims of this paper are to introduce a generalization of the notion
of the sizes and to present its some applications to G-function theory. We define
a new size a(A, B) and estimate it. Furthermore we consider some relations in
G-function theory by using our sizes.

Mathematics Subject Classification (2000): 12H25 (primary), 11 S99 (seconda-
ry).

Introduction

In 1929, C. L. Siegel [16] introduced the notion of G-functions: the original
definition is as follows.

A function f (x) - aixi is called a G-function if there exists an

algebraic number field K of finite degree and a positive constant C with the
following properties (i)-(iii) for all i :

(i) ai E K,
(ii) the absolute values of ai and its conjugates do not exceed Ci,
(iii) there is a positive integral common denominator of which

does not exceed Ci.

Twenty years ago A. I. Galochkin [9, Definition 2] mentioned a relation
between a differential equation and its G-function solutions. He proposed so-
called Galochkin’s condition, which is an assumption about the coefficients
of the differential equation. Under this condition, he obtained bounds of the
irrational measures of the special values of G-functions.

After some years, E. Bombieri [3] defined the notion of arithmetic type,
and suggested to the equivalence between the conditions of Galochkin and those
of himself. He also obtained some irrationality statements about special values
of G-functions which are solutions of differential equations of arithmetic type.

Pervenuto alla Redazione il 20 marzo 2001.
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In 1985, D. V. Chudnovsky and G. V. Chudnovsky [6] showed that:

THEOREM A. If a solution of an irreducible differential equation is a G-function,
then the differential equation satisfies the Galochkin condition.

In other words, they removed the Galochkin condition from the statements
about irrationality, completing Siegel’s program.

A G-function is an interesting topic in itself. Y. Andr6 [ 1 J proved the
following two theorems:

THEOREM B. The Galochkin condition and the arithmetic type condition for a
differential equation are equivalent.

THEOREM C. If a Fuchsian differential equation with only rational exponents at
the origin satisfies Galochkin’s condition, then the entries of the normalized uniform
part of its solution matrix are G-functions.

In 1994, B. Dwork, G. Gerotto and F. J. Sullivan [8] obtained the converse
result to Theorem C by using Chudnovskies’ and Andr6’s results:

THEOREM D. If the entries of the normalized uniform part of the solution matrix
of a Fuchsian differential equation with only rational exponents at the origin are
G-functions, then the differential equation satisfies Galochkin’s condition.

Let K be a number field of finite degree.
We consider the differential equation:

with A E Mn (K (x)).
The sizes and the global radii of the function y and the coefficient ma-

trix A of differential equation (0.1) are denoted as a(y), a (A), p(y) and p (A)
respectively (definitions as below). When one uses these notations,

"differential equation (0. I ) satisfies Galochkin’s condition"
is equivalent to cr (A)  oo,

"differential equation (0.1) is of arithmetic type" is equivalent to p (A)  oo.

The above theorems A-D are the statements on the sizes and the global radii.
So, our interest concerns the finiteness and the values of the sizes and the global
radii.

In this paper we introduce a generalization of the notion of the sizes and
present some applications of it to relations between sizes. This paper is arranged
in two chapters as follows:
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(I) We consider the differential equation:

with A, B E Mn (K (x)).
We attach to (0.2) a size B) which generalizes the usual size (corre-

sponding to the case B = 0).
The following proposition for B) holds.

THEOREM I. Let cr (A, B) := B) + cr (B, A)) for A, B E Mn (K (x)).
Then the map

is a pseudo distance function. Moreover

(II) We estimate a(A, B) of differential equation (0.2).
THEOREM Il- 1. Let u := E OK [x ] be a common denominator of A

and B such that u A, u B E where OK denotes the integer ring of K.
Lets := max(deg u, deg(uA), deg(u B)). Then for a solution X E GLn (K [[x]]) of
differential equation (0.2) with = I (the identity matrix), we have

m+1 2:vlOO maxi:::m log max(l, v being places of K.
To state an application of this theorem, we put

and

Here A E and T E GLn(K(x)).
According to [ 1 ], there exists such that 
and that none of the differences between the eigenvalues of Res(T [A]) is a non-
zero integer. By fixing such T E GLn (K (x)), there exists the unique solution
Y E of the differential equation:

with Yl,=o = I. We call this unique solution of differential equation (0.3)
the normalized uniform part of solution of differential equation (0.1). Indeed,
T-1 Y xRes(T[A]) is a matrix solution of differential equation (0.1).

We now state an application as the following corollary, which is a quanti-
tative version of Theorem D without using Shidlovskii’s lemma [1, Chapt. VI,
Sect. 2]:
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COROLLARY 11-2. Let A E and let Y be the normalized uniform
part of the solution of differential equation (0.1) with above T E GLn(K(x)). Let
u be a common denominator of T [A], and lets:= max(degu, deg(u T [A])).
Suppose that

9 := {eigenvalues of 

Then

where N,, E ~T is a common denominator of E.

Notation and terminology

We fix K as a number field of finite degree. For a place v of K we put

where d = [K : Q] [Kv : QJ.
We define a pseudo valuation on Mnl,n2(K), the set of nl x n2 -matrices

of usual: for M = e ’

For Yi E we consider the Laurent series Y = E

We write log+ a (a E Andre’s symbol in [I], h.,.(.),
is defined by

DEFINITION (Cf. [1, Chapt. I]). We define the size of Y E Mnl,n2 (K((x))) as
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and the global radius of Y as

where L:v means that v runs over all places of K.
The following definition is equivalent to the conditions (i), (ii), (iii) in

introduction in the case of Y E K[[x]]. (Cf. [1, Chapt. I])
DEFINITION. We say that Y E Mn¡,n2(K«x») is a (matrix of) G-function(s)

if  oo.

For f = f (x ) = EN 0 f¡xi E K[x] and for every place v of K, the Gauss
absolute value is defined by I f 1, := maxi=O,...,N If¡ I v.

From here we discuss only non-Archimedean valuations, that is, v f oo.
For every place v with v t oo and for f, g E K[x] with g ~ 0, the Gauss
absolute value is extended to K (x) by

We also define a pseudo valuation on Mn(K(x)) as before: for M =

Henceforth D denotes the differential operator § . From [ 1, Chapt. IV,
Subsect. 1.5] we have 

. ----

for m = 0, 1, .... Here v is an arbitrary non-Archimedean valuation of K and
M E M,, (K (x)).

For a sequence { Fi } i =o,1, ... C Mn ( K (x ) ) and for every place v t oo, we put

DEFINITION. We define the size of C M,,(K(x)) as

and the global radius of I Fi I as

where Lvfoo means that v runs over all finite places of K.
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Chapter 1: the sizes of differential equations

1.1. - Notation

We introduce our original symbols and definitions.
Let K be a differential extension of K. Suppose that 3~, flt, ~ are elements

in Mn(K). A sequence {(3~, 2!, ~) ~‘~ }1=0,1,... C is defined by

and recursively for i = 1, 2, ... ,

We write 21, ~) (resp. p (3, 21, ~) ) as an abbreviation for a (1 (3, 21, ~) ~‘ ~ } )
(resp. p (f (J, 21, ~8) (’) 1)) -

DEFINITIONS 1.1.1. For the differential equation

with A E M,,, (K (x)), we 0, A) (= a(I, A, 0), See Subsect. 1.2 below)
the size of A (or of differential equation ( 1.1.1.1 )) and p (1, 0, A ) (= p(I, A, 0))
the global radius of A (or of differential equation (1.1.1.1», where I is the

identity matrix and 0 is the zero matrix in Mn ( K (x ) ) .

The following definition coincides with that of Andr6 [ 1, Chapt. IV, Sub-
sect. 5.2].

DEFINITION 1.1.2. We say that (D - A) is a G-operator if and only if
or(/,0,A)  oo.

REMARK l.1.3 (Cf. [I], [3]). Differential equation (o.1 ) with p (I, 0, A) 
0o is called of arithmetic type by Bombieri.

1.2. - Properties of the sizes

We define a change of basis as

where 3 E and A E One immediately obtains:

PROPOSITION 1.2.1. For)1,)2 E GLn(K(x» and for A E M,, (K (x)), we have

The main purpose of this section is to show the following proposition:
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PROPOSITION 1.2.2. For 3, J2 E GLn (K (x)) and for A, B, C E M,, (K (x)),
the following statements hold.

We shall often write simply a(A, B) instead of cr(7, A, B). We define a
function on by

The following statements show its characteristic properties, and give The-
orem I in Introduction.

THEOREM 1.2.3. The map

is a pseudo distance function, that is, it satisfies the following three conditions:

and

Moreover we have

and
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PROOF. The assertions (1.2.3.1), (1.2.3.2) and (1.2.3.3) are trivial by Propo-
sition 1.2.2. As for the identities (1.2.3.4), we use the identity (1.2.2.3) in
Proposition 1.2.2. Then we have

Finally for the identity (1.2.3.5), we apply Proposition 1.2.1 and the identi-
ties (1.2.2.2) in Proposition 1.2.2. Then we have

Therefore 8 (A , B) = J[B]). 0

REMARK 1.2.4. One defines an equivalence relation A - B in Mn(K(x))
as 8(A, B) = 0, then a metric is induced as usual. However it is not known
what this equivalence relation A - B means. For instance, even in the case
of A - 0, we do not know whether there always exists 3‘ E such
that A = 3[0]. The equality A = 3[0] implies that all solutions of differential
equation (0.1) belong to Mn(K(x)). (Cf. [1, Chapt. IV, Subsect. 4.2]).

Our proof of Proposition 1.2.2 requires some preparatory propositions,
which are results concerning the properties of the sequence { (~, A, B ) ~‘ ~ { . We
shall use them later again.

LEMMA 1.2.5. For J E GLn (K (x)), A, B E Mn (K(x)) and for m = 0, 1, ... ,
we have

PROOF. We show the identity (1.2.5.1) by induction on m. For m = 0, both
sides of the identity ( 1.2.5.1 ) are J thus it is true in this case. Assume that the
identity ( 1.2.5.1 ) is true for a given m &#x3E; 0. We now prove it for m + 1. We
differentiate each side of the identity (1.2.5.1). Because = 

we have
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On the other hand,

Therefore we find that

A similar argument yields the identity ( 1.2.5.2). 0

LEMMA 1.2.6. For sequences {ai 
C L and for m = 0, 1, ...,

PROOF. Obvious. 0

LEMMA 1.2.7. For 3‘1, ’12, J3, A, B E C E K and for m = 0, 1,..., we
have

PROOF. We show the identity (1.2.7.1) by induction on m. For m = 0, both
sides of the identity (1.2.7.1) are :YI3293 thus it is true in this case. Assume
that the identity ( 1.2.7.1 ) is true for a given m &#x3E; 0. We now show it for m + 1.
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We differentiate the left side of the identity ( 1.2.7.1 ). We have

Where ((3‘2, A, B)(1), A, B) (i) = (i -I- 1)(J2, A, can be shown by induc-
tion.

On the other hand, the differentiated right side of the identity ( 1.2.7.1 ) is
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Therefore we obtain that

by Lemma 1.2.6. 0

LEMMA 1.2.8. For 31, 32, A, B, C E and for m = 0, 1, ...,

PROOF. We show the identity (1.2.8.1) by induction on m. For m = 0, both
sides of the identity ( 1.2.8.1 ) are JiJ2 hence it is true in this case. Assume
that the identity ( 1.2.8.1 ) is true for a given m &#x3E; 0. We now prove it for m -E-1.
We differentiate the right side of the identity ( 1.2.8.1 ). Then we have
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The last expression is equal to the differentiated left side of the identity ( 1.2.8.1 ),

Therefore

We now prove Proposition 1.2.2.

PROOF OF PROPOSITION 1.2.2. First we show the identity (1.2.2.1). It is
clear that

Therefore or(/, A, A) = 0.
For the proof of (1.2.2.2), assume that the following identities hold:

and

We substitute J[B] for B in the identity (1.2.9.1) and 3-1 [A] for A in the

identity (1.2.9.2). Then using Proposition 1.2.1, we obtain that

and

hence we conclude the identities (1.2.2.2). It suffices to show the identi-
ties (1.2.9.1) and (1.2.9.2). We prove the identity (1.2.9.1). Using the iden-
tity (1.2.5.1) in Lemma 1.2.5, we find

for every place v with v t oo. Hence
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The number of places v with v fi oo such that I:Jlv :0 1 is finite and it follows
that 

-

It yields

On the other hand, by the identity ( 1.2.5.1 ) in Lemma 1.2.5, we also find

for every place v with v f co. Hence we have as above

Consequently we obtain the identity ( 1.2.9.1 ) from the inequalities (1.2.9.6)
and (1.2.9.8). As for the identity (1.2.9.2), one finds it in a similar way.

Next we show the identity (1.2.2.3). Because of the identity ( 1.2.7.1 ) for
c = 0, ~3 = I and B = 0 in Lemma 1.2.7, we have

for every place v with v f 00. Thus

It follows

The number of places v with v ~’ oo such that finite and it

follows that 
-

Therefore we obtain
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We also have

Consequently we deduce the identity (1.2.2.3) from (1.2.9.11) and (1.2.9.12).
We conclude this proof by showing the inequality (1.2.2.4). By Lemma 1.2.8,

one has

Then we obtain

The statements for the global radii instead of the sizes in Proposition 1.2.2
and Theorem 1.2.3 hold similarly.

PROPOSITION 1.2.10. For ’1, :y2 E GLn (K (x)) and for A, B, C E Mn (K (x)),
the following statements hold.

THEOREM 1.2.11. Let

Then the map

is a pseudo distance function. Moreover we have

and
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Chapter 2: estimations of the sizes

In this chapter we consider a relation of differential equation (0.2) and its
solution.

2.1. - Diophantine approximations

We assume that X E GLn(K[[x]]) with = I is a solution of differ-
ential equation (0.2). Hence for A, B E Mn ( K (x ) )

Moreover we write for q E K[x] and P E R := qX - P E

In this section, we show some properties of simultaneous approximations
of the solution X.

The following lemma is fundamental.

PROOF. We show the identity (2.1.1.1 ) by induction on m. For m = 0, both
sides of the identity (2.1.1.1 ) are P and it is true in this case. Assume that the
identity (2.1.1.1 ) is true for a given m &#x3E; 0. We now prove it for m + 1. One
has
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Since (X, A, B ) ~ 1 ~ = DX - A X + X B = 0, we obtain

NOTATIONS 2.1.2. Throughout this section and the next, we denote by N, L
arbitrary integers such that

and

Moreover for A, B E Mn ( K (x ) ), we write u E as a common denominator
of A and B and

s := max(deg u, deg(uA), deg(uB)) ,

where OK is the integer ring of K.

LEMMA 2.1.3. For m = 0, 1,..., L,

and

PROOF. We show the four assertions by induction on m. For m = 0, we have
(P, A, B)~°~ = P, deg P  N, (R, A, B)~°~ = R, ordo R &#x3E; L and then (2.1.3.1),
(2.1.3.2), (2.1.3.3) and (2.1.3.4) are true in this case. Assume that these four
assertions are true for a given m &#x3E; 0. We prove them for m + 1. Now one has

or
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Substituting the last equation into

we have the right side of the identity (2.1.3.6)

hence

By the induction assumption, we find that every term of the right side of the
last equation belongs to Mn(K[x]). Hence

Moreover by the identity (2.1.3.7) we find

Similarly we have

By the induction assumption, we find that every term of the right side of the
last equation belongs to Mn ( K [ [x ] ] ) . Hence
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By the identity (2.1.3.10) we find

DEFINITIONS 2.1.4. For Z = we write

with m = 1, 2, .... Moreover we write

and

For Z E we write

and

For Z E one obtains immediately that

LEMMA 2.1.5 (Siegel’s lemma [3]). Let DK be the discriminant of K. Let
d = [K : Q] and y = Suppose that M  N with M, N E N. Then for
the system of linear equations with coefficients in K

there exists a non-trivial solution fxi I C K such that

where Ev means that v runs over all places of K.
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PROOF. See [3, Siegel’s lemma].
LEMMA 2.1.6. Suppose that N, satisfy

Then for X = Xixi E GLn(K[[x]]) with Xlx=o = I, there exist non-zero q
and P with q E K [x] and P E Mn (K [x]) which satisfy the following properties:

and

Here y is the constant as in Lemma 2.1.5, depending only on K.

PROOF. We show the existence of q and P satisfying these conditions. Put

If q (0 # q E I~ [x ] ) satisfies deg q  N, then one has

since Xo - I. Now we write q = qixi E K[x]. The condi-

tions (2.1.6.3) and (2.1.6.8) require that
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The system of linear equations (2.1.6.10) has N unknowns, ~0~1."- qN-i,
and n2 (L - N) equations. The condition (2.1.6.1) gives N &#x3E; n2 (L - N) and
then from Lemma 2.1.5 there exists a non-trivial solution f qo, q 1, - - - , 
of (2.1.6.10) with

Therefore we conclude the existence of 0 # q E K [x) with deg q  N satisfying
the condition (2.1.6.4). We also have

and

Therefore we conclude the existence of 0 ~ P E Mn(K[x]) with deg P  N
satisfying the conditions (2.1.6.5) and (2.1.6.6).


