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Factorization of Functions in Weighted Bergman Spaces

CHARLES HOROWITZ - YEHUDAH SCHNAPS

Abstract. We consider spaces of analytic functions on the unit disc which
are in LP with respect to a measure of the form q;(r )drd8, where w is "submulti-
plicative". We show that these spaces are M6bius invariant and that if f E AP,(P
one can factor out some or all of its zeros in a standard bounded way; also one
can represent f as a product of two functions in A 2p,lp . Finally, we show that our
methods cannot be extended to the case of (p not submultiplicative.

Mathematics Subject Classification (2000):32A36 (primary),32A60 (secondary).

1. - Introduction

Let w be a decreasing radial function on the unit disc U C C such that
cp(r) = 0. We consider the weighted Bergman spaces of analytic func-

tions on U satisfying

where dA We shall also refer to the related Lebesgue spaces 
Our purpose is to show that for a large class of weights, namely, those

which are "submultiplicative", we can generalize the results of [1] and [2] on the
factorization of functions in such spaces. The outline of the paper is as follows:
in Section 2 we define and develop basic properties of submultiplicative (s.m.)
weights. We also show that when cp is s.m. is closed under composition
with M6bius automorphisms of the disc, and prove a partial converse to this
result. In Section 3 we present our main theorems to the effect that when w
is s.m. one can factor out some or all of the zeros of f E AP’CP in a standard
bounded fashion, and one can also represent f as the product of two functions

This work incorporates parts of the second author’s doctoral thesis written at Bar-Ilan University.
Pervenuto alla Redazione il 1 febbraio 2000 e in forma definitiva il 19 luglio 2000.
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in We also generalize this fact. In Section 4 we show that if we allow
~p to decline faster than any s.m. function then the above methods break down,
and so submultiplicativity is a natural barrier for our approach.

2. - Submultiplicative weights

We consider spaces where w is a decreasing radial function satisfying
q;(r) = 0. It is convenient to associate with w the function

Thus F is increasing on (0, 1] and F(r) = 0.

DEFINITION 2.1. cp (or F) is called submultiplicative (s.m.) if for some
C&#x3E;1

LEMMA 2.3. Ifa weight ~p (or F) satisfies (2.2) for some C &#x3E; 1 then it actually
satisfies the same relation for all x &#x3E; 1, and there exist M, m &#x3E; 0 such that

PROOF. First consider x E ( 1, C]. Then since F is increasing, whenever

and if : 1

Now if x E (C, oo) we can write x = C", a &#x3E; 1. Letting n = [a] + 1 we find
that for all r E (0,1/C"]

where m = If r E (1/Cn, l/jc)] then
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Putting together the above estimates, we obtain (2.4). (2.5) follows from the
fact that if 0  x  1

We remark that for our purposes it is sufficient to demand that for some

ro, 0  ro  1, and some C &#x3E; 1

If so, we can modify F to be constantly F(ro) on [ro, 1 ], and then it will fulfill
condition (2.2). Since this corresponds to modifying V on [0,1 2013r~], it induces
an equivalent norm on AP’lp.

The simplest examples of s.m. weights are the standard weights 
(1 - a &#x3E; 0. Here F(r) = r" and of course F(Cr) = F(C)F(r) for all
C and r. As another example we can take

Thusif0x1 andy&#x3E;1

Similarly, one can verify that functions of the form

satisfy (2.2).
We turn to the question of M6bius invariance of the spaces 
DEFINITION 2.6. For ~a~  1 we denote

We say that a space of functions B on U is M6bius invariant if it is closed
under composition with the automorphisms of U Ta, i.e., if

The following proposition is probably known, but we include its simple
proof since we have not seen it in the literature. However, we note that for the
case when p = 2 a stronger and more general result was proved in [4]
and [5].
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PROPOSITION 2.7. If cp is a s.m. weight then AP,(P is Mdbius invariant for 0 
p  oo. Iffor some C &#x3E; 1

then AP,q; is not Mdbius invariant.

PROOF. Since v is s.m. and decreasing, for all a, Z E U (with F = Fv,
l = .~~ as in (2.2))

Therefore if f E 0  p  oo, and lal  1

So AP,P is M6bius invariant.
In the converse direction, we note that if Ilia I &#x3E; C then for all z E U in

a neighborhood of 

It follows from (2.8) that

By the change of variables formula, as in (2.10), we see that is M6bius
invariant if and only if f E implies that f E where

Therefore the following lemma will complete the proof of our proposition.
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LEMMA 2.1 l. Let h (z) be positive and measurable on U. If for some ~ E a U
limz-+ç h (z) = oo, then 0  p  00.

PROOF. Without loss of generality we take ~ = 1. If the lemma is false
then by the closed graph theorem, the inclusion mapping from APV to 
must be bounded; call its norm M. By hypothesis, for some 8 &#x3E; 0

(2.12) h(z) &#x3E; 4MP in

Now consider the peak function

which satisfies  1 in U B N,, whereas inside Ns If(z)1 I &#x3E; 1 on a

"large" subset. It follows easily that for m sufficiently large the function

satisfies

By (2.12)

which is contrary to our hypothesis. 0

3. - Factorization theorems

The following lemma and theorem generalize results from Section 7 in [ 1 ]
and extend them to the case p = oo.

LEMMA 3.1. be a s.m. weight, and let f E 0  p  00. Denote

by {zk } the zero set of f, with each zero repeated according to its multiplicity, and
define TZk as in (2.6). Then the function

belongs to LP," and  C ( p, where C ( p, qJ) is a constant de-
pending only on p and qJ.
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PROOF. Since v is s.m., inequality (2.5) implies that for
some a &#x3E; 0. In particular, is contained in Ap,a as defined in [ 1 ]. Now
from Theorem 7.6 in that paper we conclude that if f(0) # 0

Now we observe that both dA (z) and are unit measures on U.

Therefore a calculation based on the fact that is an increasing
function of r yields that

, 
, .-.,

In light of Proposition 2.7 we can replace For any
w E U such that f (w) :0 0, we find that

Now note that for any Z, W E U

Thus, if w E U and 0

In view of (2.4) we have

so we obtain the inequality

This together with (3.2) gives the pointwise estimate
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Exponentiating and applying Jensen’s inequality, we have

Now note that

which is uniformly bounded, say by S, for all ,z E U (by Lemma 4.22 in [6]).
It follows that

T’his completes the proof of the lemma. 0

THEOREM 3.5. Let cp be a s.m. weight; let f E 0  p :!~ oo, and let {ak}
be an arbitrary subset of the zero set of f. Define

Then h E and I where C depends only on p and cpo In
particular, every subset of an zero set is also an zero set.

PROOF. The convergence of the product defining h is a simple consequence
of the condition I which is equivalent to the convergence of
the product defining f * (0) in Lemma 3.1. Now let denote the full zero
set of f. Noting that x(2 - x)  1 for 0  x  1, we have for all Z E U

as defined in Lemma 3.1. Thus for 0  p  oo,

For p = oo we can use the fact that
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Thus it suffices to show that the numbers C(p, cpP) are bounded as p -~ oo. To
that end we note that if the function F. associated with v satisfies 

then for p &#x3E; 0 Fvp = so

Thus if Mxm (as in (2.4)) we have

and we can estimate the constant C(p, cpP) as in (3.4); namely

which evidently is bounded as p --~ oo. C7

LEMMA 3.6. Let (p be a s.m. weight and let f E Ap,qJ, 0  p  00. Let [Zkl
denote the zero set of f, and let q &#x3E; p. Then the function

belongs to and

PROOF. By formula (2.10) of [2], with n replaced by 9.., and assumingp

f(0) # 0, we have

where d u is a probability measure defined there. Now we can proceed exactly
as in Lemma 3.1 to obtain the desired result. 0

THEOREM 3.7. Let ~9 be a s.m. weight and let f E 0  p  oo. Let

p 1, - .. , pn &#x3E; 0 be numbers such that

Then there exist functions fi E A Pi,qJ, i = 1, 2, ..., n, such that

where C depends only on p 1, ..., pn .
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PROOF. We follow the lines of proof in [2]. As a first case consider f in the
dense subset of consisting of functions having only finitely many zeros,

· Letting B represent the finite Blaschke product corresponding to thesek= 
--- w _

zeros we propose to factor and then to choose

The B ~i ~ are chosen probabilistically; namely for a given i, B(i) will contain
each factor BZk in B with probability p/ pl . If so, for each z E U the expected
value of fi Cz) I pl is

Integrating with respect to qJ(z)dA(z) and applying Lemma 3.6 we conclude
that

Since each random factor of f has an appropriately bounded norm, we conclude
that there exists a concrete factorization of f as in (3.8). For f having infinitely
many zeros, we first choose a sequence fn ~ f in AP,v where each fn has
finitely many zeros. Factoring each fn as above, we can select subsequences
of the factors which approach a bounded factorization of f. 0

4. - Limits of applicability of the factorization

The key to Theorem 3.5 above was Lemma 3.1 to the effect that if f E AP,f/J
then the operation

is bounded in the LP’lp norm. The proof relied on the fact that yJ was a s.m.
weight. In this section we show that when yJ is not s.m., (4.1) is generally
unbounded. This is perhaps to be expected in light of the breakdown of con-
formal invariance noted in Proposition 2.7. Our theorem will be proved for w
(not s.m.) satisfying a certain normalization which we now describe.

DEFINITION 4.2. For j = 1, 2,... let rj = exp(-2-j) ~ 1-2-j. We
say that a decreasing function is a normal weight if log q; (r) is a linear
function of logr (i.e., w(r) = Mrm) on each interval 
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THEOREM 4.3. Let ~p(r) be a normal weight function for which the numbers

increase without bound.

is not s.m. Then the operation (4.1) does not map into 

PROOF. We define

and note that the normality of cp together with (4.4) implies that K is an
admissible rapidly growing function, as defined in [3], page 146. Thus by
Theorem 3 of that paper we can construct a function f analytic in U such that
f (0) = 1 and

For 0  r  1

By the construction in [3], f has 2jnj zeros evenly spaced on the circle
=r/, where

In view of (4.5), (4.4) is equivalent to the statement

increases without bound.

It then follows that for j large, the nj are increasing and they tend to oo.
Now we note that since f has 2i nj zeros evenly spaced on the circle

Iz = rj, if

the disc {~ : 2/3 } contains a fixed portion of the circle Izl = rj, and
therefore contains at least cnj zeros of f, where c depends only on f, and not
on j. This implies that in (4.1 )
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whenever We define

so P(r) increases as r -~ 1, limr-i 1 P (r ) = oo, and , for
allzEU.

Next we propose to construct a function 1/1 (r), 0  r  1, with the

following properties:

1/1 (r) is increasing, but

but

Before carrying out the construction, we show how it leads to the conclusion
of the theorem. Specifically, in view of (4.9), Theorem 2 of [3] enables us to
construct an analytic function H in U such that = 0,

and

Combining these inequalities with (4.5) and (4.7) we find that the function

Q = f H satisfies

Now multiply by p and apply Jensen’s inequality to obtain that for 0  r  1

where the last inequality follows from (4.6) and (4.11). This inequality together
with (4.10) proves that Q E Ap,qJ. However, from (4.8) we deduce that Q* (as
in (4.1 )) satisfies Q*(z) ~ I so that (4.10) and (4.12) together imply
that Q* 0 and this is the desired conclusion of Theorem 4.3.

It remains only to construct 1/1 satisfying (4.9) and (4.10). To that end we
first choose a subsequence of such that for each k, 2k.
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Then we define 1/1 to have a constant value 1/Ij on each interval frj, rj+,) as
follows: first on the subsequence rik define

and note that these 1?jk increase with k. In order to define 1? between 1 and

rjk we first choose an integer n &#x3E; 0 such that

This implies that there are more than n intervals between rjk-l 1 and

rjk so we can "count backward" defining

and

Thus * increases and 4, giving (4.9). Also

Therefore  oo.

However by (4.13)

fulfilling condition (4.10). This completes the proof of the theorem. a

We remark that by a similar argument we can show that Lemma 3.6 is no
longer valid for w as in Theorem 4.3.
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