Annali della Scuola Normale Superiore di Pisa *Classe di Scienze*

CHARLES HOROWITZ

YEHUDAH SCHNAPS

Factorization of functions in weighted Bergman spaces

Annali della Scuola Normale Superiore di Pisa, Classe di Scienze 4^e série, tome 29, nº 4 (2000), p. 891-903

<http://www.numdam.org/item?id=ASNSP_2000_4_29_4_891_0>

© Scuola Normale Superiore, Pisa, 2000, tous droits réservés.

L'accès aux archives de la revue « Annali della Scuola Normale Superiore di Pisa, Classe di Scienze » (http://www.sns.it/it/edizioni/riviste/annaliscienze/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

Factorization of Functions in Weighted Bergman Spaces

CHARLES HOROWITZ - YEHUDAH SCHNAPS

Abstract. We consider spaces $A^{p,\varphi}$ of analytic functions on the unit disc which are in L^p with respect to a measure of the form $\varphi(r)drd\theta$, where φ is "submultiplicative". We show that these spaces are Möbius invariant and that if $f \in A^{p,\varphi}$ one can factor out some or all of its zeros in a standard bounded way; also one can represent f as a product of two functions in $A^{2p,\varphi}$. Finally, we show that our methods cannot be extended to the case of φ not submultiplicative.

Mathematics Subject Classification (2000): 32A36 (primary), 32A60 (secondary).

1. – Introduction

Let φ be a decreasing radial function on the unit disc $U \subset \mathbb{C}$ such that $\lim_{r \to 1^-} \varphi(r) = 0$. We consider the weighted Bergman spaces of analytic functions on U satisfying

$$\|f\|_{p,\varphi}^{p} = \int_{U} |f(z)|^{p} \varphi(z) dA(z) < \infty, \quad 0 < p < \infty,$$
$$\|f\|_{\infty,\varphi} = \sup_{z \in U} |f(z)|\varphi(z) < \infty,$$

where $dA = \frac{1}{\pi} r dr d\theta$. We shall also refer to the related Lebesgue spaces $L^{p,\varphi}$.

Our purpose is to show that for a large class of weights, namely, those which are "submultiplicative", we can generalize the results of [1] and [2] on the factorization of functions in such spaces. The outline of the paper is as follows: in Section 2 we define and develop basic properties of submultiplicative (s.m.) weights. We also show that when φ is s.m. $A^{p,\varphi}$ is closed under composition with Möbius automorphisms of the disc, and prove a partial converse to this result. In Section 3 we present our main theorems to the effect that when φ is s.m. one can factor out some or all of the zeros of $f \in A^{p,\varphi}$ in a standard bounded fashion, and one can also represent f as the product of two functions

This work incorporates parts of the second author's doctoral thesis written at Bar-Ilan University. Pervenuto alla Redazione il 1 febbraio 2000 e in forma definitiva il 19 luglio 2000.

in $A^{2p,\varphi}$. We also generalize this fact. In Section 4 we show that if we allow φ to decline faster than any s.m. function then the above methods break down, and so submultiplicativity is a natural barrier for our approach.

2. – Submultiplicative weights

We consider spaces $A^{p,\varphi}$ where φ is a decreasing radial function satisfying $\lim_{r\to 1^-} \varphi(r) = 0$. It is convenient to associate with φ the function

$$F(r) = F_{\varphi}(r) = \varphi(1-r^2).$$

Thus F is increasing on (0, 1] and $\lim_{r\to 0^+} F(r) = 0$.

DEFINITION 2.1. φ (or F) is called submultiplicative (s.m.) if for some C > 1

(2.2)
$$\ell(C) = \ell_F(C) = \sup_{0 < r \le 1/C} \frac{F(Cr)}{F(r)} < \infty.$$

LEMMA 2.3. If a weight φ (or F) satisfies (2.2) for some C > 1 then it actually satisfies the same relation for all x > 1, and there exist M, m > 0 such that

$$(2.4) \qquad \qquad \ell_F(x) \le M x^m; \qquad x > 1$$

(2.5)
$$F(x) \ge M^{-1}F(1)x^m; \quad 0 < x < 1.$$

PROOF. First consider $x \in (1, C]$. Then since F is increasing, whenever $0 < r \le 1/C$

$$\frac{F(xr)}{F(r)} \leq \frac{F(Cr)}{F(r)} \leq \ell(C),$$

and if $1/C < r \le 1/x$

$$\frac{F(xr)}{F(r)} \leq \frac{F(1)}{F(1/C)} \leq \ell(C) \,.$$

Now if $x \in (C, \infty)$ we can write $x = C^{\alpha}$, $\alpha > 1$. Letting $n = [\alpha] + 1$ we find that for all $r \in (0, 1/C^n]$

$$\frac{F(xr)}{F(r)} \leq \frac{F(C^n r)}{F(r)} \leq \left[\ell(C)\right]^n \leq \ell(C) x^m \,,$$

where $m = \ln(\ell(C)) / \ln C$. If $r \in (1/C^n, 1/x)$] then

$$\frac{F(xr)}{F(r)} \leq \frac{F(1)}{F(1/C^n)} \leq \left[\ell(C)\right]^n \leq \ell(C)x^m.$$

Putting together the above estimates, we obtain (2.4). (2.5) follows from the fact that if 0 < x < 1

$$F(1)/F(x) \leq \ell\left(\frac{1}{x}\right) \leq Mx^{-m}$$
.

We remark that for our purposes it is sufficient to demand that for some r_0 , $0 < r_0 \le 1$, and some C > 1

$$\sup_{0< r< r_0/C}\frac{F(Cr)}{F(r)}<\infty.$$

If so, we can modify F to be constantly $F(r_0)$ on $[r_0, 1]$, and then it will fulfill condition (2.2). Since this corresponds to modifying φ on $[0, 1-r_0^2]$, it induces an equivalent norm on $A^{p,\varphi}$.

The simplest examples of s.m. weights are the standard weights $\varphi_{\alpha}(z) = (1 - |z|^2)^{\alpha}$, $\alpha > 0$. Here $F(r) = r^{\alpha}$ and of course F(Cr) = F(C)F(r) for all C and r. As another example we can take

$$F(r) = r^{\alpha} \left(\log \frac{1}{r} \right)^{\beta}; \ \alpha, \beta > 0.$$

Thus if 0 < x < 1 and y > 1

$$F(xy) = x^{\alpha} y^{\alpha} \left(\log \frac{1}{x} + \log \frac{1}{y} \right)^{\beta} < \left(x^{\alpha} \log^{\beta} \frac{1}{x} \right) y^{\alpha} = F(x)\ell(y) \,.$$

Similarly, one can verify that functions of the form

$$F(r) = r^{\alpha} \left[\log^+ \log^+ \dots \log^+ \frac{1}{r} \right]^{\beta}$$

satisfy (2.2).

We turn to the question of Möbius invariance of the spaces $A^{p,\varphi}$.

DEFINITION 2.6. For |a| < 1 we denote

$$T_a(z) = \frac{a-z}{1-\overline{a}z}$$
, (so $T_a^{-1} = T_a$); $B_a(z) = \frac{a}{|a|}T_a(z)$.

We say that a space of functions B on U is Möbius invariant if it is closed under composition with the automorphisms of $U T_a$, i.e., if

$$f \in B \Rightarrow f \circ T_a \in B$$
 for all $a \in U$.

The following proposition is probably known, but we include its simple proof since we have not seen it in the literature. However, we note that for the case $A^{p,\varphi}$ when p = 2 a stronger and more general result was proved in [4] and [5].

PROPOSITION 2.7. If φ is a s.m. weight then $A^{p,\varphi}$ is Möbius invariant for 0 . If for some <math>C > 1

(2.8)
$$\lim_{r\to 0}\frac{F_{\varphi}(Cr)}{F_{\varphi}(r)}=\infty\,,$$

then $A^{p,\varphi}$ is not Möbius invariant.

PROOF. Since φ is s.m. and decreasing, for all $a, z \in U$ (with $F = F_{\varphi}$, $\ell = \ell_{\varphi}$ as in (2.2))

(2.9)
$$\varphi(T_a(z)) = F(1 - |T_a(z)|^2) = F\left(\frac{(1 - |a|^2)(1 - |z|^2)|}{|1 - \overline{a}z|^2}\right)$$
$$\leq F\left(\frac{2(1 - |z|^2)}{1 - |a|}\right) \leq \ell\left(\frac{2}{1 - |a|}\right)\varphi(z).$$

Therefore if $f \in A^{p,\varphi}$, 0 , and <math>|a| < 1

(2.10)
$$\|f \circ T_{a}\|_{p,\varphi}^{p} = \int_{U} |f(T_{a}(z))|^{p} \varphi(z) dA(z)$$
$$= \int_{U} |f(z)|^{p} \varphi(T_{a}(z))|T_{a}'(z)|^{2} dA(z)$$
$$\leq \ell \left(\frac{2}{1-|a|}\right) \cdot \frac{4}{(1-|a|)^{2}} \|f\|_{p,\varphi}^{p}.$$

So $A^{p,\varphi}$ is Möbius invariant.

In the converse direction, we note that if $\frac{1}{1-|a|} > C$ then for all $z \in U$ in a neighborhood of a/|a|

$$\frac{1-|T_a(z)|^2}{1-|z|^2} = \frac{1-|a|^2}{|1-\overline{a}z|^2} > \frac{1}{1-|a|} > C.$$

It follows from (2.8) that

$$\lim_{z\to a/|a|}\frac{\varphi(T_a(z))}{\varphi(z)}=\infty\,.$$

By the change of variables formula, as in (2.10), we see that $A^{p,\varphi}$ is Möbius invariant if and only if $f \in A^{p,\varphi}$ implies that $f \in A^{p,\varphi h}$ where

$$h(z) = \frac{\varphi(T_a(z))}{\varphi(z)} \,.$$

Therefore the following lemma will complete the proof of our proposition.

LEMMA 2.11. Let h(z) be positive and measurable on U. If for some $\xi \in \partial U$ $\lim_{z \to \xi} h(z) = \infty$, then $A^{p,\varphi} \not\subset A^{p,\varphi h}$, 0 .

PROOF. Without loss of generality we take $\xi = 1$. If the lemma is false then by the closed graph theorem, the inclusion mapping from $A^{p,\varphi}$ to $A^{p,\varphi h}$ must be bounded; call its norm M. By hypothesis, for some $\varepsilon > 0$

(2.12)
$$h(z) > 4M^p \quad \text{in} \quad N_{\varepsilon} = \{z \in U : |z-1| < \varepsilon\}.$$

Now consider the peak function

$$f(z) = \frac{1.4\varepsilon}{1+\varepsilon-z}$$

which satisfies $|f(z)| \le q < 1$ in $U \setminus N_{\varepsilon}$, whereas inside $N_{\varepsilon} |f(z)| > 1$ on a "large" subset. It follows easily that for *m* sufficiently large the function

$$g(z) = f^m(z)$$

satisfies

$$\int_{N_{\varepsilon}} |g(z)|^{p} \varphi(z) dA(z) > \frac{1}{2} \int_{U} |g(z)|^{p} \varphi(z) dA(z) \, .$$

By (2.12)

$$\int_{U} |g(z)|^{p} \varphi(z)h(z)dA(z) \geq \int_{N_{\varepsilon}} |g(z)|^{p} \varphi(z)h(z)dA(z)$$
$$\geq 4M^{p} \int_{N_{\varepsilon}} |g(z)|^{p} \varphi(z)dA \geq 2M^{p} \int_{U} |g(z)|^{p} \varphi(z)$$

which is contrary to our hypothesis.

3. - Factorization theorems

The following lemma and theorem generalize results from Section 7 in [1] and extend them to the case $p = \infty$.

LEMMA 3.1. Let φ be a s.m. weight, and let $f \in A^{p,\varphi}$, $0 . Denote by <math>\{z_k\}$ the zero set of f, with each zero repeated according to its multiplicity, and define T_{z_k} as in (2.6). Then the function

$$f^*(z) = \frac{|f(z)|}{\prod_{k=1}^{\infty} |T_{z_k}(z)|(2 - |T_{z_k}(z)|)}$$

belongs to $L^{p,\varphi}$ and $||f^*||_{p,\varphi} \leq C(p,\varphi)||f||_{p,\varphi}$ where $C(p,\varphi)$ is a constant depending only on p and φ .

PROOF. Since φ is s.m., inequality (2.5) implies that $\varphi(z) \ge C(1-|z|)^{\alpha}$ for some $\alpha > 0$. In particular, $A^{p,\varphi}$ is contained in $A^{p,\alpha}$ as defined in [1]. Now from Theorem 7.6 in that paper we conclude that if $f(0) \neq 0$

$$\log \frac{|f(0)|}{\prod_{k=1}^{\infty} |z_k|(2-|z_k|)} = \int_U \frac{1}{(2-|z|)^2} \log |f(z)| \frac{dA(z)}{|z|}.$$

Now we observe that both dA(z) and $\frac{dA(z)}{|z|(2-|z|)^2}$ are unit measures on U. Therefore a calculation based on the fact that $\int_{0}^{|z||^{-|z|}} \log |f(re^{i\theta})| d\theta$ is an increasing function of r yields that $\int_{U} \frac{1}{(2-|z|)^2} \log |f(z)| \frac{dA(z)}{|z|} \leq \int_{U} \log |f(z)| dA(z)$. In light of Proposition 2.7 we can replace f by $f(T_w(z)) \in A^{p,\varphi}$. For any

 $w \in U$ such that $f(w) \neq 0$, we find that

$$\log f^*(w) = \log \frac{|f(w)|}{\prod_{k=1}^{\infty} |T_{z_k}(w)|(2 - |T_{z_k}(w)|)} \le \int_U \log |f(T_w(z)| dA(z)).$$

Now note that for any $z, w \in U$

$$\varphi(w) = F(1-|w|^2) = F\left((1-|T_w(z)|^2)\frac{|1-\overline{w}z|^2}{1-|z|^2}\right) \le \varphi(T_w(z))\ell\left(\frac{4}{1-|z|^2}\right).$$

Thus, if $w \in U$ and $f(w) \neq 0$

(3.2)
$$\log[f^*(w)^p \varphi(w)] \leq \int_U \left[\log(|f(T_w(z))|^p \varphi(T_w(z))) + \log \ell \left(\frac{4}{1-|z|^2}\right) \right] dA(z).$$

In view of (2.4) we have

$$\ell(x) \leq M x^m \, ,$$

so we obtain the inequality

(3.3)
$$\int_{U} \left[\log \ell \left(\frac{4}{1 - |z|^2} \right) + \log \frac{1}{1 - |z|^2} \right] dA(z) \\ \leq \log M + m \log 4 + (m+1) \equiv R.$$

This together with (3.2) gives the pointwise estimate

$$\log |f^*(w)^p \varphi(w)| \le R + \int_U \log [|f(T_w(z))|^p \varphi(T_w(z))(1-|z|^2)] dA(z).$$

896

Exponentiating and applying Jensen's inequality, we have

$$f^{*}(w)^{p}\varphi(w) \leq e^{R} \int_{U} |f(T_{w}(z))|^{p}\varphi(T_{w}(z))(1-|z|^{2})dA(z)$$
$$= e^{R} \int_{U} |f(z)|^{p}\varphi(z)|T'_{w}(z)|^{2}(1-|T_{w}(z)|^{2})dA(z)$$

Now note that

$$\int_{U} |T'_{w}(z)|^{2} (1 - |T_{w}(z)|^{2}) dA(w) = \int_{U} \frac{(1 - |w|^{2})^{3} (1 - |z|^{2})}{|1 - \overline{w}z|^{6}} dA(w)$$

which is uniformly bounded, say by S, for all $z \in U$ (by Lemma 4.22 in [6]). It follows that

(3.4)
$$||f^*||_{p,\varphi} \leq S^{1/p} \exp\left[\frac{1}{p}(\log M + m\log 4 + (m+1))\right] ||f||_{p,\varphi}$$

This completes the proof of the lemma.

THEOREM 3.5. Let φ be a s.m. weight; let $f \in A^{p,\varphi}$ $0 , and let <math>\{a_k\}$ be an arbitrary subset of the zero set of f. Define

$$h(z) = \frac{f(z)}{\prod_{k=1}^{\infty} B_{a_k}(z)(2 - B_{a_k}(z))} \quad (as \text{ in } (2.6)).$$

Then $h \in A^{p,\varphi}$ and $||h||_{p,\varphi} \le C(p,\varphi)||f||_{p,\varphi}$ where C depends only on p and φ . In particular, every subset of an $A^{p,\varphi}$ zero set is also an $A^{p,\varphi}$ zero set.

PROOF. The convergence of the product defining h is a simple consequence of the condition $\sum (1 - |a_k|)^2 < \infty$, which is equivalent to the convergence of the product defining $f^*(0)$ in Lemma 3.1. Now let $\{z_k\}$ denote the full zero set of f. Noting that x(2-x) < 1 for 0 < x < 1, we have for all $z \in U$

$$|h(z)| \leq \frac{|f(z)|}{\prod_{k=1}^{\infty} |B_{a_k}(z)|(2-|B_{a_k}(z)|)} \leq \frac{|f(z)|}{\prod_{k=1}^{\infty} |T_{z_k}(z)|(2-|T_{z_k}(z)|)} = f^*(z),$$

.

as defined in Lemma 3.1. Thus for 0 ,

$$||h||_{p,\varphi} \leq ||f^*||_{p,\varphi} \leq C(p,\varphi)||f||_{p,\varphi}.$$

For $p = \infty$ we can use the fact that

$$\|h\|_{\infty,\varphi} = \lim_{p \to \infty} \|h\varphi\|_{L^p(dA)} = \lim_{p \to \infty} \|h\|_{p,\varphi^p}$$

$$\leq \sup_p C(p,\varphi^p) \|f\|_{p,\varphi^p} \leq \sup_p C(p,\varphi^p) \|f\|_{\infty,\varphi}.$$

Thus it suffices to show that the numbers $C(p, \varphi^p)$ are bounded as $p \to \infty$. To that end we note that if the function F_{φ} associated with φ satisfies $F_{\varphi}(Cr) \leq F_{\varphi}(r)\ell(C)$, then for p > 0 $F_{\varphi^p} = (F_{\varphi})^p$ so

$$F_{\varphi^p}(Cr) = [F_{\varphi}(Cr)]^p \le F_{\varphi^p}(r)\ell^p(C).$$

Thus if $\ell_{\varphi}(x) \leq Mx^m$ (as in (2.4)) we have

$$\ell_{\varphi^p}(x) \le M^p x^{mp}$$

and we can estimate the constant $C(p, \varphi^p)$ as in (3.4); namely

$$C(p,\varphi^p) \le (S)^{1/p} \exp\left[\frac{1}{p}(\log M^p + mp\log 4 + (mp+1))\right]$$

which evidently is bounded as $p \to \infty$.

LEMMA 3.6. Let φ be a s.m. weight and let $f \in A^{p,\varphi}$, $0 . Let <math>\{z_k\}$ denote the zero set of f, and let q > p. Then the function

$$g(z) = |f(z)|^{p} \prod_{k=1}^{\infty} \frac{\left(1 - \frac{p}{q}\right) + \frac{p}{q} |T_{z_{k}}(z)|^{q}}{|T_{z_{k}}(z)|^{p}}$$

belongs to $L^{1,\varphi}$ and $\|g\|_{1,\varphi} \leq C(p,q) \|f\|_{p,\varphi}^p$.

PROOF. By formula (2.10) of [2], with n replaced by $\frac{q}{p}$, and assuming $f(0) \neq 0$, we have

$$\log |f(0)|^{p} + \sum_{k=1}^{\infty} \log \left[\frac{1 - \frac{p}{q} + \frac{p}{q} |z_{k}|^{q}}{|z_{k}|^{p}} \right] = \int_{U} \log |f(z)|^{p} du,$$

where du is a probability measure defined there. Now we can proceed exactly as in Lemma 3.1 to obtain the desired result.

THEOREM 3.7. Let φ be a s.m. weight and let $f \in A^{p,\varphi}$, $0 . Let <math>p_1, \ldots, p_n > 0$ be numbers such that

$$\frac{1}{p} = \sum_{i=1}^n \frac{1}{p_i} \,.$$

Then there exist functions $f_i \in A^{p_i,\varphi}$, i = 1, 2, ..., n, such that

(3.8)
$$f = \prod_{i=1}^{n} f_{i} \quad and \quad \sum_{i=1}^{n} \|f_{i}\|_{p_{i},\varphi}^{p_{i}} \le C \|f\|_{p,\varphi}^{p}$$

where C depends only on p_1, \ldots, p_n .

PROOF. We follow the lines of proof in [2]. As a first case consider f in the dense subset of $A^{p,\varphi}$ consisting of functions having only finitely many zeros, $\{z_k\}_{k=1}^m$. Letting B represent the finite Blaschke product corresponding to these zeros we propose to factor $B = \prod_{i=1}^n B^{(i)}$, and then to choose $f_i = (\frac{f}{B})^{p/p_i} B^{(i)}$, i = 1, 2, ..., n.

The $B^{(i)}$ are chosen probabilistically; namely for a given i, $B^{(i)}$ will contain each factor B_{z_k} in B with probability p/p_i . If so, for each $z \in U$ the expected value of $|f_i(z)|^{p_i}$ is

$$E[|f_i(z)|^{p_i}] = \left|\frac{f(z)}{B(z)}\right|^p \prod_{k=1}^m \left(1 - \frac{p}{p_i} + \frac{p}{p_i}|T_{z_k}(z)|^{p_i}\right)$$
$$= |f(z)|^p \prod_{k=1}^m \frac{\left(1 - \frac{p}{p_i}\right) + \frac{p}{p_i}|T_{z_k}(z)|^{p_i}}{|T_{z_k}(z)|^p}.$$

Integrating with respect to $\varphi(z)dA(z)$ and applying Lemma 3.6 we conclude that

$$E\left[\|f_i\|_{p_i,\varphi}^{p_i}\right] \leq C(p_i,\varphi)\|f\|_{p,\varphi}^{p}.$$

Since each random factor of f has an appropriately bounded norm, we conclude that there exists a concrete factorization of f as in (3.8). For f having infinitely many zeros, we first choose a sequence $f_n \to f$ in $A^{p,\varphi}$ where each f_n has finitely many zeros. Factoring each f_n as above, we can select subsequences of the factors which approach a bounded factorization of f.

4. – Limits of applicability of the factorization

The key to Theorem 3.5 above was Lemma 3.1 to the effect that if $f \in A^{p,\varphi}$ then the operation

(4.1)
$$f(z) \to f^*(z) = \frac{|f(z)|}{\prod_{f(z_k)=0} |T_{z_k}(z)|(2 - |T_{z_k}(z)|)}$$

is bounded in the $L^{p,\varphi}$ norm. The proof relied on the fact that φ was a s.m. weight. In this section we show that when φ is not s.m., (4.1) is generally unbounded. This is perhaps to be expected in light of the breakdown of conformal invariance noted in Proposition 2.7. Our theorem will be proved for φ (not s.m.) satisfying a certain normalization which we now describe.

DEFINITION 4.2. For j = 1, 2, ... let $r_j = \exp(-2^{-j}) \cong 1 - 2^{-j}$. We say that a decreasing function $\varphi(r)$ is a normal weight if $\log \varphi(r)$ is a linear function of $\log r$ (i.e., $\varphi(r) = Mr^m$) on each interval $[r_j, r_{j+1}]$.

THEOREM 4.3. Let $\varphi(r)$ be a normal weight function for which the numbers

(4.4)
$$\frac{\varphi(r_j)}{\varphi(r_{j+1})} \left(\cong \frac{F(2^{-j})}{F(2^{-j-1})}\right)$$
 increase without bound.

In particular, φ is not s.m. Then the operation (4.1) does not map $A^{p,\varphi}$ into $L^{p,\varphi}$.

PROOF. We define

(4.5)
$$K(r) = \frac{1}{p} \log \frac{1}{\varphi(r)}$$

and note that the normality of φ together with (4.4) implies that K is an admissible rapidly growing function, as defined in [3], page 146. Thus by Theorem 3 of that paper we can construct a function f analytic in U such that f(0) = 1 and

(4.6)
$$\log |f(z)| \le K(|z|) + O(1), \quad z \in U.$$

For 0 < r < 1

(4.7)
$$\frac{1}{2\pi} \int_0^{2\pi} \log |f(re^{i\theta})| d\theta = \sum_{\substack{|z_k| \le r \\ f(z_k) = 0}} \frac{r}{|z_k|} = K(r) + O(1).$$

By the construction in [3], f has $2^{j}n_{j}$ zeros evenly spaced on the circle $|z| = r_{j}$, where

$$n_j = 2K(r_{j+1}) - 3K(r_j) + K(r_{j-1}) + O(1)$$

= 2[K(r_{j+1}) - K(r_j)] - [K(r_j) - K(r_{j-1})] + O(1).

In view of (4.5), (4.4) is equivalent to the statement

 $K(r_{i+1}) - K(r_i)$ increases without bound.

It then follows that for j large, the n_j are increasing and they tend to ∞ .

Now we note that since f has $2^{j}n_{j}$ zeros evenly spaced on the circle $|z| = r_{j}$, if

$$r_j \leq |z| \leq r_{j+1}$$

the disc $\{w : |T_w(z)| \le 2/3\}$ contains a fixed portion of the circle $|z| = r_j$, and therefore contains at least cn_j zeros of f, where c depends only on f, and not on j. This implies that in (4.1)

$$f^*(z) \ge \left(\frac{9}{8}\right)^{cn_j} |f(z)|$$

whenever $r_j \leq |z| < r_{j+1}$. We define

(4.8)
$$P(r) = \left(\frac{9}{8}\right)^{cn_j}; \quad r_j \le |z| < r_{j+1},$$

so P(r) increases as $r \to 1$, $\lim_{r\to 1} P(r) = \infty$, and $f^*(z) \ge P(|z|)|f(z)|$ for all $z \in U$.

Next we propose to construct a function $\psi(r)$, 0 < r < 1, with the following properties:

(4.9)
$$\psi(r)$$
 is increasing, but $\sup_{j} \frac{\psi(r_{j+1})}{\psi(r_{j})} < \infty$.

(4.10)
$$\int_0^1 \psi(r)dr < \infty \quad \text{but} \quad \int_0^1 \psi(r)P(r)dr = \infty.$$

Before carrying out the construction, we show how it leads to the conclusion of the theorem. Specifically, in view of (4.9), Theorem 2 of [3] enables us to construct an analytic function H in U such that H(1) = 0,

(4.11)
$$\log |H(z)| \leq \frac{1}{p} \log \psi(|z|) + O(1) \text{ and}$$
$$\frac{1}{2\pi} \int_0^{2\pi} \log |H(re^{i\theta})| d\theta = \sum_{\substack{|z_k| < r \\ H(z_k) = 0}} \log \frac{r}{|z_k|} = \frac{1}{p} \log \psi(r) + O(1),$$
$$0 < r < 1.$$

Combining these inequalities with (4.5) and (4.7) we find that the function Q = fH satisfies

$$\frac{1}{p}\log\left(\frac{\psi(r)}{\varphi(r)}\right) + O(1) = \frac{1}{2\pi}\int_0^{2\pi}\log|Q(re^{i\theta})|d\theta.$$

Now multiply by p and apply Jensen's inequality to obtain that for 0 < r < 1

(4.12)
$$C_1\psi(r) \leq \frac{1}{2\pi} \int_0^{2\pi} |Q(re^{i\theta})|^p \varphi(r) d\theta \leq C_2\psi(r) \,,$$

where the last inequality follows from (4.6) and (4.11). This inequality together with (4.10) proves that $Q \in A^{p,\varphi}$. However, from (4.8) we deduce that Q^* (as in (4.1)) satisfies $Q^*(z) \ge P(|z|)|Q(z)|$ so that (4.10) and (4.12) together imply that $Q^* \notin L_{p,\varphi}$; and this is the desired conclusion of Theorem 4.3.

It remains only to construct ψ satisfying (4.9) and (4.10). To that end we first choose a subsequence of $\{r_j\}$, $\{r_{j_k}\}$, such that for each k, $P(r_{j_k}) \ge 2^k$.

Then we define ψ to have a constant value ψ_j on each interval $[r_j, r_{j+1})$ as follows: first on the subsequence r_{j_k} define

(4.13)
$$\psi_{j_k} = \frac{2^{-k}}{2^{-j_k} - 2^{-j_{k+1}}}$$
$$\text{so} \quad \frac{2^{-k-1}}{r_{j_{k+1}} - r_{j_k}} \le \psi_{j_k} \le \frac{2^{-k}}{r_{j_{k+1}} - r_{j_k}},$$

and note that these ψ_{j_k} increase with k. In order to define ψ between $r_{j_{k-1}}$ and r_{j_k} we first choose an integer $n \ge 0$ such that

$$4^n < \frac{\psi_{j_k}}{\psi_{j_{k-1}}} \le 4^{n+1}$$

This implies that there are more than *n* intervals $[r_j, r_{j+1}]$ between $r_{j_{k-1}}$ and r_{j_k} so we can "count backward" defining

$$\psi_{j_k-\ell}=4^{-\ell}\psi_{j_k};\ \ell=1,2\ldots n\,,$$

and

$$\psi_j = \psi_{j_{k-1}}; \ j_{k-1} \le j < j_k - n$$

Thus ψ increases and satisfies $\psi(r_{j+1})/\psi(r_j) \le 4$, giving (4.9). Also

$$\int_{r_{j_{k-1}}}^{r_{j_{k}}} \psi(r)dr = \psi_{j_{k-1}}(r_{j_{k}-n} - r_{j_{k-1}}) + \sum_{\ell=0}^{n} 4^{-\ell} \psi_{j_{k}}(r_{j_{k}-\ell} - r_{j_{k}-\ell-1})$$

$$\leq \psi_{j_{k-1}} \cdot 2[r_{j_{k-1}+1} - r_{j_{k-1}}] + \sum_{\ell=0}^{n} 4^{-\ell} \psi_{j_{k}} \cdot 2^{\ell}(r_{j_{k}+1} - r_{j_{k}})$$

$$\leq 2 \cdot 2^{-k+1} + 2 \cdot 2^{-k} = 6 \cdot 2^{-k}.$$

Therefore $\int_0^1 \psi(r) dr < \infty$. However by (4.13)

$$\int_0^1 \psi(r) P(r) dr \ge \sum_{k=1}^\infty \int_{r_{j_k}}^{r_{j_{k+1}}} \psi(r) P(r) dr \ge \sum_{k=1}^\infty 2^k \cdot 2^{-k-1} = \infty,$$

fulfilling condition (4.10). This completes the proof of the theorem.

We remark that by a similar argument we can show that Lemma 3.6 is no longer valid for φ as in Theorem 4.3.

REFERENCES

- [1] C. HOROWITZ, Zeros of functions in the Bergman spaces, Duke Math. J. 41 (1974), 693-710.
- [2] C. HOROWITZ, Factorization theorem for functions in the Bergman spaces, Duke Math. J. 44 (1977), 201-213.
- [3] C. HOROWITZ, Zero sets and radial zero sets in some function spaces, J. Analyse Math. 65 (1995), 145-159.
- [4] T. L. KRIETE, B. D. MACCLUER, Composition operators on large weighted Bergman spaces, Indiana Univ. Math. J. 41 (1992), no. 3, 755-788.
- [5] T. L. KRIETE, Kernel functions and composition operators in weighted Bergman spaces, Contemp. Math. 213 (1998), 73-91.
- [6] K. ZHU, "Operator Theory in Function Spaces", Marcel, Dekker, 1990.

Department of Mathematics Bar-Ilan University Ramat-Gan 52900, Israel horowitz@macs.biu.ac.il