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Graded Lie Algebras of Maximal Class IV

A. CARANTI - M. R. VAUGHAN-LEE

Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)
Vol. XXIX (2000), ~ 1

Abstract. We describe the isomorphism classes of certain infinite-dimensional
graded Lie algebras of maximal class, generated by an element of weight one and
an element of weight two, over fields of odd characteristic.

Mathematics Subject Classification (1991): 7B70 (primary), 17B65, 17B05,
17B30 (secondary).

1. - Introduction

Let M be a Lie algebra over the field F. Suppose M is nilpotent of
nilpotency class c, so that c is the smallest number such that = 0. If M

has finite dimension n &#x3E; 2, it is well-known that c  n - 1. When c = n - 1,
M is said to be a Lie algebra of maximal class.

Consider the Lie powers Mi. Then M is of maximal class when the
codimension of Mi is exactly i, for i  c + 1. It is natural to extend the
definition to an infinite-dimensional Lie algebra M by saying that M is of
maximal class when the codimension of Mi is i for all i (see [6]).

One can grade M with respect to the filtration of the Mi : let

and consider

There is a natural way of defining a Lie product on L, and the graded Lie
algebra L has the following properties: dim(L 1 ) = 2, 1 for i &#x3E; 2,
and L is generated by L 1. Note that here too we allow all Li to be non-

zero, thereby including infinite-dimensional algebras. A graded Lie algebra L

Pervenuto alla Redazione il 17 luglio 1999.
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satisfying these conditions is called a graded Lie algebra of maximal class in [2],
[3], [5]. However, this definition does not capture all possibilities. One of the
other possibilities for a graded Lie algebra L = be of maximal class
is to have 1 for 1, with L generated by Li 1 and L2. We call
a graded Lie algebra of this form an algebra of type 2, whereas we refer to a
graded Lie algebra of maximal class in the sense of [2], [3], [5] as an algebra
of type 1.

In studying algebras of type 2, we will mainly deal with the infinite di-
mensional ones (as in [6], [2], [3], [5]). However, our arguments also provide
fairly complete information about finite dimensional algebras.

If the characteristic of the underlying field F is zero, it is well-known that
there is only one infinite dimensional algebra of type 1. This is the algebra

where x and y have weight 1. The ideal generated by y is an abelian maximal
ideal here. However, if F has prime characteristic p there are uncountably many
algebras of type 1 [6], [2]; these algebras were classified in [3], [5].

Over a field F of characteristic zero there are three infinite-dimensional

algebras of type 2 [7], [4], called m, m2 and W, and these are defined over
the integers. The first one is a close analogue to a. It is given as

where e 1 has weight 1 and e2 has weight 2. The ideal generated by e2 is an
abelian maximal ideal here. The second one is defined as

where ei has weight i. Here m2 = (ei : i &#x3E; 3) is a maximal abelian ideal. The
third algebra is the positive part of the Witt algebra:

and is not soluble.
When one considers these algebras over a field F of prime characteristic

p &#x3E; 2, m and m2 give algebras of type 2, but W does not.
We will show in the next section that there is a natural way to obtain an

algebra of type 2 from an uncovered algebra of type 1. (See the next section
for the relevant definition.) In particular, m arises from a in this way. We will
show that for prime characteristic p &#x3E; 2 the algebras of type 2 consist of

~ algebras arising in this natural way from algebras of type 1,
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. m 2,

. one further family of soluble algebras,
~ in the case p = 3, one additional family of soluble algebras.

This yields a classification of algebras of type 2 over fields of characteristic
p &#x3E; 2. We believe the case of characteristic two to be considerably more
complicated.

ACKNOWLEDGEMENTS. The first author has been partially supported by
MURST (Italy). The first author is a member of CNR-GNSAGA (Italy), now
INdAM-GNSAGA. The authors are grateful to CNR-GNSAGA for supporting
a visit of the second author to Trento. The second author is grateful to the
Department of Mathematics of the University of Trento for their kind hospitality.

2. - Preliminaries

Let L be an infinite-dimensional Lie algebra over a field F that is graded
over the positive integers:

If dim(L 1 ) = 2, dim(Li) = 1 for i &#x3E; 1, and L is generated by L 1, we say
that L is an algebra of type 1. These are the algebras that are called algebras
of maximal class in [2], [3], [5]. In these papers these algebras are classified
over fields of prime characteristic p.

As mentioned in the Introduction, over a field of characteristic zero there
is only one isomorphism class of algebras of type 1. This is the algebra a
of (2) generated by two elements x and y of weight 1, subject to the relations

= 0, for all i ~ 1. This algebra is metabelian, and the graded maximal
ideal containing y is abelian. Here we use the notation

If in the algebra (5) we have dim(Li) = 1 for all i &#x3E; 1, and if L is

generated by L 1 and L2, we say that L is an algebra of type 2. Choose non-

zero elements el E L1 and e2 E L2. Since L is of maximal class, for each i -&#x3E; 2
we have = Therefore we can recursively define 1 = for

i ~ 2, and we have Li = ei ) for all i. We keep this notation fixed for the
rest of the paper, allowing ourselves to rescale e2 when needed.
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In [2], [3], to which we refer the reader for all details, a theory of con-
stituents has been developed for algebras of type 1 over fields of positive
characteristic p. If L is such an algebra, define its i -th two-step centralizer as

for i &#x3E; 1. Each Ci is a one-dimensional subspace of L 1. A special role is

played by the first two-step centralizer C2. In fact, the sequence of the two-step
centralizers consists of patterns, called constituents, of the following type

Here I is called the length of the constituent. (We are following the definition
of [3], which differs from that of [2].) The first constituent requires a special
treatment: its length is defined as the smallest f such that C2, and turns
out to be of the form f = 2q, where q = p , for some h. It is proved in [2]
that if the first constituent has length 2q, then the constituents of L can have
lengths of the form

or

An algebra of type 1 is said to be uncovered if the union of the Ci does
not exhaust all of Mi. It is proved in [2] that over any field of positive
characteristic there are uncontably many uncovered algebras of type 1. (On the
other hand, if the field is at most countable, there are algebras of type 1 that
are not uncovered.) If M = 0153~i Mi is uncovered, there is an element z E Mi
such that

We consider the maximal graded subalgebra

of M. Because of (6), L is an algebra of type 2. In addition, the algebra
L inherits some kind of constituent pattern from M, as we will see in the

following. From now on we will assume p &#x3E; 2.
If we apply this procedure to the unique algebra M = a of (2) of type 1

in characteristic zero, which is clearly uncovered, we get the algebra L of type
2 generated by an element e 1 of weight one and an element e2 of weight two
subject to the relations = 0, for all i &#x3E; 1. This is the algebra m of (3).

In positive characteristic, note first of all that in L we may take e 1 = z,

e2 = [yz] where 0 ~ y E C2, and take ek = [ek-le1] for k &#x3E; 2. Suppose that
in M we have a segment of the sequence of two-step centralizers of the form
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so that k ~ 0. Note that the first constituent has length 2q &#x3E; 6 so that, in

particular,

We have

Similarly

Finally

as Cn.+ = Cn+2 = C2.
In view of this, we introduce a definition of constituents for algebras of

type 2 that is compatible with the definition for algebras of type 1. Let L

be an arbitrary algebra of type 2. If [e3e2] = 0, we have no
theory of constituents for L. Algebras of this type are dealt with in Section
~ and Section 7. If [e2ele2] - 0, and for some n we have 0, but

0, for some À =1= 0, then

so that [en+2e2] = 0. We are therefore led to the following definition. Le
be an algebra of type 1 in which = 0. Suppose there are integers n
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such that

We call this pattern a constituent of length I = n - m and type (À, ~,c). Note that
~ and it might well be zero.

Here, too, the first constituent requires an ad hoc treatment. If in the

algebra L one has = 0, and n is the smallest integer greater than 1

such that [ene2] # 0, we say that the first constituent has length n + 1. If there
is no such n, then L is isomorphic to the algebra m above.

We will see in Section 4 that the first constituent of an algebra of type 2
can have length q + 1 or 2q, where q is a power of the characteristic of the

underlying field. If the first constituent has length 2q, we will see in Section 5
that L comes from an algebra of type 1 via the procedure described above. If
the first constituent has length q + 1, we will see in Sections 6-9 that we obtain
one soluble algebra of type 2 for q &#x3E; 3, and a family of soluble algebras for
q = 3.

We have just seen that an algebra of type 2 that comes from an algebra of
type 1 has constituents of type (À, -À). We now prove that the converse also
holds.

Suppose all constituents of the algebra L of type 2 are of type (À, 2013~).
Consider the following partial linear map

We show that we can extend this to a unique derivation D of weight 1 on the
whole of L. In the extension M of L by D, we have = 2013~iD = e2.
Thus M is generated by the elements e 1 and D of weight 1, and it is an
uncovered algebra of type 1.

We begin with e3D = [e2e1]D = [e2D, el] + [e2, ei D] = 0. Suppose now
we come to the end of a constituent in L, so that we have

We have so far, proceeding by induction, ei-2D = 0. Now
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Then

and

so that we can continue by induction.
This definition of D is compatible with the relations [ei-2, e2] = 0,

[ei-1, e2] = 0. This is clear for all

but the third one. For this we have

In [2] a device for studying algebras of type 1 called deflation has been
introduced. We now show that this can be applied also to algebras of type 2,
and the result will be an algebra of type 1. This is useful in simplifying some
proofs later on.

Let L be an algebra of type 2 as in (5). Consider its subalgebra

Grade S by assigning weight i to Lid. Now S admits the derivation D = 
which, in the new grading, has weight 1. We have

It follows that the extension of S by D is a graded Lie algebra of maximal
class, and it is generated by the two elements ep and D of weight 1. Therefore
it is an algebra of type 1.

In this section we have used several times the Jacobi identity [z [yx ] ] =
[zyx] - [zxy], and its consequence

In such a formula, to evaluate binomial coefficients modulo a prime we will
make use of Lucas’ theorem, in the following form. Suppose a, b are non-

negative integers, and q &#x3E; 1 is a power of a prime p. Write a = ao and

b = bo + blq, where the ai and bi are non-negative integers, and ao, bo  q.
Then 

, .. I % , I
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3. - Characterizing m 2

In this section we start dealing with algebras of type 2 that do not admit
a theory of constituents, that is, in which [e3, e2] ~ 0. We may thus assume
without loss of generality [e3, e2l = e5- We obtain

Suppose that

Here a, b, c, d, f, g, are parameters.

so either a = 3 (which gives 12 = 0), or

gives
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So provided the characteristic is not 2, and provided a # 3,

gives

So provided the characteristic is not 2, and provided a # 3,

Combining these two equations we obtain

Expanding, we obtain

So if the characteristic is not 2 or 3 or 5 then a = 1 or a = :0. If the
characteristic is 5 then a = l. The cases when the characteristic is 2 or 3 have
to be dealt with separately. We deal with the latter in Section 7.

When a = /0, it is proved in [ 1 ] that the algebras one obtains are quotients
of a certain central extension of the positive part of the infinite-dimensional Witt
algebra. In any case, there are no infinite-dimensional algebras of maximal class
here.

The choice a = 1 uniquely determines the following metabelian Lie algebra
C4~, [7]:
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Note that ad (e2 ) is the square of on L 2 .
In fact, we have to show that m2 has the following presentation:

We use the notation = so that the two defining relations can be
rewritten as [e3 e2 ] = e5 and = ~7. We have already seen that the first
one implies [e4e2l = e6. Suppose now we have proved

for some n &#x3E; 5, and want to prove [ene2] = en+2. We work out the expansion

Note that this does not work for n = 5. From this it is straightforward to see
that the algebra is metabelian, and thus is isomorphic to m2. In fact we have

fori,j&#x3E;3

4. - The length of the first constituent

Suppose now L is an algebra of type 2 over a field of positive characteristic
p. Suppose L admits a theory of constituents. Therefore [e3e2] = [e2ele2] = 0.
If [eie2] = 0 for all i ~ 3, then L is isomorphic to m of (3). Suppose thus there
is an n &#x3E; 3 such that [e3e2] = [e4e2] = ... = [en-2e2l = 0, but 0.
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We intend to show that n, the length of the first constituent, can only assume
the values 

- - ~

We may assume, rescaling e2, that = en+i . · We first prove that n
is even, with a simple argument similar to one of [2]. In fact, if n = 2k - 1
is odd, we have

a contradiction. Here and in the following we write a ~ b to mean that a is

either b or -b. Write n = 2k. We aim at proving that the only possible values
fork are q and (q + 1)/2.

We first compute

to show

We now have

Further,

This shows that ~en+2e2] = 0, except when k = 3 (mod p).
Suppose first we have n = 6, or k = 3. We have here
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We want to show that p = 3 or 5 here, so that this fits into the n = 2q or
q + 1 pattern above. Suppose p &#x3E; 5. We compute

so that [e8e2l = -5elo.

so that

Finally

and

yield e 12 = 0, a contradiction.
Suppose then k &#x3E; 3, that is, n &#x3E; 6. We have thus [e5e2l = 0, so that

This shows that [en+2e2J = 0, except when k - 4 (mod p), which was covered
by (8).

To find out what the possible values of k are, we compute
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which yields

This shows that the only possibilities for k are

for p &#x3E; 3, whereas for p = 3 one has

When k = 0 (mod p), we show that k = q, a power of p. (The case
when p = 3 is not special here, as we have already dealt with k = 3 for

p = 3 above.) This we do by exploiting the deflation procedure, as described
in Section 2. Suppose in fact k = qm, with q a power of p, and m 0 0
(mod p). Thus n = 2q m here. We have = en+ 1 and [ene2] = -en+2.
We have also proved in (7) that 0. We first extend this to

We proceed by induction on l, for 1  I  p - 2:

Now

In any case the coefficient of [e,+le2l is less than p for 1  p - 1, so that it
is non-zero.

In the deflated algebra, we thus have

and
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In the deflated algebra the first constituent has thus length 2qm. It follows from
the theory of algebras of type 1 that m = 1. We will show in Section 5 that

algebras of type 2 with k = q come from algebras of type 1.
1 

0

When k = - (mod p), write2

where p does not divide m. Thus n = q m + 1. We want to show that m = 1.

Suppose otherwise. We have

and

We begin with proving

The identity

holds Note that n - 4 = qm - 3 &#x3E; 2q - 3, as m &#x3E; 1.
Let I  q -1. Write 1 + I = where ~6~0 (mod p). Note that pt  q,

so that

and [e2e1 l+pt e2] = 0, by ( 11 ).
Suppose first t &#x3E; 0. We compute

so that
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Now consider the case when pt - 1, so that I + 1 ~ 0 (mod p). An

analogous calculation yields

We obtain 0, except when 1 + 4 is divisible by p. Note that

we may assume p &#x3E; 3 here, since we have already dealt with the case when
/ + 1 --_ 0 (mod p). We compute

as p &#x3E; 3.
We now reach a contradiction by proving 0. Since

n = qm + 1 is even, m is odd, and qm -f- q + 2 is even. Consider the integer

Note that

We obtain, using (10),

Now we have

while
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Therefore, up to a sign, the overall coefficient of eqm+q+2 in (12) is

This disposes of the case m &#x3E; 1, so we obtain

We will deal with this case in Sections 6 and 8. Remember that when p = 3
we are taking q &#x3E; 9 here. In fact when q = 3 we get k = 2, so that 0,
and the algebra does not admit a theory of constituents.

We now deal with the case k w 1 (mod p), so k = 1 + qm, where q
is a power of p, and m # 0 (mod p). Thus n = 2qm + 2. We have thus
[en_ 1 e2] = en+l and [ene2] = 0. We want to show that this case does not occur.

Let 1  I  q. Assume by induction

We compute

We obtain [en+le2] = 0 for I  p. We can use this and deflation to show that
m = 1. Because of

the length of the first constituent in the deflated algebra (which is of type 1)
is If m &#x3E; 1, this is not twice a power of p. It follows that m = 1,
and n = 2q + 2.

We now show that = 0 holds in fact for all I  q. Because of
the argument of (13), we have to deal with the case 1 - 0 (mod p). If pt is
the highest power of p that divides I, and I = with (mod p), we
compute 

- -

Here
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We can perform this calculation when I + r - 1  2q - 1. Note that this holds
for I  q. We have thus proved

Now we use the relation en+1 - 0 to prove e3q+3 = en+q+1 = 0, a
contradiction. We evaluate

Note first that 2q + 1 is the only value i in the range 2  i  3q + 1 for which
0. Now [eq[e2eîq-1e2]] expands as a combination of commutators of

the form for some q + 2  i  3q + 1, so that it vanishes. We
obtain

5. - First constituent of length 2q

This is the case k = q of the previous section. Suppose we have

We want to show that the algebra comes from an algebra of type 1 via the

procedure described in Section 2, by proving that all constituents have type
( -X).

Proceeding by induction, assume we have already proved this up to a certain
constituent, that ends as

for some À =f. 0. We first show, also by induction, that 2q is an upper bound

for the length of the next constituent, and q is a lower bound.

Suppose the next constituent has length greater than 2q, so that
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for 2q. We obtain immediately

as this is a multiple of [em+2qe2] = 0. This yields

a contradiction.
We now prove that the next constituent has length at least q, that is,

This we do more generally for the case when the current constituent is of the
general form

as this will be useful later in this section. Recall that &#x3E; ~ 0 here, but v might
be zero.

If v = 0 in (16), we compute, proceeding by induction on I, for 0  1 

q - 1, 
-

The coefficient vanishes when 1 =- 0 (mod p). In this case, write I = Pp, with
(mod p). Note that pt  q here, so that   2q - 3

and = 0. Also, = ... = = 0, since we are
assuming by induction that constituents have length at least q. We compute

Here

Suppose 0. We have first


