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On Hulls of Meromorphy and a Class of Stein Manifolds

MIHNEA COLTOIU

Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)
Vol. XXVIII (1999),

To the memory of my friend G. Lupacciolu

Abstract. If X is a Stein manifold and K a compact subset one may define the
meromorphy hull of K in two different ways: with respect to principal hypersur-
faces or to arbitrary hypersurfaces. It is shown that the two definitions agree for

every compact subset K of X if and only if the following topological condition
on X is satisfied: Hom(H2(X, Z); Z) = 0. It is also shown that this condition is

equivalent to: for every hypersurface h C X and every relatively compact open
subset D C C X there exists f E such that h f1 D = {x E = 0} .

Finally, several examples are provided, which show that the topological con-
dition Hom(H2 (X , Z) ; Z) = 0 is sharp.

Mathematics Subject Classification (1991): 32A20, 32E10.

0. - Introduction

Let X be a Stein manifold. Then it is known (see e.g. [ 10], p. 181) that the
second Cousin problem on X can be solved for an arbitrary divisor if and only if
H2(X; Z) = 0. On the other hand one may consider the strong Poincare problem
on X: given a meromorphic function on F on X find holomorphic functions f, g
on X such that the germs fZ, gZ are relative prime at any point and F = f /g.
As in the Cousin second problem, the strong Poincare problem can be solved
for every meromorphic function F on X if and only if H2(X; Z) = 0 (see [13],
p. 250). Therefore there is a strong connection between global properties of
meromorphic functions on X and the purely topological invariant H2(X; Z). A
weaker condition than H 2 (X , Z) = 0 is H 2 (X , Z) is of torsion. One may easily
see (Proposition 2) that this is equivalent to: every hypersurface h C X (closed
analytic subset of codimension 1) can be defined globally by one equation i.e.

. there exists f E O(X) such that one has set-theoretically h = { f = 0} .
In this paper we study a class of Stein manifolds X which satisfy a weaker

condition than H 2(X, Z) is of torsion, namely we consider the topological
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condition Hom (H2(X; Z); Z) = 0. This condition is related to the study of
hulls of meromorphy of compact subsets K c X.

When K c X is a compact subset one may define in a natural way (see [8],
[9]) the following two hulls:

h K = {x E X ~ I every hypersurface passing through x intersects K }

H K = {x E X ~ I every principal hypersurface passing through x intersects K }

Obviously h K C H K and it is known [8] that they are compact subsets of X.
When X - C" and it ib called the ratiunal iaivcx hull 

(see [16]).
We show (Theorem 1) that on a Stein manifold X the condition

is equivalent to the topological condition

It is also equivalent to each of the following conditions:

y) For every hypersurface h c X and every relatively compact open subset
D GGX there exists f E O(D) such that h n D = {x E D I f (x ) = 0} (in
other words the hypersurfaces on X can be defined, set-theoretically, by one
equation on compact subsets).

3) For every ~ E H2(X; Z) and every relatively compact open subset D C C
X there exists a positive integer m, depending on ~ and D, such that m~ I D=

Z) is of torsion on compact subsets).

Finally we give examples showing that the statement of Theorem 1 is sharp:
namely, there exists Stein manifolds X satisfying the topological condition
Hom (H2 (X ; Z); Z) = 0 but H2 (X ; Z) is not of torsion. In particular, on these
manifolds there exists hypersurfaces which cannot be defined globally by one
equation but they can be defined on each compact subset of X by one equation.

AKNOWLEDGEMENT. I wish to thank G. Lupacciolu who raised me in autumn
1995, when I was visiting the University of Rome "La Sapienza", the question
wheather there exist Stein manifolds X and compact subsets K c X such that 

‘

hK K. This was the starting point in writing this paper. In want also to
thank my friend and colleague G. Chiriacescu for helpful discussions on the
algebraic results needed in the given examples, in particular for the references [1] ]
and [12].
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1. - Proof of the results

Let X be a Stein manifold of dimension n. A closed analytic subset h c X
of pure dimension (n - 1) is called a hypersurface. h is called a principal
hypersurface iff there exists f E O(X) such that one has set-theoretically h =
{ f = 01.

For a compact subset K c X we consider the following two hulls:

{x E X ~ I every hypersurface passing through x intersects A"}

H K = {x E X I every principal hypersurface passing through x intersects K {

They are compact subsets of X [8] (p. 50 and p. 52).
Let us recall also the following result [5]

LEMMA 1. Let X be a Stein manifold, Y C X a closed complex submanifold
and denote by N = Nylx the normal bundle of Y in X.Then there exists an open
neighborhood U of the null section of N biholomorphic to an open neighborhood
t/i of Y in X by cp : U ~ U1 such that the image of the null section by cp is Y .

Now we can prove:

PROPOSITION 1. Let X be a Stein manifold and assume that hk= Hkfor every
compact subset K C X. Then the Kronecker product H 2 (X ; Z) x H2 (X ; Z) --+ Z
is the null map.

PROOF. Since X is Stein it follows that H 1 (X , C~* ) "’ H 2 (X , 7 ) . On the
other hand every line bundle L on X has a section s whose zero set is smooth

(see [9], p. 883) and this section defines a positive divisor which corresponds
to L. Therefore it is enough to show that the Kronecker product  c(h), a &#x3E; = 0,
where h is a smooth and connected hypersurface, c(h) E H 2 (X ; Z) denotes
its Chem class and a E H2 (X ; ~) . In fact  c (h ) , a &#x3E; is the intersection
number  h, a &#x3E; of h and a and can be defined choosing a smooth 2-cycle a
(representing a) intersecting h transversally (see [7], p. 61).

By reductio ad absurdum assume that z = h, a &#x3E; ~ 0. Let N = be
the normal bundle of h in X. By Lemma 1 there exists an open neighborhood U
of the null section of N biholomorphic to an open neighborhood Ul of h in
X by cp : U ~ Ui, such that the image of the null section by w is h. We
choose a hermitian metric on N such that { w E N 1 { c U and define
V = E N I 1 } ) . Then V is a closed neighborhood of h and

0

by Thom’s isomorphism H2 (X , X B V ; ~) "-’ Z. In fact, if Xo E h
is any point and Bxo = B (xo, 1) C V denotes the corresponding closed ball
with center xo and contained in the fiber then Bxo can be considered as a

0

2-simplex s of X with boundary contained in XBV, so it defines an element
0

S E and s is a generator. In what follows we fix some

point xo E h.
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Consider the exact sequence:

and let us remark that i (a) ~ 0 (here i denotes the natural homomorphism at
0

homology induced by the map (X, 0)- (X, X B V ) which is the identity on X).
0

Otherwise a = u + v with u = boundary in X, v =cycle in X B V and it would
follow that z =  h , a &#x3E; = 0 since v does not meet h. Therefore i (a ) = h9
with k E 7 B{o}. We see that

with al = chain in X B V and b =boundary in X (and in fact h = z).
Let us define the compact set K = supp (a 1 ) U By our assumption
hk= H K. But xo E h and h fl K = 0 (empty set), so there exists a principal
hypersurface H = { f = 0}, f E O(X) with xo E H and H n K = 0. We have
 H, a - hs &#x3E;= H, a + b &#x3E; where , &#x3E; denotes the intersection number.
On the other hand  H, a &#x3E;= 0 since H is principal,  H, b &#x3E; = 0 since b is
a boundary,  H, ot 1 &#x3E; = 0 since H n supp (a 1 ) = 0. But  H, s &#x3E; ~ 0 because
H n a Bxo = 0, H (xo) = 0 and on Bxo we have a complex structure (see [7]
p. 63, [9] Lemme 5.3). We get h = 0 which is a contradiction. Therefore
 h , a &#x3E; = 0 and the proof of Proposition 1 is complete.

THEOREM 1. Let X be a Stein manifold. Then the following conditions are
equivalent:

1 ) ~ K = H K for every compact subset K of X
2) Hom (H2 (X ; Z) ; Z) = 0
3) For every ~ E H2(X; Z) and every relatively compact open subset D C C X

there exists a positive integer m = m (D, ~ ) such that m~ ~ D = 0.
4) For every hypersurface h C X and every relatively compact open subset

D CC X there exists a holomorphic function f E such that one has set-

theoretically h n D = If = OJ.
PROOF. 1) ~ 2)
It is known ([6], p. 132) that the natural morphism (induced by the Kro-

necker product) H2 (X ; Z) -~ Hom (H2(X ; Z); Z) is surjective. Therefore every
u E Hom(H2 (X; Z); Z) is of the form u (a) = ~, a &#x3E; for some ~ E H2 (X ; Z).
By Proposition 1 it follows that Hom (H2(X ; Z); Z) = 0.

2) 3)
Let ~ E H 2 (X ; ~) , D C C X a relatively compact open subset, and we

have to find a positive integer m such that m~ ID= 0. We may assume that
the boundary of D is smooth, therefore the homology groups of D are finitely
generated. We define 03BE1 = 03BE I D E H 2 (D; Z). By our assumption  &#x3E;= 0
for every a E H2(D; Z). Since the homology groups of D are finitely generated
it follows from ([6], p. 136) that §i is a torsion element of H2 (D; Z).
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3) 4)
Let h c X be a hypersurface and D c c X a relatively compact open

subset. We may assume that D is Stein, therefore H2 (D; Z) ~ H 1 (D, 0*) . h
defines a line bundle L E 0*) which has a canonical section S E rex, L)
with h = is = 0} . Define ~ = c(L) E H 2 (X ; 7~) the Chem class of L. By
our assumption there exists a positive integer m with m~ = 0 on D. Therefore

is trivial. Also sm E r(X, Lm) and f = sm I D is a holomorphic function
on D with h n D = { f = 0}.

4) ===} 1)
Let K C X be a compact subset and xo E X such that there exists a

hypersurface h c X with Xo E h and h n K =0. We have to find a principal
hypersurface H C X with xo E H and H = 0. Let D C C X be a Runge
domain with K U {xo } C D. By our assumption there is a holomorphic function
Hi E O(D) with { Hl = 0} = h n D (set-theoretically).
Let 80 = x E &#x3E; 0. Since D C X is Runge we can approximate
Hl on K U fxol C D by Hl E O(X) such that Hl (x ) - Hl (x ) ~  ~o /4 if X E K
and IH1(xo)1 ] = IH1(xo) - Eo /4. Define H (x ) = Hl(X) - 
Then obviously H (xo) = 0 and H (x) ~ 0 if x E K.

Thus our theorem is completely proved.

COROLLARY 1. Let X be a Stein manifold such that H1(X; Z), H2 (X ; Z) are
finitely generated (e.g. X is affine algebraic).

Then the following conditions are equivalent:

1) every compact subset K C X .
2) H2 (X ; Z) is of torsion
3) For every hypersurface h C X there exists f E O(X) such that one has

set-theoretically h = if = 01.

PROOF. Since Z), H2 (X ; Z) are finitely generated it follows from ([6],
p. 136) that we have a (non-canonical) isomorphism:

where T1 denotes the torsion part of HI (X ; Z).
Now the corollary follows immediately from (*) and Theorem 1.

PROPOSITION 2. Let X be a connected Stein manifold. Then the following two
conditions are equivalent:

1) H2(X; 7~) is of torsion
2) For every hypersurface h C X there exists f E O(X) such that one has

set-theoretically h = f f = OJ.

We first show that 1) ~ 2) .
Let h c X be a hypersurface and let L E H 1 (X, 0*) be the corresponding

line bundle, therefore there is a canonical section s E r(X, L) with h = ts = OJ.
Since X is Stein H2 (X ; Z) ~ H 1 (X, 0*), hence there is a positive integer m
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such that Lm is trivial. sm is a section in rex, Lm) and if we set f = sm
then f is a holomorphic function on X such that h = { f = 01.

We prove now that 2) ~ 1 ) .
We recall the following result (see [3]): If L is a line bundle over a

connected Stein manifold X then there is a section s E r (X, L) such that

Is = 0} is irreducible (in fact the set of sections S E r (X, L ) with is = 0}
irreducible is dense in r(X,L)).

Let now ~ E H2(X;Z) 2---- H’(X,0*) and let L E H1(X,O*) be the

corresponding line bundle. We choose s E r(X, L) such that h = Is = 0} is
irreducible. If we consider (h) as a divisor there is a positive integer n such
that L = n (h) (n is the order of s along h, which is well defined because h
is irreducible). On the hand there exists f E O(X) with h = {/ = 0} (set-
theoretically). If m is the order of f along h then m (h) - 0. Therefore Lm
is the trivial line bundle and consequently m~ = 0. So we have showed that

H2(X; Z) is of torsion, and the proof of Proposition 2 is complete.

REMARK 1. There is a surjective homomorphism group (see [6], p. 132)

from which it follows that:

We shall give examples of Stein manifolds X such that Hom(H2 (X; Z); Z) =
0 but H2 (X ; Z) contains nontorsion elements. Of course, for such Stein man-
ifolds X, every ~ E H 2 (X ; Z) is of torsion on compact subsets, i.e. for every
D CC X there is a positive integer m = m(D, ~) with m£ = 0 on D. But it
is possible that m -~ oo as it will be shown by our next examples.

EXAMPLE 1. In [ 11 ] it is given an example of a Stein domain X C (~2 with
Z) = Q (rational numbers) and H2 (X ; Z) = 0.

Let us study H2X ; Z). There is an exact sequence ([4], p. 153):

Therefore we get H2 (X ; 7~) = Ext(Q; Z). Clearly Ext(Q; Z) is a Q vector
space, so every ~ E Ext(Q; Z))(0) is a nontorsion element. We shall prove that

dim Q Ext(Q; Z) = 00.
If p is a prime we denote by P =the additive group of those rational

numbers whose denominators are powers of p and the quotient
Z/P. There is a group isomorphism (see [12], p. 6): Q/Z ~ It

follows:

Hom(Q; Q/Z) = Hom(Q; (DHom(Q ; 
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Now for every prime p 0 since we have a surjective homo-
morphism Q - obtained from the composition of two surjective homo-
morphisms Q - -pr Z( p°). If follows that dim Q Hom(Q; Q/Z) = 00.

From the exact sequence 0 --~ 7~ ~ ~ -~ ~/7~ -~ 0 applying Homz(Q; .)
we get the exact sequence of Q vector spaces:

Since Hom(Q; Z) = 0, Hom(Q; Q) has dimension 1 as a Q vector space
and dim Q Hom(Q; Q/Z) = oo it follows that dim Q Ext(Q; Z) = oo.

EXAMPLE 2. For each integer m a 2 consider the map cp : D -~ is
the closed unit disc, i.e. D = f z E 1) given by = (zm , (1 - 
where JR4 is identified with C2 in the usual way. Then w D si injective and w laD
has degree m. 

_

Since a D = if we set Km = cp(D), then Km is obtained from S 1 by adding
a two cell by a map of degree m (see [6], p. 83). It follows from ([6], p. 89)
that Z) = Z/ m Z and Z) = 0.
Consider in JR4 an infinite real line d, and on d we add the compacts Km such
that Km n d = a point Pm, Km 0 if m ; n and is locally finite.
Thus we get a locally finite cellular complex M c }R4. One may easily see that

Z) = and H2(M; Z) = 0.
From the exact sequence:

we get H2(M; Z) = Z). From ([1], § 5, Prop. 7, p. 89)
TIExt(Gm; 7~) and by ([4], p. 148) Ext(Z/mZ; Z) = Z/mZ.

We deduce that H2(M; Z) = We take now and open neighborhood
U of M in R4 such that M is a deformation retract of U. Considering the
inclusion R4 c C4 given by Y1 = ... = y4 - 0 where + are the

complex coordinates on C4, there exists by [14] a Stein domain X C C~4 such
that X n R 4 = U and U is a deformation retract of X. We have H 2 (X ; Z) =

and H2 (X ; Z) = 0. The element (T, 1, ... 1, ... ) (taking I on all
factors of the infinite product) is a nontorsion element of H 2 (X ; Z).

EXAMPLE 3. In examples 1) and 2) we have H2(X; Z) = 0. But it is

possible to find X with H2(X ; Z) # 0, Hom(H2(X ; Z); Z) = 0 and H2 (X ; Z)
has nontorsion elements. To see this we replace in example 1) X by X 1 =
X x {z E C 1 0  H I  1 { . Then by Kiinneth formula Z) = Q and
H1(X1; Z) = Z fl9 Q. If follows that Hom (H2 (X 1; Z) ; Z) = 0 and Z) =
Ext(H1 (X1; Z) ; Z) fl9 Q; Z) = Ext(Q; Z) 1= 0.
Similarly we may replace X in example 2) by its product with {z E C 1 0 
N  11.

EXAMPLE 4. By [15] it is possible to construct, for every countable torsion
free abelian group G, a compact connected subset K c R 3 (in fact a curve)
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such that G and H2 (II~3 B K ; ~) - 0. Taking G such that

Ext(G; Z) contains nontorsion elements and X C C3 a Stein open subset such
that and JR3BK is a deformation retract of X, one gets as above
examples of Stein manifolds X with Hom(H2 (X; Z); Z) = 0 but H2 (X ; Z) has
nontorsion elements.

~ 
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