Mihnea Colțoiu

On hulls of meromorphy and a class of Stein manifolds

Annali della Scuola Normale Superiore di Pisa, Classe di Scienze 4e série, tome 28, n° 3 (1999), p. 405-412

<http://www.numdam.org/item?id=ASNSP_1999_4_28_3_405_0>
On Hulls of Meromorphy and a Class of Stein Manifolds

MIHNEA COLTOIU

To the memory of my friend G. Lupacciolu

Abstract. If X is a Stein manifold and K a compact subset one may define the meromorphy hull of K in two different ways: with respect to principal hypersurfaces or to arbitrary hypersurfaces. It is shown that the two definitions agree for every compact subset K of X if and only if the following topological condition on X is satisfied: $\text{Hom}(H_2(X;\mathbb{Z});\mathbb{Z}) = 0$. It is also shown that this condition is equivalent to: for every hypersurface $h \subset X$ and every relatively compact open subset $D \subset X$ there exists $f \in \mathcal{O}(D)$ such that $h \cap D = \{ x \in D | f(x) = 0 \}$.

Finally, several examples are provided, which show that the topological condition $\text{Hom}(H_2(X;\mathbb{Z});\mathbb{Z}) = 0$ is sharp.

Mathematics Subject Classification (1991): 32A20, 32E10.

0. – Introduction

Let X be a Stein manifold. Then it is known (see e.g. [10], p. 181) that the second Cousin problem on X can be solved for an arbitrary divisor if and only if $H^2(X;\mathbb{Z}) = 0$. On the other hand one may consider the strong Poincaré problem on X: given a meromorphic function on F on X find holomorphic functions f, g on X such that the germs f_z, g_z are relative prime at any point and $F = f/g$. As in the Cousin second problem, the strong Poincaré problem can be solved for every meromorphic function F on X if and only if $H^2(X;\mathbb{Z}) = 0$ (see [13], p. 250). Therefore there is a strong connection between global properties of meromorphic functions on X and the purely topological invariant $H^2(X;\mathbb{Z})$. A weaker condition than $H^2(X,\mathbb{Z}) = 0$ is $H^2(X,\mathbb{Z})$ is of torsion. One may easily see (Proposition 2) that this is equivalent to: every hypersurface $h \subset X$ (closed analytic subset of codimension 1) can be defined globally by one equation i.e. there exists $f \in \mathcal{O}(X)$ such that one has set-theoretically $h = \{ f = 0 \}$.

In this paper we study a class of Stein manifolds X which satisfy a weaker condition than $H^2(X,\mathbb{Z})$ is of torsion, namely we consider the topological
condition $\text{Hom}(H_2(X; \mathbb{Z}); \mathbb{Z}) = 0$. This condition is related to the study of hulls of meromorphy of compact subsets $K \subset X$.

When $K \subset X$ is a compact subset one may define in a natural way (see [8], [9]) the following two hulls:

$$h\widehat{K} = \{x \in X \mid \text{every hypersurface passing through } x \text{ intersects } K\}$$

$$h\widehat{K} = \{x \in X \mid \text{every principal hypersurface passing through } x \text{ intersects } K\}$$

Obviously $h\widehat{K} \subset H\widehat{K}$ and it is known [8] that they are compact subsets of X. When $X = \mathbb{C}^n$ then $h\widehat{K} = H\widehat{K}$ and it is called the rational convex hull of K (see [16]).

We show (Theorem 1) that on a Stein manifold X the condition

[(a)]

$$h\widehat{K} = H\widehat{K} \text{ for every compact subset } K \subset X$$

is equivalent to the topological condition

[(b)]

$$\text{Hom}(H_2(X; \mathbb{Z}); \mathbb{Z}) = 0.$$

It is also equivalent to each of the following conditions:

[(c)] For every hypersurface $h \subset X$ and every relatively compact open subset $D \subset X$ there exists $f \in \mathcal{O}(D)$ such that $h \cap D = \{x \in D \mid f(x) = 0\}$ (in other words the hypersurfaces on X can be defined, set-theoretically, by one equation on compact subsets).

[(d)] For every $\xi \in H^2(X; \mathbb{Z})$ and every relatively compact open subset $D \subset X$ there exists a positive integer m, depending on ξ and D, such that $m\xi |_D = 0$ (H^2(X; \mathbb{Z})$ is of torsion on compact subsets).

Finally we give examples showing that the statement of Theorem 1 is sharp: namely, there exists Stein manifolds X satisfying the topological condition $\text{Hom}(H_2(X; \mathbb{Z}); \mathbb{Z}) = 0$ but $H^2(X; \mathbb{Z})$ is not of torsion. In particular, on these manifolds there exists hypersurfaces which cannot be defined globally by one equation but they can be defined on each compact subset of X by one equation.

Acknowledgement. I wish to thank G. Lupacciou who raised me in autumn 1995, when I was visiting the University of Rome “La Sapienza”, the question whether there exist Stein manifolds X and compact subsets $K \subset X$ such that $h\widehat{K} \neq H\widehat{K}$. This was the starting point in writing this paper. I want also to thank my friend and colleague G. Chiriacescu for helpful discussions on the algebraic results needed in the given examples, in particular for the references [1] and [12].
1. – Proof of the results

Let X be a Stein manifold of dimension n. A closed analytic subset $h \subset X$ of pure dimension $(n - 1)$ is called a hypersurface. h is called a principal hypersurface iff there exists $f \in \mathcal{O}(X)$ such that one has set-theoretically $h = \{ f = 0 \}$.

For a compact subset $K \subset X$ we consider the following two hulls:

$$h\hat{K} = \{ x \in X \mid \text{every hypersurface passing through } x \text{ intersects } K \}$$

$$\mathcal{H} \hat{K} = \{ x \in X \mid \text{every principal hypersurface passing through } x \text{ intersects } K \}$$

They are compact subsets of X [8] (p. 50 and p. 52).

Let us recall also the following result [5]

Lemma 1. Let X be a Stein manifold, $Y \subset X$ a closed complex submanifold and denote by $N = N_{Y|X}$ the normal bundle of Y in X. Then there exists an open neighborhood U of the null section of N biholomorphic to an open neighborhood U_1 of Y in X by $\varphi : U \rightarrow U_1$ such that the image of the null section by φ is Y.

Now we can prove:

Proposition 1. Let X be a Stein manifold and assume that $h\hat{K} = \mathcal{H} \hat{K}$ for every compact subset $K \subset X$. Then the Kronecker product $H^2(X; \mathbb{Z}) \times H^2(X; \mathbb{Z}) \rightarrow \mathbb{Z}$ is the null map.

Proof. Since X is Stein it follows that $H^1(X, \mathcal{O}^*) \cong H^2(X, \mathbb{Z})$. On the other hand every line bundle L on X has a section s whose zero set is smooth (see [9], p. 883) and this section defines a positive divisor which corresponds to L. Therefore it is enough to show that the Kronecker product $< c(h), \overline{\alpha} > = 0$, where h is a smooth and connected hypersurface, $c(h) \in H^2(X; \mathbb{Z})$ denotes its Chern class and $\overline{\alpha} \in H_2(X; \mathbb{Z})$. In fact $< c(h), \overline{\alpha} >$ is the intersection number $< h, \overline{\alpha} >$ of h and $\overline{\alpha}$ and can be defined choosing a smooth 2-cycle α (representing $\overline{\alpha}$) intersecting h transversally (see [7], p. 61).

By reductio ad absurdum assume that $z = < h, \overline{\alpha} > \neq 0$. Let $N = N_{h|X}$ be the normal bundle of h in X. By Lemma 1 there exists an open neighborhood U of the null section of N biholomorphic to an open neighborhood U_1 of h in X by $\varphi : U \rightarrow U_1$, such that the image of the null section by φ is h. We choose a hermitian metric on N such that $\{ w \in N \mid \| w \| \leq 1 \} \subset U$ and define $V = \varphi(\{ w \in N \mid \| w \| \leq 1 \})$. Then V is a closed neighborhood of h and by Thom’s isomorphism $H_2(X, X \setminus V; \mathbb{Z}) \cong H_0(h; \mathbb{Z}) \cong \mathbb{Z}$. In fact, if $x_0 \in h$ is any point and $B_{x_0} = B(x_0, 1) \subset V$ denotes the corresponding closed ball with center x_0 and contained in the fiber then B_{x_0} can be considered as a 2-simplex s of X with boundary contained in $X \setminus \overset{\circ}{V}$, so it defines an element $\overline{s} \in H_2(X, X \setminus \overset{\circ}{V}; \mathbb{Z}) \cong \mathbb{Z}$ and \overline{s} is a generator. In what follows we fix some point $x_0 \in h$.

Consider the exact sequence:

\[\mathbb{H}_2(X; \mathbb{Z}) \to \mathbb{H}_2(X \setminus \mathbb{V}; \mathbb{Z}) \to \mathbb{H}_2(X; X \setminus \mathbb{V}; \mathbb{Z}) \cong \mathbb{Z} \]

and let us remark that \(i(\alpha) \neq 0 \) (here \(i \) denotes the natural homomorphism at homology induced by the map \((X, \emptyset) \to (X, X \setminus \mathbb{V}) \) which is the identity on \(X \)).

Otherwise \(\alpha = u + v \) with \(u = \text{boundary in } X \), \(v = \text{cycle in } X \setminus \mathbb{V} \) and it would follow that \(z = \langle h, \alpha \rangle = 0 \) since \(v \) does not meet \(h \). Therefore \(i(\alpha) = \lambda s \) with \(\lambda \in \mathbb{Z} \setminus \{0\} \). We see that

\[(*) \qquad \alpha - \lambda s = \alpha_1 + b \]

with \(\alpha_1 = \text{chain in } X \setminus \mathbb{V} \) and \(b = \text{boundary in } X \) (and in fact \(\lambda = z \)).

Let us define the compact set \(K = \text{supp } (\alpha_1) \cup \partial B_{x_0} \). By our assumption \(h\tilde{K} = h\tilde{K} \). But \(x_0 \in h \) and \(h \cap K = \emptyset \) (empty set), so there exists a principal hypersurface \(H = \{ f = 0 \}, f \in \mathbb{O}(X) \) with \(x_0 \in H \) and \(H \cap K = \emptyset \). We have \(\langle H, \alpha - \lambda s \rangle = \langle H, \alpha_1 \rangle + \langle H, b \rangle \) where \(\langle, \rangle \) denotes the intersection number.

On the other hand \(\langle H, \alpha \rangle = 0 \) since \(H \) is principal, \(\langle H, b \rangle = 0 \) since \(b \) is a boundary, \(\langle H, \alpha_1 \rangle = 0 \) since \(H \cap \text{supp } (\alpha_1) = \emptyset \). But \(\langle H, s \rangle = 0 \) because \(H \cap \partial B_{x_0} = \emptyset \) and on \(B_{x_0} \) we have a complex structure (see [7] p. 63, [9] Lemme 5.3). We get \(\lambda = 0 \) which is a contradiction. Therefore \(\langle h, \alpha \rangle = 0 \) and the proof of Proposition 1 is complete.

Theorem 1. Let \(X \) be a Stein manifold. Then the following conditions are equivalent:

1) \(\langle h, K \rangle = 0 \) for every compact subset \(K \) of \(X \)

2) Hom \((\mathbb{H}_2(X; \mathbb{Z}); \mathbb{Z}) = 0 \)

3) For every \(\xi \in \mathbb{H}_2(X; \mathbb{Z}) \) and every relatively compact open subset \(D \subset X \) there exists a positive integer \(m = m(D, \xi) \) such that \(m\xi |_D = 0 \).

4) For every hypersurface \(h \subset X \) and every relatively compact open subset \(D \subset X \) there exists a holomorphic function \(f \in \mathbb{O}(D) \) such that one has set-theoretically \(h \cap D = \{ f = 0 \} \).

Proof.

1) \(\implies \) 2)

It is known ([6], p. 132) that the natural morphism (induced by the Kronecker product) \(\mathbb{H}_2(X; \mathbb{Z}) \to \text{Hom } (\mathbb{H}_2(X; \mathbb{Z}); \mathbb{Z}) \) is surjective. Therefore every \(u \in \text{Hom } (\mathbb{H}_2(X; \mathbb{Z}); \mathbb{Z}) \) is of the form \(u(\alpha) = \langle \xi, \alpha \rangle \) for some \(\xi \in \mathbb{H}_2(X; \mathbb{Z}) \).

By Proposition 1 it follows that \(\text{Hom } (\mathbb{H}_2(X; \mathbb{Z}); \mathbb{Z}) = 0 \).

2) \(\implies \) 3)

Let \(\xi \in \mathbb{H}_2(X; \mathbb{Z}), D \subset X \) a relatively compact open subset, and we have to find a positive integer \(m \) such that \(m\xi |_D = 0 \). We may assume that the boundary of \(D \) is smooth, therefore the homology groups of \(D \) are finitely generated. We define \(\xi_1 = \xi |_D \in \mathbb{H}_2(D; \mathbb{Z}) \). By our assumption \(\langle \xi_1, \alpha \rangle = 0 \) for every \(\alpha \in \mathbb{H}_2(D; \mathbb{Z}) \). Since the homology groups of \(D \) are finitely generated it follows from ([6], p. 136) that \(\xi_1 \) is a torsion element of \(\mathbb{H}_2(D; \mathbb{Z}) \).
Let \(h \subset X \) be a hypersurface and \(D \subset X \) a relatively compact open subset. We may assume that \(D \) is Stein, therefore \(H^2(D; \mathbb{Z}) \cong H^1(D, \mathcal{O}^*) \cdot h \) defines a line bundle \(L \in H^1(X, \mathcal{O}^*) \) which has a canonical section \(s \in \Gamma(X, L) \) with \(h = \{ s = 0 \} \). Define \(\xi = c(L) \in H^2(X; \mathbb{Z}) \) the Chern class of \(L \). By our assumption there exists a positive integer \(m \) with \(m\xi = 0 \) on \(D \). Therefore \(L^m \mid_D \) is trivial. Also \(s^m \in \Gamma(X, L^m) \) and \(f = s^m \mid_D \) is a holomorphic function on \(D \) with \(h \cap D = \{ f = 0 \} \).

Let \(K \subset X \) be a compact subset and \(x_0 \in X \) such that there exists a hypersurface \(h \subset X \) with \(x_0 \in h \) and \(h \cap K = \emptyset \). We have to find a principal hypersurface \(H \subset X \) with \(x_0 \in H \) and \(H \cap K = \emptyset \). Let \(D \subset X \) be a Runge domain with \(K \cup \{ x_0 \} \subset D \). By our assumption there is a holomorphic function \(H_1 \in \mathcal{O}(D) \) with \(\{ H_1 = 0 \} = h \cap D \) (set-theoretically).

Let \(\epsilon_0 = \inf \{ |H_1(x)| : x \in K \} > 0 \). Since \(D \subset X \) is Runge we can approximate \(H_1 \) on \(K \cup \{ x_0 \} \subset D \) by \(\tilde{H}_1 \in \mathcal{O}(X) \) such that \(|\tilde{H}_1(x) - H_1(x)| \leq \epsilon_0/4 \) if \(x \in K \) and \(|\tilde{H}_1(x_0)| = |\tilde{H}_1(x_0) - H_1(x_0)| \leq \epsilon_0/4 \). Define \(H(x) = H_1(x) - \tilde{H}_1(x_0) \). Then obviously \(H(x_0) = 0 \) and \(H(x) \neq 0 \) if \(x \in K \).

Thus our theorem is completely proved.

Corollary 1. Let \(X \) be a Stein manifold such that \(H_1(X; \mathbb{Z}), H_2(X; \mathbb{Z}) \) are finitely generated (e.g. \(X \) is affine algebraic).

Then the following conditions are equivalent:

1) every compact subset \(K \subset X \).

2) \(H^2(X; \mathbb{Z}) \) is of torsion.

3) For every hypersurface \(h \subset X \) there exists \(f \in \mathcal{O}(X) \) such that one has set-theoretically \(h = \{ f = 0 \} \).

Proof. Since \(H_1(X; \mathbb{Z}), H_2(X; \mathbb{Z}) \) are finitely generated it follows from ([6], p. 136) that we have a (non-canonical) isomorphism:

\[
(*) \quad H^2(X; \mathbb{Z}) \cong \text{Hom}(H_2(X; \mathbb{Z}); \mathbb{Z}) \oplus T_1
\]

where \(T_1 \) denotes the torsion part of \(H_1(X; \mathbb{Z}) \). Now the corollary follows immediately from (*) and Theorem 1.

Proposition 2. Let \(X \) be a connected Stein manifold. Then the following two conditions are equivalent:

1) \(H^2(X; \mathbb{Z}) \) is of torsion.

2) For every hypersurface \(h \subset X \) there exists \(f \in \mathcal{O}(X) \) such that one has set-theoretically \(h = \{ f = 0 \} \).

We first show that 1) \(\implies \) 2).

Let \(h \subset X \) be a hypersurface and let \(L \in H^1(X, \mathcal{O}^*) \) be the corresponding line bundle, therefore there is a canonical section \(s \in \Gamma(X, L) \) with \(h = \{ s = 0 \} \). Since \(X \) is Stein \(H^2(X; \mathbb{Z}) \cong H^1(X, \mathcal{O}^*) \), hence there is a positive integer \(m \)
such that \(L^m \) is trivial. \(s^m \) is a section in \(\Gamma(X, L^m) \) and if we set \(f = s^m \) then \(f \) is a holomorphic function on \(X \) such that \(h = \{ f = 0 \} \).

We prove now that \(2) \implies 1 \).

We recall the following result (see [3]): If \(L \) is a line bundle over a connected Stein manifold \(X \) then there is a section \(s \in \Gamma(X, L) \) such that \(\{ s = 0 \} \) is irreducible (in fact the set of sections \(s \in \Gamma(X, L) \) with \(\{ s = 0 \} \) irreducible is dense in \(\Gamma(X, L) \)).

Let now \(\xi \in H^2(X; \mathbb{Z}) \cong H^1(X, \mathcal{O}^*) \) and let \(L \in H^1(X, \mathcal{O}^*) \) be the corresponding line bundle. We choose \(s \in \Gamma(X, L) \) such that \(h = \{ s = 0 \} \) is irreducible. If we consider \((h) \) as a divisor there is a positive integer \(n \) such that \(L = n(h) \) \((n \) is the order of \(s \) along \(h \), which is well defined because \(h \) is irreducible\). On the hand there exists \(f \in \mathcal{O}(X) \) with \(h = \{ f = 0 \} \) (set-theoretically). If \(m \) is the order of \(f \) along \(h \) then \(m(h) = 0 \). Therefore \(L^m \) is the trivial line bundle and consequently \(m\xi = 0 \). So we have showed that \(H^2(X; \mathbb{Z}) \) is of torsion, and the proof of Proposition 2 is complete.

REMARK 1. There is a surjective homomorphism group (see [6], p. 132)

\[
H^2(X; \mathbb{Z}) \to \text{Hom}(H_2(X; \mathbb{Z}); \mathbb{Z})
\]

from which it follows that:

\[
H^2(X; \mathbb{Z}) \text{ is of torsion} \implies \text{Hom}(H_2(X; \mathbb{Z}); \mathbb{Z}) = 0.
\]

We shall give examples of Stein manifolds \(X \) such that \(\text{Hom}(H_2(X; \mathbb{Z}); \mathbb{Z}) = 0 \) but \(H^2(X; \mathbb{Z}) \) contains nontorsion elements. Of course, for such Stein manifolds \(X \), every \(\xi \in H^2(X; \mathbb{Z}) \) is of torsion on compact subsets, i.e. for every \(D \subset X \) there is a positive integer \(m = m(D, \xi) \) with \(m\xi = 0 \) on \(D \). But it is possible that \(m \to \infty \) as it will be shown by our next examples.

EXAMPLE 1. In [11] it is given an example of a Stein domain \(X \subset \mathbb{C}^2 \) with \(H_1(X; \mathbb{Z}) = \mathbb{Q} \) (rational numbers) and \(H_2(X; \mathbb{Z}) = 0 \).

Let us study \(H^2X; \mathbb{Z} \). There is an exact sequence ([4], p. 153):

\[
0 \to \text{Ext}(H_1(X; \mathbb{Z}); \mathbb{Z}) \to H^2(X; \mathbb{Z}) \to \text{Hom}(H_2(X; \mathbb{Z}); \mathbb{Z}) \to 0
\]

Therefore we get \(H^2(X; \mathbb{Z}) = \text{Ext}(\mathbb{Q}; \mathbb{Z}) \). Clearly \(\text{Ext}(\mathbb{Q}; \mathbb{Z}) \) is a \(\mathbb{Q} \) vector space, so every \(\xi \in \text{Ext}(\mathbb{Q}; \mathbb{Z}) \setminus \{0\} \) is a nontorsion element. We shall prove that \(\dim_{\mathbb{Q}} \text{Ext}(\mathbb{Q}; \mathbb{Z}) = \infty \).

If \(p \) is a prime we denote by \(p = \text{the additive group of those rational numbers whose denominators are powers of } p \) and by \(\mathbb{Z}(p^\infty) \) the quotient \(\mathbb{Z}/P \). There is a group isomorphism (see [12], p. 6): \(\mathbb{Q}/\mathbb{Z} \cong \bigoplus \mathbb{Z}(p^\infty) \). It follows:

\[
\text{Hom}(\mathbb{Q}; \mathbb{Q}/\mathbb{Z}) = \text{Hom}(\mathbb{Q}; \bigoplus \mathbb{Z}(p^\infty)) = \bigoplus \text{Hom}(\mathbb{Q}; \mathbb{Z}(p^\infty)).
\]
Now for every prime p since we have a surjective homomorphism $\mathbb{Q} \to \mathbb{Z}(p\infty)$ obtained from the composition of two surjective homomorphisms $\mathbb{Q} \to \mathbb{Z}(p\infty)$. If follows that $\dim_\mathbb{Q} \text{Hom}(Q; \mathbb{Q}/\mathbb{Z}) = \infty$.

From the exact sequence $0 \to \mathbb{Z} \to \mathbb{Q} \to \mathbb{Q}/\mathbb{Z} \to 0$ applying $\text{Hom}_\mathbb{Z}(Q; \cdot)$ we get the exact sequence of \mathbb{Q} vector spaces:

$$0 \to \text{Hom}(Q; \mathbb{Z}) \to \text{Hom}(Q; \mathbb{Q}) \to \text{Hom}(Q; \mathbb{Q}/\mathbb{Z}) \to \text{Ext}(Q; \mathbb{Z}) \to \text{Ext}(Q; \mathbb{Q}) = 0$$

Since $\text{Hom}(Q; \mathbb{Z}) = 0$, $\text{Hom}(Q; \mathbb{Q})$ has dimension 1 as a \mathbb{Q} vector space and $\dim_\mathbb{Q} \text{Hom}(Q; \mathbb{Q}/\mathbb{Z}) = \infty$ it follows that $\dim_\mathbb{Q} \text{Ext}(Q; \mathbb{Z}) = \infty$.

Example 2. For each integer $m \geq 2$ consider the map $\varphi : D \to \mathbb{R}^4$ (is the closed unit disc, i.e. $D = \{ z \in \mathbb{C} | |z| \leq 1 \}$ given by $\varphi(z) = (z^m, (1 - |z|)z)$ where \mathbb{R}^4 is identified with \mathbb{C}^2 in the usual way. Then $\varphi|_D$ is injective and $\varphi|_\partial D$ has degree m.

Since $\partial D = S^1$, if we set $K_m = \varphi(\overline{D})$, then K_m is obtained from S^1 by adding a two cell by a map of degree m (see [6], p. 83). It follows from ([6], p. 89) that $H_1(K_m; \mathbb{Z}) = \mathbb{Z}/m\mathbb{Z}$ and $H_2(K_m; \mathbb{Z}) = 0$.

Consider in \mathbb{R}^4 an infinite real line d, and on d we add the compacts K_m such that $K_m \cap d = y_d$, $K_m \cap K_n = \emptyset$ if $m \neq n$ and (K_m) is locally finite. Thus we get a locally finite cellular complex $M \subset \mathbb{R}^4$. One may easily see that $H_1(M; \mathbb{Z}) = \oplus_{m \geq 2} \mathbb{Z}/m\mathbb{Z}$ and $H_2(M; \mathbb{Z}) = 0$.

From the exact sequence:

$$0 \to \text{Ext}(H_1(M; \mathbb{Z}); \mathbb{Z}) \to H^2(M; \mathbb{Z}) \to \text{Hom}(H_2(M; \mathbb{Z}); \mathbb{Z}) \to 0$$

we get $H^2(M; \mathbb{Z}) = \text{Ext}(\oplus_{m \geq 2} \mathbb{Z}/m\mathbb{Z}; \mathbb{Z})$. From ([1], § 5, Prop. 7, p. 89) $\text{Ext}(\oplus G_m; \mathbb{Z}) \cong \prod \text{Ext}(G_m; \mathbb{Z})$ and by ([4], p. 148) $\text{Ext}(\mathbb{Z}/m\mathbb{Z}; \mathbb{Z}) = \mathbb{Z}/m\mathbb{Z}$.

We deduce that $H^2(M; \mathbb{Z}) = \prod_{m \geq 2} \mathbb{Z}/m\mathbb{Z}$. We take now and open neighborhood U of M in \mathbb{R}^4 such that M is a deformation retract of U. Considering the inclusion $R^4 \subset \mathbb{C}^4$ given by $y_1 = \ldots = y_4 = 0$ where $z_k = x_k + iy_k$ are the complex coordinates on \mathbb{C}^4, there exists by [14] a Stein domain $X \subset \mathbb{C}^4$ such that $X \cap \mathbb{R}^4 = U$ and U is a deformation retract of X. We have $H^2(X; \mathbb{Z}) = \prod_{m \geq 2} \mathbb{Z}/m\mathbb{Z}$ and $H_2(X; \mathbb{Z}) = 0$. The element $(1, 1, \ldots, 1, \ldots)$ (taking 1 on all factors of the infinite product) is a nontorsion element of $H^2(X; \mathbb{Z})$.

Example 3. In examples 1) and 2) we have $H_2(X; \mathbb{Z}) = 0$. But it is possible to find X with $H_2(X; \mathbb{Z}) \neq 0$, $\text{Hom}(H_2(X; \mathbb{Z}); \mathbb{Z}) = 0$ and $H^2(X; \mathbb{Z})$ has nontorsion elements. To see this we replace in example 1) X by $X \times \{ z \in \mathbb{C} | 0 < |z| < 1 \}$. Then by Künneth formula $H_2(X_1; \mathbb{Z}) = \mathbb{Q}$ and $H_1(X_1; \mathbb{Z}) = \mathbb{Z} \oplus \mathbb{Q}$. If follows that $\text{Hom}(H_2(X_1; \mathbb{Z}); \mathbb{Z}) = 0$ and $H^2(X_1; \mathbb{Z}) = \text{Ext}(H_1(X_1; \mathbb{Z}); \mathbb{Z}) = \text{Ext}(\mathbb{Z} \oplus \mathbb{Q}; \mathbb{Z}) = \text{Ext}(\mathbb{Q}; \mathbb{Z}) \neq 0$.

Similarly we may replace X in example 2) by its product with $\{ z \in \mathbb{C} | 0 < |z| < 1 \}$.

Example 4. By [15] it is possible to construct, for every countable torsion free abelian group G, a compact connected subset $K \subset \mathbb{R}^3$ (in fact a curve)
such that $H_1(\mathbb{R}^3 \setminus K; \mathbb{Z}) \cong G$ and $H_2(\mathbb{R}^3 \setminus K; \mathbb{Z}) = 0$. Taking G such that $\text{Ext}(G; \mathbb{Z})$ contains nontorsion elements and $X \subset \mathbb{C}^3$ a Stein open subset such that $X \cap R^3 = \mathbb{R}^3 \setminus K$ and $\mathbb{R}^3 \setminus K$ is a deformation retract of X, one gets as above examples of Stein manifolds X with $\text{Hom}(H_2(X; \mathbb{Z}); \mathbb{Z}) = 0$ but $H^2(X; \mathbb{Z})$ has nontorsion elements.

REFERENCES