Gerhard Keller
Carlangelo Liverani

Stability of the spectrum for transfer operators

<http://www.numdam.org/item?id=ASNSP_1999_4_28_1_141_0>
Stability of the Spectrum for Transfer Operators

GERHARD KELLER – CARLANGELO LIVERANI

Abstract. We prove stability of the isolated eigenvalues of transfer operators satisfying a Lasota-Yorke type inequality under a broad class of random and nonrandom perturbations including Ulam-type discretizations. The results are formulated in an abstract framework.

1. - Introduction

Let \((B, \| \cdot \|)\) be a Banach space which is equipped with a second norm \(| \cdot | \leq \| \cdot \|\) with respect to which \(B\) is typically non-complete. For any bounded linear operator \(Q : B \rightarrow B\) let

\[
\|Q\| := \sup\{|Qf| : f \in B, \|f\| \leq 1\}.
\]

We consider a family \((P_\epsilon)_{\epsilon \geq 0}\) of bounded linear operators on \((B, \| \cdot \|)\) with the following properties: There are \(C_1, M > 0\) such that for all \(\epsilon \geq 0\)

\[
|P_\epsilon^n| \leq C_1 M^n \quad \forall n \in \mathbb{N} ;
\]

there are \(C_2, C_3 > 0\) and \(\alpha \in (0, 1), \alpha < M\), such that for all \(\epsilon \geq 0\)

\[
\|P_\epsilon^n f\| \leq C_2 \alpha^n \|f\| + C_3 M^n |f| \quad \forall n \in \mathbb{N} \quad \forall f \in B ;
\]

also (but see Remarks 1,2,6 for alternative conditions),

\[
\text{if } z \in \sigma(P_\epsilon), \ |z| > \alpha, \ \text{then } z \text{ is not in the residual spectrum of } P_\epsilon ;
\]

Partially supported by the Deutsche Forschungsgemeinschaft (DFG).
Acknowledges the support of the Deutsche Forschungsgemeinschaft (DFG), the GNFM–CNR and the ESF programme PRODYN.
Pervenuto alla Redazione il 30 giugno 1998.
and there is a monotone upper-semicontinuous function $\tau : [0, \infty) \to [0, \infty)$ such that $\tau_\epsilon > 0$ if $\epsilon > 0$ and

$$\|P_0 - P_\epsilon\| \leq \tau_\epsilon \to 0 \quad \text{as} \quad \epsilon \to 0.$$

For families of operators satisfying (2)-(5) we derive uniform bounds on the resolvents with respect to the norm (1), $\| (z - P_\epsilon)^{-1} \|$, when z is uniformly bounded away from the spectrum $\sigma(P_0)$ of P_0, and we show that for such z the difference $\| (z - P_\epsilon)^{-1} - (z - P_0)^{-1} \| = O(\tau_\epsilon^n)$ for a suitable $\eta > 0$ (Theorem 1). An immediate corollary to these estimates is the stability of isolated eigenvalues λ of P_0 with $|\lambda| > \alpha$; stability in the sense that if $\delta > 0$ is such that $B_\delta(\lambda) \cap \sigma(P_0) = \{ \lambda \}$ then $\lim_{\epsilon \to 0} \| \Pi_\epsilon - \Pi_0 \| = 0$. Here $B_\delta(\lambda)$ denotes the open unit ball of radius δ around λ and $\Pi_\epsilon := \frac{1}{2\pi i} \int_{B_\delta(\lambda)} (z - P_\epsilon)^{-1} \, dz$ is the total spectral projection of P_ϵ associated with $B_\delta(\lambda) \cap \sigma(P_\epsilon)$ (Corollary 1). More precise statements and further corollaries are deferred to the next section.

Remark 1.

a) If inequality (3) is satisfied for some n_0 such that $C_2^{1/n_0} \alpha =: \alpha_0 < 1$, then it holds for all n with α replaced by α_0.

b) It is a simple consequence of (3) that for $C_4 = C_2 + C_3$ holds

$$\| P_\epsilon^n \| \leq C_4 M^n \quad \forall \epsilon \geq 0 \quad \forall n \in \mathbb{N}.$$

c) In the mathematical literature there are many examples of single operators P_0 satisfying 2) and 3). In nearly all cases the two norms involved have the additional property that

$$\text{the closed unit ball of } (B, \| \cdot \|) \text{ is } \| \cdot \| \text{-compact},$$

and in all of these examples this property is the key to proving that the essential spectral radius of P_ϵ is bounded by α which implies in particular assumption (4), see also Remark 3.

In the rest of this introduction we discuss a number of situations where assumptions (2), (3) and (7) are satisfied. This may serve to illustrate the broad applicability of the results proved in this note.

The basic result for this setting is the theorem of Ionescu Tulcea and Marinsecu [15]: If the constant M in (2) and (3) is equal to 1, then $P_0 : B \to B$ has at most finitely many eigenvalues of modulus 1. All these eigenvalues have finite multiplicity, and the rest of the spectrum is contained in a disk around the origin of radius less than 1. In other words: P_0 is quasicompact.

The following more concrete setting historically motivated this theorem: B is the space of complex-valued Lipschitz functions on a compact metric space, $\| \cdot \|$ is the Lipschitz norm, and $\| \cdot \|$ is the supremum norm. P_0 is a Markov transition operator of Doeblin-Fortet type, i.e.satisfying (3). For a while this model played a prominent role in mathematical learning theory, see the monographs.
[16, Theorem 2.1.40] and [27, Theorem 3.2.1] for a comprehensive treatment and further references. Later, the same analytic setting was used to study Ruelle transfer operators for subshifts of finite type, see e.g. [28] for more information.

Independently of these developments another concrete setting in which the three assumptions (2), (3) and (7) are met emerged in 1973, when Lasota and Yorke [24] studied Perron-Frobenius operators P_0 of piecewise C^2 and piecewise expanding maps: Now B is the space of functions of bounded variation on an interval, $\| \cdot \|$ is the variation norm, and $| \cdot |$ the usual L^1-norm. Inequalities (2) and (3) with $M = 1$ were derived in [24], and the applicability of the theorem of Ionescu Tulcea and Marinescu was noticed later in [18], [19], where [18] in fact deals with an extension of the Lasota-Yorke result to piecewise expanding maps of the unit square. Soon after, Rychlik [30] showed how to bypass the Ionescu Tulcea-Marinescu theorem and proved quasicompactness of P_0 more directly, an approach that was exploited in [20] to show that the constant α from (3) is an upper bound for the essential spectral radius of P_0. Later, in [12], it was shown how to derive this estimate directly from the Ionescu Tulcea-Marinescu theorem. A good reference for these and related results for Perron-Frobenius operators of one-dimensional maps is the monograph [8]. Variants of this theory for nonexpanding or higher-dimensional maps can be found in [23], [7], [22].

Passing from a single operator P_0 to a family $(P_\epsilon)_{\epsilon \geq 0}$ satisfying conditions (2)-(5) can have various interpretations. We mention the following ones: P_0 is the Perron-Frobenius operator of a piecewise expanding map T as discussed above.

a) The P_ϵ are Perron-Frobenius operators of maps T_ϵ which are “close” to T. For maps of the interval $I = [0, 1]$ a suitable notion of closeness is

$$d(T, T_\epsilon) := \inf \{ \kappa > 0 \mid \exists A \subseteq I \exists \sigma : I \rightarrow I \text{ s.th. } m(A) > 1 - \kappa, \sigma \text{ is a diffeomorphism, } T \circ \sigma |_A = T_\epsilon \circ \sigma |_A, \text{ and } \forall x \in I : |\sigma(x) - x| < \kappa, |1/\sigma'(x) - 1| < \kappa \}.$$

In this case $\tau_\epsilon = 12d(T, T_\epsilon)$, see [21].

b) P_ϵ is the transition operator of the stochastically perturbed map T, where ϵ is the “size” of the perturbation, see [21], [4], [2], [5]. Typically, $\tau_\epsilon = O(\epsilon)$.

c) P_ϵ is the transition operator for the Ulam-type discretization of T with grid size ϵ. Again $\tau_\epsilon = O(\epsilon)$, see [25], [21], [3], [9], [5] and for related work also [14], [26], [11], [17].

For all these families $(P_\epsilon)_{\epsilon \geq 0}$, inequality (3) is satisfied uniformly in ϵ provided there is an iterate T^k of T with $\inf |(T^k)'| > 2$ and such that there are no discontinuities or turning points c, c' of T with $T^j c = c'$ for some $0 < j \leq k$. But even if this condition is violated certain types of perturbations, notably Ulam discretizations, satisfy (3) uniformly in ϵ, see [5] for a detailed discussion.

Remark 2. Since in all these situations the P_ϵ can be interpreted as positive operators on $L^1_{m_\epsilon}$, their peripheral eigenvalues form a finite cyclic group, see [31], [30], [13].
REMARK 3. For some applications it is interesting to note that the compactness assumption (7) can be replaced by the following weaker set of assumptions:

there is a sequence of linear operators $\pi_k : B \to B$ with $\sup_k \|\pi_k\| < \infty$ and such that

$$\sup \{ |f - \pi_k f| : f \in B, \|f\| \leq 1\} \leq \text{const} \cdot \left(\frac{\alpha}{M}\right)^k$$

and

$P^k \pi_k$ is a compact operator for all k.

A simple calculation based only on these assumptions and on (3) shows that there is a constant $C > 0$ such that

$$\|P^k - P^k \pi_k\| \leq C \alpha^k \quad \forall \, k > 0 \quad \forall \, \varepsilon > 0 .$$

It follows from [10, Lemma VIII.8.2] that in this case all $P_\varepsilon : B \to B$ are quasicompact with essential spectral radius $\leq \alpha$ (in particular (4) holds). This is in fact the previously mentioned approach of Rychlik [30]. Related questions for function spaces of higher smoothness are discussed in [1].

ACKNOWLEDGMENTS. We like to thank Viviane Baladi for pointing out a mistake in an earlier version of the proof of Corollary 1.

2. – The results

For $\delta > 0$ and $r > \alpha$ let

$$V_{\delta,r} := \{ z \in \mathbb{C} : |z| \leq r \text{ or } \text{dist}(z, \sigma(P_0)) \leq \delta \} .$$

The main results of this paper are the following bounds on the resolvents $(z - P_\varepsilon)^{-1}$.

THEOREM 1. Suppose that $(P_\varepsilon)_{\varepsilon \geq 0}$ is a family of linear operators on B satisfying (2)-(5). Fix $\delta > 0$ and $r \in (\alpha, M)$ and let $\eta := \frac{\log r / \alpha}{\log M / \alpha}$. Then $\eta > 0$ and there are constants $\epsilon_0 = \epsilon_0(\delta, r) > 0$, $a = a(r) > 0$, $b = b(\delta, r) > 0$, $c = c(\delta, r) > 0$ and $d = d(\delta, r) > 0$ such that for $0 \leq \epsilon \leq \epsilon_0$ and $z \in \mathbb{C} \setminus V_{\delta,r}$

$$\|(z - P_\varepsilon)^{-1} f\| \leq a \|f\| + b |f| \quad \text{for all } f \in B$$

and

$$\|((z - P_\varepsilon)^{-1} - (z - P_0)^{-1})f\| \leq \tau^\eta \left(c \|(z - P_0)^{-1}\| + d \|(z - P_0)^{-1}\|^2 \right) .$$
Explicit bounds on the constants c_0, a, b, c, d are given in the proof. They all depend on the operators P_ε via the constants $M, C_1, \ldots, C_4; \varepsilon_0$ and b depend also on the functions $\varepsilon \mapsto \tau_\varepsilon$ and $z \mapsto \|(z - P_0)^{-1}\|$.

Denote $\sigma_\alpha(P_\varepsilon) := \{z \in \mathbb{C} : |z| \leq \alpha\} \cup \sigma(P_\varepsilon)$. An immediate consequence of (8) is that

$$S_{\delta, r} := \sup \left\{\|(z - P_\varepsilon)^{-1}\| : 0 \leq \varepsilon \leq \varepsilon_0(\delta, r), z \in \mathbb{C} \setminus V_{\delta, r}\right\} < \infty$$

for all $\delta > 0$ and $r \in (\alpha, M)$. Therefore, all accumulation points (as $\varepsilon \to 0$) of spectral values in $\sigma_\alpha(P_\varepsilon)$ are contained in $\sigma_\alpha(P_0)$. A more elementary proof of this fact was previously given in [6]. But much more can be deduced from (9).

If λ is an isolated eigenvalue of P_0 with $|\lambda| > \alpha$, then $\delta > 0$ can be chosen so small that $B_\delta(\lambda) \cap \sigma_\alpha(P_0) = \{\lambda\}$ and we can define

$$\Pi_\varepsilon^{(\lambda, \delta)} := \frac{1}{2\pi i} \int_{B_\delta(\lambda)} (z - P_\varepsilon)^{-1} dz.\quad (10)$$

$\Pi_0^{(\lambda, \delta)}$ does not depend on δ as long as $B_\delta(\lambda) \cap \sigma_\alpha(P_0) = \{\lambda\}$, and as we just saw, also the projections $\Pi_\varepsilon^{(\lambda, \delta)}$ are well defined and independent of δ for sufficiently small ε.

Corollary 1. In the situation of Theorem 1, if λ is an isolated eigenvalue of P_0 with $|\lambda| > r$ and if $\delta > 0$ is such that $B_\delta(\lambda) \cap \sigma_\alpha(P_0) = \{\lambda\}$, we have:

1) There is a constant $K_1 = K_1(\delta, r) > 0$ such that $\|\Pi_\varepsilon^{(\lambda, \delta)} - \Pi_0^{(\lambda, \delta)}\| \leq K_1 \cdot \tau_\varepsilon^n$ for all $\varepsilon \in [0, \varepsilon_0]$.

2) There are constants $K_2 = K_2(\delta, r) > 0$ and $\delta_0 = \delta_0(r) > 0$ such that $\|\Pi_\varepsilon^{(\lambda, \delta)} f\| \leq K_2 \cdot \|\Pi_\varepsilon^{(\lambda, \delta)} f\|$ for all $f \in B, \delta \in (0, \delta_0)$ and $\varepsilon \in [0, \varepsilon_1]$.

3) If $\delta \in (0, \delta_0)$, then $\text{rank}(\Pi_\varepsilon^{(\lambda, \delta)}) = \text{rank}(\Pi_0^{(\lambda, \delta)})$ for ε small enough.

Remark 4. If the isolated eigenvalue λ of P_0 has finite multiplicity, this means in particular that, for ε and δ small enough, $\sigma_\alpha(P_\varepsilon) \cap B_\delta(\lambda)$ consists of eigenvalues $\lambda_j^{(\varepsilon)}$, such that $\lim_{\varepsilon \to 0} \lambda_j^{(\varepsilon)} = \lambda$ for all j, and the total multiplicity of the $\lambda_j^{(\varepsilon)}$ equals the multiplicity of λ.

For $r > \alpha$ denote by y_r the circle of radius r around the origin and define

$$\Pi_\varepsilon^{(r)} := \frac{1}{2\pi i} \int_{y_r} (z - P_\varepsilon)^{-1} dz.\quad (11)$$

Corollary 2. If, in the situation of Theorem 1, $\sigma(P_0) \cap \{z \in \mathbb{C} : |z| = r\} = \emptyset$, then

1) $\lim_{\varepsilon \to 0} \|\Pi_\varepsilon^{(r)} - \Pi_0^{(r)}\| = 0$

2) There is $K_3 = K_3(\delta, r) > 0$ such that for all $\varepsilon \in [0, \varepsilon_0]$

$$\|P_\varepsilon^n \Pi_\varepsilon^{(r)}\| \leq K_3 \cdot r^n \quad \forall n \in \mathbb{N}.$$
REMARK 5. In many cases the P_e are $| \cdot |$-contractions, i.e. $M = 1$. If, in such a situation, we considered $r = 1$, i.e. a case which is not covered by Theorem 1, then η as given there would evaluate to 1. A look at the proofs reveals, however, that in this case the order of convergence in (9) is only $\tau_e \log \tau_e$ instead of τ_e. This is in agreement with results in [21], [17] on the stability of eigenfunctions belonging to eigenvalues of modulus 1.

3. - Proofs

In the proofs we use the following abbreviating notation:

$$Q_e := (z - P_e)$$

where we suppress the dependence of Q_e on z. Recall that since $z \not\in V_{\beta,r}$ always $|z| \geq r > \alpha$ and $Q_0^{-1} = (z - P_0)^{-1}$ exists as a bounded linear operator on B.

LEMMA 1. For each $r \in (\alpha, M)$ holds

$$\| f \| \leq C_5 \| Q_e f \| + C_6 |f| \text{ for all } f \in B \text{ and } \varepsilon \geq 0$$

where

$$C_5 := \frac{2C_4}{M - r} \left(\frac{M}{r} \right)^{n_1} \text{ and } C_6 := 2C_3 \left(\frac{M}{r} \right)^{n_1} \text{ with } n_1 := \left\lceil \frac{\log 2C_2}{\log r/\alpha} \right\rceil$$

and $[x]$ denotes the smallest integer greater than or equal to x.

PROOF. For $f \in B$ holds

$$\| f \| = |z|^{n_1} \| f \| \leq \| (z^n - P^n) f \| + \| P^n e f \| \leq \sum_{i=0}^{n-1} |z|^i \| P^{n-1-i} e (z - P) f \| + C_2 \alpha^n \| f \| + C_3 M^n |f|$$

in view of (3). Observing (6), this yields

$$\| f \| \leq \frac{C_4}{M - r} \left(\frac{M}{r} \right)^n \| Q_e f \| + C_2 \left(\frac{\alpha}{r} \right)^n \| f \| + C_3 \left(\frac{M}{r} \right)^n |f|.$$

Let $n = n_1$. Then $C_2 \left(\frac{\alpha}{r} \right)^{n_1} \leq \frac{1}{2}$ so that

$$\| f \| \leq \frac{2C_4}{M - r} \left(\frac{M}{r} \right)^{n_1} \| Q_e f \| + 2C_3 \left(\frac{M}{r} \right)^{n_1} |f|.$$
Proof of Theorem 1. Consider any $h \in B$ and let $g := Q_0h$. As

$$Q_0^{-1} = (z - P_0)^{-1} = z^{-n} Q_0^{-1} P_0^n + \sum_{j=0}^{n-1} z^{-j-1} P_0^j$$

we have

$$|h| = |Q_0^{-1}g| \leq |z|^{-n} \|Q_0^{-1} P_0^n g\| + \sum_{j=0}^{n-1} |z|^{-j-1} |P_0^j g|$$

(11)

$$\leq \|Q_0^{-1}\| C_2 \left(\frac{\alpha}{r} \right)^n \|g\| + \|Q_0^{-1}\| C_3 \left(\frac{M}{r} \right)^n |\tau_e| \|h\| + \|Q_e h\|. \quad (8)$$

Combining these two estimates yields

$$|h| \leq \|Q_0^{-1}\| C_2 \left(\frac{\alpha}{r} \right)^n \|g\| + \left(\|Q_0^{-1}\| C_3 + \frac{C_1}{M - r} \right) \left(\frac{M}{r} \right)^n \|\tau_e\| \|h\| + \|Q_e h\|. \quad (8)$$

(12)

Recall that $g = Q_0h = (z - P_0)h$ so that $\|g\| \leq (C_4 M + |z|) \|h\|$. Therefore,

$$|h| \leq \left(\|Q_0^{-1}\| C_2 (C_4 M + |z|) \right) \left(\frac{\alpha}{r} \right)^n \|g\| + \left(\|Q_0^{-1}\| C_3 + \frac{C_1}{M - r} \right) \left(\frac{M}{r} \right)^n \|\tau_e\| \|h\| + \|Q_e h\|.$$

(12)

For the proof of assertion (8) we may assume that $|z| \leq 2M$, because for $|z| > 2M$ a von Neumann series representation gives immediately that $\|(z - P_e)^{-1} f\| \leq C_4 M^{-1} \|f\|$. Let

$$H = H(\delta, r) := \sup \{ \|(z - P_0)^{-1}\| : z \in \mathbb{C} \setminus V_{\delta, r} \},$$

(13)

$$n = n_2(\delta, r) := \left[\frac{\log 4C_6 HC_2 (C_4 + 2) M}{\log r/\alpha} \right]$$

and

$$\epsilon_1 = \epsilon_1(\delta, r) := \sup \left\{ \epsilon > 0 : \tau_e \left(HC_3 + \frac{C_1}{M - r} \right) \left(\frac{M}{r} \right)^{n_2} \leq \frac{1}{4C_6} \right\}.$$
Since \(\|h\| \leq C_5 \|Q_\epsilon h\| + C_6 |h| \) by Lemma 1, this and (12) yields for \(0 \leq \epsilon \leq \epsilon_1 \)
\[
|h| \leq \frac{1}{2} |h| + \frac{C_5}{2C_6} \|Q_\epsilon h\| + \frac{1}{4\tau_1 C_6} |Q_\epsilon h|
\]
so that
\[
|h| \leq \frac{C_5}{C_6} \|Q_\epsilon h\| + \frac{1}{2\tau_1 C_6} |Q_\epsilon h|
\]
Applying Lemma 1 once more, we arrive at
\[
(15) \quad \|h\| \leq 2C_5 \|Q_\epsilon h\| + \frac{1}{2\tau_1} |Q_\epsilon h| \leq \left(2C_5 + \frac{1}{2\tau_1} \right) \|Q_\epsilon h\|
\]
for \(0 \leq \epsilon \leq \epsilon_1 \). By (15) it follows that \(Q_\epsilon \) is invertible, its range is closed, and the inverse is bounded, hence \(Q_\epsilon^{-1} \) exists as a bounded operator on \(B \) since \(z \) cannot belong to the residual spectrum by assumption (4). Applying this inequality to \(h := Q_\epsilon^{-1} f \), this is (8) with \(a := \max(2C_5, C_4 M^{-1}) \) and \(b := \frac{1}{2\epsilon_1} \).

We turn to the proof of (9) and keep the abbreviation \(h = Q_\epsilon^{-1} f \). Consider
\[
\text{estimate for } \text{Then}
\]
\[
|h| \leq \tau_\epsilon^n \left(\|Q_0^{-1}\| (C_2(C_4 + 1) + C_3) + \frac{C_1}{M - r} \right) \|h\|
+ \tau_\epsilon^{n-1} \left(\|Q_0^{-1}\| C_3 + \frac{C_1}{M - r} \right) |f|
\]
As \(|z| \|Q_0^{-1}\| \leq 2C_4 \) if \(|z| \geq 2M \), this yields
\[
|h| \leq \tau_\epsilon^n \left(\|Q_0^{-1}\| (C_2(C_4 + 2)M + C_3) + \frac{2C_2 C_4 + C_1}{M - r} \right) \|h\|
+ \tau_\epsilon^{n-1} \left(\|Q_0^{-1}\| C_3 + \frac{C_1}{M - r} \right) |f|
\]
Since \(\|h\| \leq C_5 \|f\| + C_6 |h| \) by Lemma 1 again, this yields
\[
|h| \leq \tau_\epsilon^n \left(\|Q_0^{-1}\| A + B \right) C_5 \|f\| + \tau_\epsilon^n \left(\|Q_0^{-1}\| A + B \right) C_6 |h|
+ \tau_\epsilon^{n-1} \left(\|Q_0^{-1}\| C_3 + \frac{C_1}{M - r} \right) |f|
\]
Recall \(H = H(\delta, r) \) from (13) and let
\[
\epsilon_0 = \epsilon_0(\delta, r) := \sup \left\{ \epsilon \in (0, \epsilon_1] : \tau_\epsilon^n (HA + B) C_6 \leq \frac{1}{2} \right\}
\]
Then
\[|Q_\varepsilon^{-1}f| = |h| \leq 2 \tau_\varepsilon \left(\left(\|Q_0^{-1}\|A + B\right)C_5\|f\| + \tau_\varepsilon \left(\|Q_0^{-1}\|C_3 + \frac{C_1}{M - r}\right)\|f\| \right) \]

for \(0 \leq \varepsilon \leq \varepsilon_0\).

We apply this estimate to \((P_\varepsilon - P_0)Q_0^{-1}f\) instead of \(f\):
\[
|Q_\varepsilon^{-1} - Q_0^{-1}|f| = |Q_\varepsilon^{-1}(P_\varepsilon - P_0)Q_0^{-1}f|
\leq 2 \tau_\varepsilon \left(\left(\|Q_0^{-1}\|A + B\right)C_5\|(P_\varepsilon - P_0)Q_0^{-1}f\| + \tau_\varepsilon \left(\|Q_0^{-1}\|C_3 + \frac{C_1}{M - r}\right)\|(P_\varepsilon - P_0)Q_0^{-1}f\| \right)
\leq 2\|Q_0^{-1}\|\tau_\varepsilon \left(2AC_4C_5M + C_3\right)\|f\|
+ 2\|Q_0^{-1}\|\tau_\varepsilon \left(2BC_4C_5M + \frac{C_1}{M - r}\right)\|f\|
\]

which proves (9) with \(c := 2(2BC_4C_5M + \frac{C_1}{M - r})\) and \(d := 2(2AC_4C_5M + C_3)\) for \(0 \leq \varepsilon \leq \varepsilon_0\).

Remark 6. In the preceding proof assumption (4) was used only to conclude that if \(z \in \mathbb{C} \setminus B_r\), then the range of the operator \(Q_\varepsilon = z - P_\varepsilon\) must be all \(B\). In some situations the following argument might be used instead of assumption (4): Let \(A\) denote a connected component of \(\mathbb{C} \setminus B_{\delta,r}\), so \(A\) is open. We claim that
\[
\text{either } A \subseteq \sigma(P_\varepsilon) \text{ or } A \cap \sigma(P_\varepsilon) = \emptyset.
\]

Indeed, estimate (15) guarantees that \(\text{dist}(z, \sigma(P_\varepsilon)) \geq \frac{1}{C}\) for \(z \in \mathbb{C} \setminus (\sigma(P_\varepsilon) \cup B_{\delta,r})\) where \(C = 2C_5 + (2\tau_\varepsilon)^{-1}\), and it is an easy exercise to derive (16) from this. In view of the alternative (16) the unbounded component of \(\mathbb{C} \setminus B_{\delta,r}\) is certainly disjoint from \(\sigma(P_\varepsilon)\).

If \(\mathbb{C} \setminus \sigma_0(P_0)\) is connected and if \(z \in \mathbb{C} \setminus \sigma_0(P_0)\), then \(z\) belongs to the unbounded connected component of \(\mathbb{C} \setminus B_{\delta,r}\) provided \(r - \alpha\) and \(\delta\) are sufficiently small, and it follows that \(z \in \mathbb{C} \setminus \sigma(P_\varepsilon)\) if \(\varepsilon < \varepsilon_0(\delta, r)\). In other words: Given \(z \in \mathbb{C} \setminus \sigma_0(P_0)\), there are \(\delta, r > 0\) (possibly depending on \(z\)) such that \((z - P_\varepsilon)^{-1}\) exists as a bounded linear operator for \(\varepsilon \in [0, \varepsilon_0(\delta, r)]\). In particular, (4) can be replaced by “\(\mathbb{C} \setminus B_{\delta,r}\) is connected for each \(r - \alpha\) and \(\delta\) sufficiently small”.

Proof of Corollary 1.

1) \[
\|\Pi_{\varepsilon}^{(\lambda,\delta)} - \Pi_0^{(\lambda,\delta)}\| \leq \frac{1}{2\pi} \int_{\partial B_{\delta}(\lambda)} \|(z - P_\varepsilon)^{-1} - (z - P_0)^{-1}\| \, dz
\leq \delta \tau_\varepsilon \left(c \, H(\delta, r) + d \, (\frac{\delta}{r})^{2} \right) \text{ with } H(\delta, r) \text{ from (13)}.
\]

Note that this implies \(\|\Pi_{\varepsilon}^{(\lambda,\delta)} - \Pi_0^{(\lambda,\delta)}\| \to 0\) as \(\varepsilon \to 0\).
2) Using (8) follows
\[
\|\Pi^{(\lambda, \delta)}_\epsilon f\| \leq \frac{1}{2\pi} \int_{\partial B_\delta(\lambda)} \| (z - P_\epsilon)^{-1} f \| \, dz \\
\leq \frac{1}{2\pi} \int_{\partial B_\delta(\lambda)} (a(r) \| f \| + b(\delta, \lambda) |f|) \, dz \\
\leq \delta a(r) \| f \| + \delta b(\delta, \lambda) |f| .
\]
Fixing r and choosing $\delta > 0$ such that $\delta a(r) \leq \frac{1}{2}$ this yields for sufficiently small ϵ
\[
\|\Pi^{(\lambda, \delta)}_\epsilon f\| \leq \frac{1}{2} \| f \| + \text{const} \cdot |f| .
\]
Applied to $\Pi^{(\lambda, \delta)}_\epsilon f$ instead of f we can conclude that $\|\Pi^{(\lambda, \delta)}_\epsilon f\| \leq K_2 \cdot |\Pi^{(\lambda, \delta)}_\epsilon f|$ for a suitable constant $K_2 > 0$.

3) Let us consider a n-dimensional subspace \mathbb{V}_n of $\Pi^{(\lambda, \delta)}_\epsilon (B)$. In view of part (1) we can choose ϵ and δ small enough such that $\|\Pi^{(\lambda, \delta)}_\epsilon - \Pi^{(\lambda, \delta)}_0\| < \frac{1}{2K_2}$. Then, for $f \in \mathbb{V}_n$,
\[
|f - \Pi^{(\lambda, \delta)}_0 f| = |\Pi^{(\lambda, \delta)}_\epsilon f - \Pi^{(\lambda, \delta)}_0 f| \leq \frac{1}{2K_2} \| f \| \leq \frac{1}{2} |f| ,
\]
where we have used the result of part (2) above.

This means that the unit ball of the subspace \mathbb{V}_n is contained in a $\frac{1}{2}$-neighborhood of the subspace $\Pi^{(\lambda, \delta)}_0 (B)$. In this situation $n \leq \text{rank}(\Pi^{(\lambda, \delta)}_0 (B))$ by Tichomirov’s theorem (e.g.[29, Theorem 1.5]), and, by the arbitrariness of n, $\text{rank}(\Pi^{(\lambda, \delta)}_\epsilon) \leq \text{rank}(\Pi^{(\lambda, \delta)}_0)$. The reverse inequality follows by interchanging the roles of $\Pi^{(\lambda, \delta)}_\epsilon$ and $\Pi^{(\lambda, \delta)}_0$. \hfill \blacksquare

PROOF OF COROLLARY 2.
1) This is proved just like the first assertion of Corollary 1.
2) As observed in (10), $\|(z - P_\epsilon)^{-1}\| \leq S_{\delta, r}$ for $z \in \gamma_r$ and $\epsilon \in [0, \epsilon_0]$. Therefore
\[
\| P_\epsilon^n \Pi^{(\lambda, \delta)}_\epsilon f \| \leq \frac{1}{2\pi} \int_{\gamma_r} |z|^n \|(z - P_\epsilon)^{-1} f\| \, dz \leq S_{\delta, r} r^{n+1} .
\]

REFERENCES

Mathematisches Institut
Universität Erlangen-München
Bismarckstraße 1 1/2
91054 Erlangen, Germany
E-mail: keller@mi.uni-erlangen.de

Dipartimento di Matematica
Università di Roma "Tor Vergata"
Via della Ricerca Scientifica
00133 Roma, Italia
E-mail: liverani@mat.uniroma2.it