
ANNALI DELLA

SCUOLA NORMALE SUPERIORE DI PISA
Classe di Scienze

TAN JIANG

STEPHEN S.-T. YAU
Intersection lattices and topological structures of
complements of arrangements inCP2

Annali della Scuola Normale Superiore di Pisa, Classe di Scienze 4e série, tome 26,
no 2 (1998), p. 357-381
<http://www.numdam.org/item?id=ASNSP_1998_4_26_2_357_0>

© Scuola Normale Superiore, Pisa, 1998, tous droits réservés.

L’accès aux archives de la revue « Annali della Scuola Normale Superiore di Pisa, Classe
di Scienze » (http://www.sns.it/it/edizioni/riviste/annaliscienze/) implique l’accord avec
les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute utilisa-
tion commerciale ou impression systématique est constitutive d’une infraction pénale.
Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=ASNSP_1998_4_26_2_357_0
http://www.sns.it/it/edizioni/riviste/annaliscienze/
http://www.numdam.org/legal.php
http://www.numdam.org/
http://www.numdam.org/


357

Intersection Lattices and Topological Structures of
Complements of Arrangements in CP2

TAN JIANG - STEPHEN S.-T. YAU

Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)
Vol. XXVI (1998),

1. - Introduction

An arrangement of hyperplanes A is a finite collection of C -linear sub-
spaces of dimension (d - 1) in Cd. Associated with the arrangemant A is an

open real 2d-manifold the complement M(A) = Cd -U[H: H E ,A.} . The
central problem in this area is to decide to what extent the topology or differ-
entiable structure of is determined by the combinatorial geometry of A
and vice versa.

The theory was first initiated in 1969 by V. I. Amol’d [ 1 ], who calculated
the Poincar6 polynomial of the pure braid space Mi and the cohomology ring
structure of H*(Mt), where Mi is the complement of the complexified braid
arrangement At defined by

In general, for an arbitrary arrangement A, define holomorphic differential forms
where aH is the linear form defining the hyperplane H for h E A,- 

27ri H

and let denote the corresponding cohomology class. Let

be the graded C-algebra of holomorphic differential forms on generated
by the úJH and 1. Amol’d conjectured that the natural map 17 - [17] of

R (A) - H* ~M (,,4.), C) is an isomorphism of graded algebras. This was

proved by Brieskom [2] in 1971, who showed that the Z-subalgebra of R(A)
generated by the forms WH and 1 is isomorphic to the singular cohomology
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H* (M(A), Z). Although Brieskom proved the Arnol’d conjecture that R(A) is
isomorphic to H* (M (A), C) as a graded algebra for the arbitrary arrangement
A, it was not known whether the algebra R is determined by the combinatorial
data of A, since the linear forms enter the definition of R(A). In 1980, Orlik
and Solomon [16] introduced a graded algebra A (A) to an arbitrary arrangement
A. A(A) is a combinatorial invariant of A. The beautiful result of Orlik and
Solomon asserts that there is an isomorphism of algebra R(A). This

together with the Brieskom’s solution to the Arnol’d conjecture implies that the
cohomological ring H* (M (A), C) is a combinatorial invariant of A.

Let .A, be an arrangement of hyperplanes in (C3 and let .,4.* be the corre-

sponding arrangement of lines in Cp2 . Then we have M(A) = M(A*) x C*
(cf. [18]), where M (,,4*) = Cp2 - UA * . Topology and differentiable struc-

ture of M(A*) are important in the theory of hypergeometric functions (see
the work of Gel’fand [8] and his subsequent papers, the work of Deligne and
Mostow [3], and subsequent papers by Mostow). Moreover, they play a role in
some interesting problems in algebraic geometry (see especially the works of
Hirzebruch [9] and Moishezon [13]). Although the conjecture that the homo-
topic type of M(A*) is a combinatorial invariant of the projective arrangement
of ,,4* seems disproved by G. Rybnikov [20] in 1994, we have shown [ 11 ] that
for a very large class of projective arrangements in the diffeomorphic type
of M(A*) is indeed a combinatorial invariant of A*.

DEFINITION. Let ,,4* be a projective arrangement of lines in Cp2 , The set
of all intersections of elements of ,A.* partially ordered by reverse inclusion is
denoted as L(A*).

It is natural to ask whether the combinatorial data L(A*) of the projective
arrangement are determined by the homotopic type, topological type, or diffeo-
morphic type of M(A*). For the first question: Falk has written a series of

papers [5], [6], and [7] on whether there are combinatoriably distinct arrange-
ments that have homotopic equivalent complements. In [6], Falk constructed
two projective arrangements in each of which has two triple points and
nine double points. The homotopic equivalence of their complements was shown
in [7]. In view of this example, one would like to know whether L(A*) is
determined by the topological type of M(A*). The following theorem answers
this question affirmatively.

MAIN THEOREM. Let Ai two projective arrangements in If
homeomorphic to M(A2), then L (,,41 ) is isomorphic to L(A2).

In view of Falk’s example mentioned above, we have the following corollary.

COROLLARY. There exist two projective arrangements Ai and ,~4.2 in such
that and M (,,4.2 ) have the same homotopic type, but they do not have the
same topological type.

In Section 2 we recall some necessary definitions and results in three-

manifolds that are due to Waldhausen [22]. In Section 3 we study the boundary
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of a regular neighborhood of an arrangement .A* in using Waldhausen’s
theory on graphed manifolds [21]. By restricting ourselves to nonexceptional
projective arrangements in we show in Section 4 that if two such arrange-
ments have the same topological types, then they have the same graph structures
(again in the sense of Waldhausen). In Section 5 we prove the main theorem
for nonexceptional arrangements. In Section 6 and Section 7 we finish the proof
of the remaining part of our main theorem for the exceptional arrangements.

The second author learned this important open problem during P. Orlik’s

interesting lectures at CBMS conference on arrangements at Flagstaff in 1988.
The main theorem of this paper was announced in [12].

Acknowledgment. We gratefully acknowledge both referees for their careful
reading of this paper and especially for providing us many useful comments.

2. - Definitions and preliminaries

In this section we recall some necessary definitions and important results
on three-manifolds due to Waldhausen [22].

Throughout this section, by a manifold, we mean an orientable compact
three-dimensional manifold with or without boundary.

A surface is a connected two-manifold. It is compact and orientable, unless
the contrary is stated explicitly. A surface F in the manifold M is properly
embedded (i.e., F n a M = a F, where a denotes boundary). A surface in 8 M
is a submanifold of a M. A system of surfaces in M or a M consists of finitely
many, mutually disjoint components of the above two types.

Let F be a subspace of M. U(F) denotes a regular neighborhood of F.
A regular neighborhood is always compact and sufficiently small. A typical
construction is as follows. Choose a finite triangulation in which F is a sub-
complex. The closed star of F in the second bary center subdivision of this
triangulation is then a regular neighborhood of F.

An isotopy deformation of M is a level preserving map h : M x I - M x I,
I = [0, 1], such that from each t 

- ht is a homeomorphism from
M onto itself and ho = Identity. We often abbreviate "isotopy deformation" as
"deformation."

Subspaces N, and N2 in M are called isotopic in M if there is an isotopy
deformation of M : ht, t E I , such that = N2.

DEFINITION 2. l. Let M be a manifold. Let F be a system of surfaces in M
or am. F is compressible in M if either one of the following two cases hold.

(a) There is a noncontractible simple closed curve k in Int(F), and a disk D
in M, Int(D) C Int(M), such that D n F = a D = k.

(b) There is a ball E in M such that E n F = a E .

F is incompressible in M if and only if it is not compressible in M.
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DEFINITION 2.2. A manifold M is called irreducible if every two-sphere
in M is compressible.

Thus M is irreducible if and only if each two-sphere in M bounds a three-
cell in M. (Remember: If M is irreducible, and 0, then either M is a
ball, or else genus(am) &#x3E; 0, and hence H1 (M) is infinite.)

DEFINITION 2.3. A manifold M is called boundary-irreducible if aM is

incompressible.

The following lemma is a well-known corollary of the sphere theorem.

LEMMA 2.1. Suppose M is irreducible and 1fl (M) is not finite. Then M is

aspherical, that is, 1fj (M) = 0, for j &#x3E; 2.

Lemma 2.2 below seems to be widely known. A proof is given in [23].

LEMMA 2.2. Let M be an irreducible manifold.
(a) 0, and M is not a ball, then there exists in M an incompressible

surface F such that 0 =A [a F] E H1 (aM).
(b) If a M = 0, then there exists in M an incompressible surface ifand only if either

not finite or ~1 (M) is a nontrivial free product with amalgamation
(or both).

If F is a separating incompressible surface in M, aM = 0, then 7r, (M) is a
nontrivial free product with amalgamation, A *c B, where C ~ 7r, (F),
in a natural way.

DEFINITION 2.4. Let M be an irreducible manifold that is not a ball. M is

sufficiently large if and only if there exists an incompressible surface in M.

REMARK 2.1. There exist irreducible manifolds with infinite fundamental

group, which are not sufficiently large [23].

Let T = Tl U... U Tn (n &#x3E; 0) be a system of tori in Int(M), and U (T ) be
a regular neighborhood of T in M.

DEFINITION 2.5. If each component of M - Int(U(T)) is homeomorphic
to a fiber bundle with S 1 as fiber, then T is called a graph structure of M. A
manifold with a graph structure is called a graph manifold.

Let T, be an arbitrary fixed component of T. U(TI) D Tl is a component
of U(T). So is homeomorphic to Tl x I. Let T’ and T " be the boundary
surfaces of The component of M - Int(U(T)) which is pasted along
T’ (respectively, T") is denoted by Ml (respectively, M2). We can compare the
homology class of curves in T’ and T" by the natural isomorphism

Hence we can talk about intersection of homology classes of curves on T’
and T" .
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DEFINITION 2.6. A graph structure T of a manifold M is called reduced if
none of the following ten situations occur. A manifold with a reduced graph
structure is called a reduced graph manifold.
(Wl) M2 and MI is a Sl-bundle over the annulus.
(W2) A fiber of MI is homologous in TI to a fiber of M2.
(W3) Mi = S’x D2 (D2 = 2-cell) is a solid torus, and a meridian curve

{ p } x S 1 c 8Mi has intersection number with a fiber of M2 in Tl .
(W4) sf x D 2 (D2 = 2-cell) is a solid torus and a meridian curve

{p} x S 1 c aM, is homologous to a fiber of M2 in Ti.
(W5) Ml is a S 1-bundle over the Mobius band, and the homology class ft,

in 8Mi = T’ of the boundary of a section of Ml is homologous to a
fiber of M2 in Tl.

(W6) Ml and M2 are SI-bundles over the Mobius band, and it, 1 is homologous
to it2, where /ti is defined as in (W5).

(W7) M-Int(U(T)) has two components. One of them is a graph manifold Q,
defined in Section 3 of [21], which is homeomorphic to an Sl-bundle
with orientable total space over the Mobius band. The other is not a
solid torus.

(W8) Mi = M2 ~ A x = annulus) -- I x S 1 x S 1 and the pasting map
S 1 x S 1 

x S 1 is given by a matrix of trace ~2. -

(W9) Ml and M2 are solid tori.
(W 10) T = 0, and M is a SI-bundle over S2 or Rp2 (real projective plane).

3. - The boundary of a regular neighborhood of an arrangement A* in Cp2

Let ,~.* be an arrangement in Cp2 and N(A*) = t. Suppose that A*
has xl , ... , 0) as multiple intersection points (i.e., multiplicity 3).
We blow up Cp2 at f xl , ... , We get a set .r4* of lines that includes the

proper transforms of the xi in a blown-up surface is called an associate

arrangement in CP2 induced by ,A* . Suppose that Ã * = {.~ 1, ... , ~}. Each pair
of lines of ~4* intersects at most at one point. Let N (,,4.*) = which

is connected. Let U (,,4.* ) be a regular neighborhood of N (.,4* ) and K(,4-*) =
9(~/(~4*)). Thus K (,,4.* ) is a plumbed three-manifold which is homeomorphic
to K(A*), the boundary of a regular neighborhood of N(A*) in Cp2.

K (,,4* ) can be also obtained by pasting some SI-bundles together. Consider
the boundary of regular neighborhood of a line ii i E .4* as a Sl -bundle Ei -- ti.
If two lines f, I and .~2 of ,,4* intersect at a point x, let Di be a disc in ti such
that x E Int(Di ) (i = 1, 2). Define E’ and glue E’ and E2 along
Ei I a Di . In other words, we choose a trivialization of which is S We

then glue them together according to the map f - 0 , ) : s 1 x S -* SI x 
which switches the base of EllaD, with the fiber of E21aD2’ More generally, if
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ti intersects ni number of times in ,~1.* - then we consider the restriction
of the Sl-bundle over ti i to n i -punctured sphere. The boundary of its total

space is a disjoint union of ni tori, each of which is pasted along with another
S 1 -bundle. Let T (,,4*) = TIll...ll Tm be the disjoint union of all such tori in
~(.4*). Thus K (,,4* ) is a graph manifold with graph structure T(.4*).

From this graph manifold A~(.4*) and its graph structure T (,,4.*), we define
a weighted graph G(~4*) as follows. For each ti of ,,4*, one vertex vi with
weight (ti - ti) correspods to the self-intersection number of ii in CP2. Each
torus in the graph structure T (,,4* ) corresponds to an edge of G(~4*). If lines ii
and ii of ,,4* intersect at a point, then an edge of G(,i*) is defined to have vi

and vj as its adjacent vertices. Thus G(~4*) consists of n vertices VI, Vn
and m edges el , ... , em.

Now let us consider the case when the graph manifold K (,,4.* ) with graph
structure T(~4*) is irreducible. First we have the following lemma.

LEMMA 3. l. If A* is an arrangement such that each .~ E A* has at least three
intersection points with other lines of ,A*, then K (,A*) is a reduced graph manifold
with reduced graph structure T (,,4.*).

PROOF. Suppose that the arrangement .A* in satisfies the condition in
Lemma 2.1. Then 4* induced by .,4* satisfies the same condition, since each
added exceptional line Cpl from blowing up of N(A*) must intersect at least
three original lines in ,,4* .

Let M = I~ (,,4* ) - Int ( U ( T (,,4* ) ~ ~ , where U ( T (,,4* ) ~ is a regular neigh-
borhood of T (,,4* ) in K (,,4* ) . We can see that each component Mi of if
corresponds to a line ii in ,A.* and Mi is an Sl-bundle over an ni-punctured
sphere Bi 3 by our assumption). So Mi is not homeomorphic to a

solid torus (S 1 x D2), an S 1-bundle over the annulus, or an S 1-bundle over the
Mobius band for each i = 1,..., n . Thus the situations from (W 1 ) to (W9)
except (W2) are excluded. (W 10) is obviously not true here. With regard to
the exclusion of (W2) by looking at the glue map f, one can see that fibers
of Ml and M2 are representative of the two generators of respectively,
when Ml and M2 are glued together along 8 (U(Ti)) . D

On the other hand, if there is a line f in ,,4.* that contains at most two

intersection points, then we have only the following cases.

(Case 2a) i contains no intersection point. It follows that ,,4* = (I). Then

K(A*) = ~(~4*) is an Sl-bundle over the two-sphere, which is

precisely case (W 10) of Definition 2.6. So K (,,4*) is not a reduced
graph manifold.

(Case 2b) t contains only one intersection point. Thus ,~4.* is a pencil. The
component of M = K(Ã*) - that corresponds to I
is homeomorphic to S 1 x D2 and its meridian curve { p } x S 1 in

x D2) is homologous to a fiber of an adjacent component of
M by the glue map f. So (W4) of Definition 2.6 is true, and

K (,,4*) is not a reduced graph manifold.
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(Case 2c) .~ contains exactly two intersection points Yl and Y2. So their

multiplicities t(yi) and t (y2) are at least two. There are two further
subcases.

(Case 2c-i) t (yl ) = t (y2) - 2. Then ,,4* is a triangle; that is, ,,4* has ex-

actly three lines i2, i3 and three intersection points yl, Y2, Y3.
Clearly we have K (,A* ) = K (,,4* ) with graph structure T (,~4* ) =

and M - Ml11M211M3(= K (,,4* ) - U ~ T (,,4 * ) ) ) .
Their relations are as follows: .~1 H Ml, i2 ~ M2, i3 H M3;

Ti (i = 1, 2~ 3).
So Ml, M2 and M3 are SI-bundle over the annulus (i.e., T x I),
which means that (WI), of Definition 2.6 is satisfied here. Hence
K (,,4* ) is not a reduced graph manifold.

(Case 2c-ii) t (yl ) or t (y2) &#x3E; 2. To fix our notation, we shall assume that

t (y 1 ) &#x3E; 2. Then the exceptional line il 1 obtained by blowing up y 1
contains at least three intersection points. Let M (respectively, M 1)
be the component of if that corresponds to .~ (respectively, 
Thus M is an SI-bundle over the annulus, and M1 is an Sl-bundle
over nl-punctured sphere 3). So (WI) of Definition 2.6 is
valid here.

Thus we have the following proposition.

PROPOSITION 3.2. Suppose that A* is an arrangement in CP 2. Then K (I*) is
a reduced graph manifold with a reduced graph structure T (,A.*) if and only if each
line of A* contains at least three intersection points.

Recall the following theorem and lemma in Section 7 of [21 ] .

THEOREM 3.3. A reduced graph manifold is irreducible.

LEMMA 3.4. Let M be a reduced graph manifold with the graph structure
T = Tl U ... U Tn. Then Tl is compressible if and only if one component of
M - Int ( U (T)) which is pasted along U (Tl ) is a solid torus.

From these results we have the following corollary.

COROLLARY 3.5. If A* is an arrangement with at least three intersection points
on each of its line or A* is a triangle arrangement, then K (,~1.*) is irreducible and
T (,,4*) is an incompressible surface system in K (,~1.*).

4. - Two arrangements ,,4* and B* in with the same topological type

Throughout this section, let ,~4* and ~3* be two arrangements in 

M(A*) = Cp2 - N(A*), M(B*) = N(B*), and let cp : M (.A* ) -~ M(B*)
be a homeomorphism.
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PROPOSITION 4.1. Let U (A*) and U (B*) be two regular neighborhoods of ,A*,
and B* respectively. Then U (,,4* ) - N(A*) is homotopic equivalent to U(B*) -
N(B*).

PROOF. Let Ul (B*) be an arbitrary regular neighborhood of N(B*). Then
K := is a neighborhood of N(A*). There is a regular neigh-
borhood U(A*) of N(A*) such that U(A*) C K. S o 2 

i.e., V := (~[(~(~))1)~ ~ (cp(KC))C = Since V is a neighborhood
of N(B*), we can choose a regular neighborhood U2(B*) of N(B*) such that
U2 (B*) C V. Thus we get

Observe that V - N (B*) is exactly ~o (U (A*) - N (A*)). So we have

where i 1 and i2 are inclusion maps. Since (i - l, 2) are regular
neighborhoods of N (,l3* ) in CIfD2 and can be contracted to U2(8*),
the inclusion map i = i 1 o i 2 : U2(B*) - N (,t3* ) ~ U1 (,l3* ) - N (,~3* ) induces
an isomorphism i* : N (,3* ) -- N (,l3* ) . Consider

(i o w) o o i 2 ) = i . We have the following induced maps

for j &#x3E; 1. Since i* = (ii 1 0 ~p)* o (~p-1 o i2)*, (i 1 0 ~p)* is onto and (~p-1 o i2)* is
one-to-one.

Similarly, we can show that is onto and is one-to-one. It
follows that In view of Whitehead

theorem, Ul (B*) - N(B*) is homotopic equivalent to U (A*) - N(A*). Since

any two regular neighborhoods of N(B*) (or N(A*)) are homotopic equivalent,
the proposition follows immediately. 0

REMARK 4.1. More generally, by the same proof, the above proposition
is still true for any pairs (X, K), (Y, H) of complexes, such that X - K is

homeomorphic to Y - H.

Observe that K(A*), the boundary of an arbitrary regular neighborhood
U(A*) of N(A*), is homotopic equivalent to U(A*) - N(A*). So we have the
following corollary.

COROLLARY 4.2. If K(A*) and K(B*) are boundaries of regular neighbor-
hoods U(A*) and U(B*) of N (A*) and N(B*) respectively, then K (,,4* ) "’ K (B*)
homotopically.

COROLLARY 4.3. Let 4* (respectively ,L3* ) be the induced arrangement from A*
(respectively B*) by blowing up. Then K (,A.*) ’~’ K (,l3*) homotopically.
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Before we can proceed, we need to recall a result of Waldhausen.

DEFINITION 4.1. Let M and N be compact orientable 3-manifolds. An

isomorphism 1/1 of 7r,(N) onto Jrt (M) is said to respect the peripheral structure
if for each boundary surface F of N there is a boundary surface G of M such
that C R and R is conjugate in to where i*
denotes inclusion homomorphism.

THEOREM 4.4 (6.5 of [22]). If M and N are irreducible and boundary-
irreducible compact orientable three-manifolds and 1/1 is an isomorphism from
nl (N) onto 7r, (M) which respects the peripheral structure and M is sufficiently
large, then there exists a homeomorphism f : N --~ M that induces 1/1.

LEMMA 4.5. K (,,4.* ) and K (9*) are boundary irreducible, and ~p* : Jti ( K (,A* ) )
~ ~tl (K (,~3*)~ respects the peripheral structure.

PROOF. The lemma follows immediately from the fact that 8 K (I*) = q5 =
aK(8*). D

LEMMA 4.6. If A* is an arrangement with at least three intersection points
on each of its line, then K (,~1*) is reduced, irreducible, boundary irreducible and,
sufficiently large.

PROOF. By Proposition 3.2 and Corollary 3.5, we need only to show that
K (,,4.* ) is sufficiently large. In view of a result of D. Mumford [14], we know
that the first Betti number of K (,~4*) is at least p if I* is p-connected (i.e., p
is the minimal number such that there exist some points Pi,... , Pp E 
making { Pl , ... , Pp} a tree). By Lemma 2.2 (b), K (,r4.* ) is sufficient

large. 0

From Corollary 4.3 and Theorem 4.4 of Waldhausen we have the following
proposition.

PROPOSITION 4.7. If A* and B* are two arrangements in CJID2 such that each
of their lines contains at least three intersection points and if M(A*) and M(B*)
are homeomorphic, then for K (,,4*) and K (,l3*), the boundaries of arbitrary reg-
ular neighborhoods U(Ã*) and U(r3*) of N (,,4* ) and respectively, there
is an isomorphism q5 from Jrl(K(Ã*)) onto and a homeomorphism
f : K (,A* ) -~ that induces ø.

Now we need to review some results of Waldhausen [21] before we can
prove our theorem.

DEFINITION 4.2. Let M be a reduced graph manifold. We say that M has
the Waldhausen property if none of the following three cases occurs.

(El) M - Int(U(T)) consists of the bundle over the two-sphere with three-
punctures and three solid tori,

(E2) M - Int(U(T)) consists of the bundle over the Mobius band and one
solid torus.

(E3) T =,4 0 and M - Int(U(T)) is torus x interval.
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LEMMA 4.8. If A* is an arrangement with at least three intersection points
on each of its lines, then K (.,4*) is a reduced graph manifold with the Waldhausen
property.

PROOF. This follows from Lemma 4.6 and Definition 4.2. D

In Section 9 of [21], for a reduced graph manifold M that satisfies the Wald-
hausen property, a weighted graph G (M) was introduced. It can be described

axiomatically as follow.

(G 1 ) G (M) has only finitely many weighted vertices ttl, i.c2, ... and finitely
many directed edges tri, t2 , .... For each edge, each of its end point
is incident with one vertex. G(M) is connected.

(G2) Each vertex Jvtj is assigned a triple of integers (gj, rj, sj). Here rj
is nonnegative. When rj = 0, sj is arbitrary. When if rj &#x3E; 0, sj is

replaced by a dash (or is omitted). gj is arbitrary. (As for the graph
manifolds discussed in our paper, each vertex ltj corresponds to a
component Mj of M - Int ~ U ( T ) ~ with weight given by (gj, rj, sj).
Here gj is the genus of the base of Mj, rj is the number of boundary
surfaces that are not connected to any component of T, and sj is the
cross-section obstruction when rj is zero).

(G3) If a vertex of degree one is assigned the triple (0, 0, sj), it is replaced
by a dash.

(G4) (a) If G(M) has only two vertices, both two vertices are not weighted
by a dash.
(b) A vertex of degree zero is not assigned the triple (0, 0, sj) or

(c) A vertex of degree two is not assigned the triple (0, 0, sj).
(d) A vertex of degree one is not assigned the triple (0, 1, -).
(e) If G(M) has three vertices that are weighted by dashes, and only
three edges, then the fourth vertex is not assigned (o, 0, s).
(f) If G (M) has one vertex that is weighted by a dash, and only one
edge, then the second vertex cannot be weighted (-1, 0, 

(G5) If edge ri is incident with a vertex weighted by a dash, then ri is
directed to this vertex and is weighted by a pair of integers (oti, 
where ai , fii are co-prime and 1 :s fJi  ai.

(G6) If the vertices that are incident with ri are not weighted by dashes,
then the edge ri is weighted with a pair of integers (ai,,6i), where
ai and fli are co-prime and  ai .

(G7) The following graphs or subgraphs are not considered.


