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Periodicity and Almost Periodicity in
Markov Lattice Semigroups

EDOARDO VESENTINI

Let K be a compact metric space. A continuous semiflow io : 
on K defines a strongly continuous Markov lattice semigroup T : M+ -~ 
acting on the Banach space C ( K ) of all complex-valued continuous functions
on K (endowed with the uniform norm) and expressed by

for all f E C(K) and all t E R+.
If x E K is a periodic point of 0, the functions t H f (x)) are continuous

periodic functions on R+ for all f E C(K) : a fact which imposes constraints on
the spectral structure of the infinitesimal generator X of T. Milder restrictions
on the spectrum of X are implied by the existence of almost periodic orbits, of
asymptotically stable points and of non-wandering points for 0. Some of these
constraints, together with their consequences on the behaviour of T and of 4&#x3E;,
are discussed in this article.

In its final section, the paper corrects an error in [5], that was kindly
pointed out to the author by C. J. K. Batty.

1. The following results have been established in [5]. Let 9 be a complex
Banach space and let T : JR+ ~ be a uniformly bounded, strongly con-
tinuous semigroup of continuous linear operators acting on ~. Let X : D(X) C
9 -+ 9 be the infinitesimal generator of T. Let M &#x3E; 1 be such that M

for all t &#x3E; 0.
Consider now the dual semigroup T+ : R+ - ~C(~) of T, and let

X+ : D(X+) C ~+ -~ ~+ be its infinitesimal generator (see, e.g., [3] for
the definition). For g E E and k E ~’, the topological dual of ~, (g, h) will
denote the value of k on g. For () E R, the set of all k in the topological
dual E’ of £ for which the limit

exists for all f E 9, is a linear subspace of S’ which contains ker(X+ - (B

R(X+ - (where R(X+ - is the closure of the range R(X+ - of
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X+ - Since £’ is sequentially weak-star complete, the equation

defines a continuous linear operator Rie : H’io - £’ which is a projector with
norm  M, whose range is ker(X+ - and whose restriction to ker(X+ -

X0/) coincides with the spectral projector defined on ker(X+ -
by the ergodic theorem applied to X+ - 

The hypothesis on the existence of the limit (2) for all f E E and all
0 E R, is satisfied if h E ~’ is such that the functions t h-~ (T (t) f, À) are

asymptotically almost periodic for all f E ~.

2. Let K be a compact metric space. To avoid trivialities, suppose that
K contains more than one point. Let 0 : R+ x K - K be a continuous
semiflow on K, (see, e.g., [1]), and let T : ]R+ ~ be the strongly
continuous Markov lattice semigroup, acting on the Banach space E = C(K) of
all complex-valued continuous functions on K, endowed with the uniform norm,
defined by (1) for all f E C(K) and all t E R+. The infinitesimal generator X
of T is a derivation.

For any t E R+, T (t) is a linear contraction; it is an isometry if, and
only if, ~t is surjective, and is a surjective isometry if, and only if, ~t is a

homeomorphism of K onto K.
If

and if t &#x3E; 0, then

Thus, if (4) holds, I  I I f I I for ail s &#x3E; to . Equivalently, if there
exists E &#x3E; 0 such that I I for all g E 6, = I I g I I for

all g E F and all S E [o, E ] . Thus, if (4) holds, then to &#x3E; e. Suppose now that,
furthermore, = I I g I I for all g E E and some S E (0, E ) . Then

contradicting (4). The set

is either empty or an open half line.

PROPOSITION 1. If T (t) is a contraction of E for any t ~ 0, the set of all t for
which T (t) is an isometry is either R+ or the empty set.
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In other words, either S = 0 or S = ]R~ (1) . *
PROOF. Rj, there is c &#x3E; 0 such that (0, e] n S = 0, and therefore

T(t) is an isometry for all t E (0, E]. Let (S # 0 and let) ti = inf S. Hence

tl &#x3E; 0. Choose or in such a way that

Then E S and Since

T (tl - or) is not an isometry, contradicting the definition of 0

As a consequence of this result and of Theorems 1 and 2 of [4], the

following theorem holds.

THEOREM 1. Ifot is surjective, f ’or some t &#x3E; 0, the derivation X is a conservativeand m-dissipative operator whose spectrum is non-empty.
Let x E K be such that the functions

are asymptotically almost periodic on R+ for all
8 E R, the limit

Then, for any

exists for all f E C(K), showing that 8x E As before, let
be defined bv

is (represented by) a Borel measure on K, i.e.,

(I)The proof holds for any normed vector space E and for every map T : I1~+ -~ C(,E) such that
T (t) is a contraction and T (tl + t2) = T (tl ) o T (t2) for all t, tl, t2 E 



832

In particular,

for all and s &#x3E; 0.

As a consequence of the ergodic theorem for asymptotically almost periodic
functions, 0 if, and only if, o is a frequency of the asymptotically
almost periodic function t H for some f E C (K) B [0), i.e., if, and
only if, [5], i 8 E where pa denotes the point spectrum. For
0=0, Ro Sx is a Borel probability measure which is q5s -invariant for all s &#x3E; 0
and whose support is O + (x ) ~2~ .

If x is a periodic point of the continuous flow 0, the functions t H
are periodic for all f E C(K), and the support of Ro 8x is the

forward orbit O+(x). Let os be uniquely ergodic for some s &#x3E; 0, i.e., [6],
suppose that there is only one cps-invariant Borel probability measure it on K.
If xo and x 1 are two periodic points of 0, then It = = Ro 8xl * That

proves

THEOREM 2. If 0 is a continuous flow on the compact metric space K, and if
CPs is uniquely ergodic for some s &#x3E; 0, then 0 has a periodic orbit at most.

3. Let 0 be topologically transitive, i.e., O+(xo) = K for some xo E K.
If K E C is an eigenvalue of X, and gl, g2 are two eigenfunctions of X
corresponding to K, then # 0, and therefore

(2)This fact can be viewed as a generalization of Theorem 6.16 of [6] to continuous semiflows.



833

for all t E R+, showing that dimc ker(X - K I) = 1. Furthermore, the eigen-
functions corresponding to K = 0, i.e. the 0-invariant continuous functions, are
constant on K.

If f E ker(X - K 1 ) B {0} and x is a periodic point of 0, with period r, then

Therefore, either Ki - 2nni for or f (x) = 0. By the same
argument, if w is another eigenvalue of X and h E then either

= 2mni for some M E Z, or h (x ) = 0. Hence, if f (x ) h (x ) 7~ 0, K and cv
are linearly dependent over Z.

Suppose again that 0 is topologically transitive. Then the sets {y e K :
f ( y ) ~ 0 } and { y E K : ~(y) ~ 0 } are dense open sets of K, and the following
theorem holds.

THEOREM 3. If the continuous semiflow 0 is topologically transitive and the
set of its periodic points is dense, either the point spectrum of X is empty, or all the
eigenvalues of X are rational multiples of some point of iR.

If there is x E K such that the functions t H f (ot (x)) are asymptotically
almost periodic for all f E C ( K ), then

for all t &#x3E; 0 and all 0 E R. Hence, either 0 = -i ~ or

If I then

If WEe is an eigenvalue of T (s) for some s &#x3E; 0, there is some n E Z such
that 

~ ~

and the eigenspace is the closure of the linear subspace of C (K)
spanned by all ker(X - ~n I ) for which §n E pa X), [2].
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If there is a frequency 0 of the asymptotically almost periodic function
t H for some f E C ( K ), such that is not an eigenvalue of
T(s), then (5) holds for all eigenfunctions g of X. Suppose now that, for some
s &#x3E; 0, 0, has a topological discrete spectrum, i.e., all eigenfunctions of T (s )
span a dense linear suspace of C(K). Thus, (5) - holding on a dense subspace
of C(K) - implies that Rig 6x = 0: which is absurd. Hence

and therefore

for some n E Z. Since E pa(X’), where X’ is the dual operator of X,
the following proposition holds.

PROPOSITION 2. If x E K is such that the functions t F--* (x)) are asymp-
totically almost periodic for all f E C(K) and if os has a topological discrete
spectrum for some s &#x3E; 0, then pa(X’) n i R ~ 0.

4. Let d be a distance defining the metric topology of K. A point x E K
will be said to be an asymptotically almost periodic point of 0 if, for all 3 &#x3E; 0,
there exist a &#x3E; 0 and 1 &#x3E; 0 such that every interval [s, s ~- I], with s &#x3E; 0,
contains some T such that

for all t &#x3E; a. Since

if x is an asymptotically almost periodic point of 0, the function JR+ 3
t H d (ot (x), x) is asymptotically almost periodic.

If (6) is only required to hold when t = 0, the point x is said to be almost
periodic.

Since K is compact, for any f E C(K) and any E &#x3E; 0, there exists 8 &#x3E; 0
such that, if  8, then I f (X I ) - f (x2 ) ~  E . If x is asymptotically
almost periodic for ~, choosing a and I as above, then

That proves the following lemma.

LEMMA 1. If x E K is an asymptotically almost periodic point of the continuous
semiflow 0, for every f E C(K) t ~ is asymptotically
almost periodic.
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The point will be said to be asymptotically stable for the semiflow 0 if,
for every E &#x3E; 0 and every a &#x3E; 0, there is some t &#x3E; a such that

All almost periodic points are asymptotically stable.
Let 0 : R x K - K be a continuous flow, and let T : 1R ~ £(C(K)) be

the strongly continuous group defined by ( 1 ) for all t E R and all f E C(K).

THEOREM 4. Let x E K. If the functions R 3 t H f (ot (x)) are almost periodic
for all f E C (K), the point x E K is asymptotically stable for the restriction of q5
to R+.

PROOF. If x E K is not asymptotically stable, there are some E &#x3E; 0 and
some a &#x3E; 0 such that

Let B(x, e) be the open ball, with center x and radius E for the distance d.
Let f E C ( K ) be such that

Then

for all 8 E R. Hence, all the frequencies of the almost periodic function
t ~ f (4Jt (x)) vanish. Thus the function is constant, contradicting (9).

COROLLARY 1. If the group T is weakly almost periodic, every point of K is
asymptotically stable.

Suppose there is some c &#x3E; 0 such that

xb will then be called a c-contractive semiflow (a contractive semiflow when
c = 1 ).

If (10) is satisfied and if . E K is an almost periodic point of 0, (6) holds
for all t &#x3E; 0. As a consequence, the function t H (x), x) is asymptotically
almost periodic.

PROPOSITION 3. All asymptotically stable points of the continuous semiflow 0
are non-wandering.

is c-contractive forsome c &#x3E; 0, all non-wandering points are asymptotically
stable.
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PROOF. If x is asymptotically stable, for all E &#x3E; 0 and all a &#x3E; 0 there is
some t &#x3E; a satisfying (7). Since 4Jt(x) E B(x, 2E), then

showing that x is a non-wandering point.
Conversely, let x be a non-wandering point, and suppose there are Eo &#x3E; 0

and a,, &#x3E; 0 such that

Choose io &#x3E; a,,, and let a E (0, 2 ). There exists 8 &#x3E; 0 - which can be
assumed such that, if d (x, y)  8, then -0,0 (y))  a, i.e.,

Since x is non-wandering, there is some r a io such that

and therefore, being

also

Since, by (10),

whenever I then

Choose any

Thus,

contradicting (11).
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5. If the forward orbit of x E K is not dense, there are u E K and r &#x3E; 0
such that

If (10) holds, and if y E K is such that t , then

and therefore

Thus,

That proves

LEMMA 2. If ( 10) holds, the set of points of K whose forward orbits are dense,
is closed.

Let ~S ( K ) - K for some s &#x3E; 0. Then, the set of points of K whose
forward orbits are dense, is either empty or a dense Gs, [6]. Hence, the

following proposition holds.

PROPOSITION 4. If (10) holds, and if os is surjective and topologically transitive
for some s &#x3E; 0, then every point of K has a dense orbit.

As a consequence, 0 has no fixed point and a periodic orbit at most. If x
is a periodic point with period T &#x3E; 0, then

Thus, K is homeomorphic to the circle RBrZ and the map t H is

topologically conjugate to the the restriction to R+ of the covering map R --*
1RBííZ.

If y ~ x, then y = 0, (x) for some r E (0, r), and therefore

Hence, the period o~ of y is a j r, and x = for some t E (0, a). Being

then r j a, and, in conclusion, o~ = i, proving thereby the following theorem.
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THEOREM 5. If the c-contractive continuous semiflow 4) : R+ x K --~ K has a
periodic orbit and is such that os is surjective and topologically transitive for some
s &#x3E; 0, then K is homeomorphic to a circle, and 0 is topologically conjugate to the
restriction to of the group of rotations OfR2.

THEOREM 6. If ( 10) holds and if the set of all periodic points of the c-contractive
semiflow 4) is dense in K, then 0 is asymptotically almost periodic at all points of K.

PROOF. Let x E K and let (xv) be a sequence of periodic points Xv E K
converging to x. If t &#x3E; 0,

For any E &#x3E; 0 there is an index vo such that, whenever v &#x3E; vo,  6.

Let T &#x3E; 0 be the period of Then, for any integer p &#x3E; 1,

Since every interval [s, s + 2-r ] contains some put, the point x is almost periodic
and therefore asymptotically almost periodic. 0

6. C. J. K. Batty has kindly pointed out to me that Theorem 6 of [5] is
not correct. In fact, the inclusion lenght 1 &#x3E; 0 appearing in the inequality (16)
of [5] depends on x and À, and - as x and h vary - may increase to oo. To
make (16) a uniform estimate - i.e., an estimate holding for all x and X chosen
as in i) and ii) of [5] - assume that T fulfills, besides i) and ii), the following
condition:

iii) there exists e, e (0, ,J2) such that, for every choice of x and h satisfying
i) and such that (x, À) = 1, the set of lenghts 1 &#x3E; 0 for which (12) holds is
bounded.

A correct version of Theorem 6 of [5] can be phrased as follows.

THEOREM 7. If the function (T(e)x, À) is asymptotically almost periodic
for all x E D(X) and all h e D(X+) and if i) and iii) hold, then the set

U pa (x+) n i R is discrete.

EXAMPLE. Let T be the unitary group in the Hilbert space 12 generated by
the self-adjoint linear operator X defined on the standard basis {en : n E Z} of
12 by

0, and by X eo = 0. The group T is almost periodic and satisfies iii),
but is not uniformly almost periodic.

Condition iii) shall be added to the hypotheses of Theorems 9 of [5].
Theorem 10 can be correctly stated, with the same notations as in [5], as

follows.
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THEOREM 8. Let the semigroup defined in B of [5] be strongly asymptotically
almost periodic. If pa (X) = 0, the function T (.)x vanishes at for all x E
C (K). If pa(X) =/= ø, and if iii) holds, there is (o &#x3E; 0 such that

and, for every x E £, T (e)x is the sum of a continuous function vanishing at 
and of a periodic function with period w.

REFERENCES

[1] W. ARENDT - A. GRABOSCH - G. GREINER - U. GROH - H. P. LOTZ - U. MOUS-

TAKAS - R. NAGEL (ed.) - F. NEUBRANDER - U. SCHLOTTERBECK, "One-parameter Semi-

groups of Positive Operators", Lecture Notes in Mathematics, n. 1184, Springer-Verlag,
Berlin/Heidelberg/New York/Tokyo, 1986.

[2] E. HILLE - R. S. PHILLIPS, "Functional Analysis and Semigroups", Amer. Math. Soc. Coll.
Publ., Vol. 31, Providence R.I., 1957.

[3] A. PAZY, "Semigroups of linear operators and applications to partial differential equations",
Springer-Verlag, New York/Berlin/Heidelberg/ Tokyo, 1983.

[4] E. VESENTINI, Conservative Operators, in : P. Marcellini, G. Talenti and E. Vesentini (ed.)
"Topics in Partial Differential Equations and Applications", Marcel Dekker, New York/Basel

Hong Kong, 1996, 303-311.
[5] E. VESENTINI, Spectral Properties of Weakly Asymptotically Almost Periodic Semigroups,

Advances in Math. 128 (1997), 217-241.

[6] P. WALTERS, "An Introduction to Ergodic Theory", Springer-Verlag, New York/Heidelberg/
Berlin, 1981.

Politecnico di Torino

Dipartimento di Matematica
Corso Duca degli Abruzzi 24
10129 Torino, Italy


