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Harmonic Maps on Planar Lattices

STEFAN MULLER - MICHAEL STRUWE - VLADIMIR 0160VERÁK

Abstract. We show that a sequence of harmonic maps from a square, two-dimen-
sional lattice of mesh-size h to a compact Riemannian manifold N with uniformly
bounded energy as h --~ 0 weakly accumulates at a harmonic map u : T 2 ~ N on
the flat two-dimensional torus.

1. - Introduction

Let N be a smooth, compact Riemannian manifold without boundary of
dimension k. By Nash’s embedding theorem we may assume that N C R"
isometrically for some n. We are interested in understanding the relation between
(smooth) harmonic maps u: T2 = I~2~7~2 ~ N C R" on the torus, characterized
as critical points of the energy

with density

subject to the "target constraint" v (T2) C N, and their counterparts on a discrete
domain.

Our main result in this paper states that harmonic maps with uniformly
bounded energy on a lattice, as the mesh-size h - 0, N, weakly accu-
mulate at a harmonic map on the torus.

The above result may be of relevance for numerical purposes and may
have implications for questions regarding existence of harmonic maps under
constraints.

In fact, in a sequel to this paper [12] we will use a spatially discrete
ansatz to give an alternative proof for the existence of global weak solutions to
the Cauchy problem for wave maps on (1 + 2)-dimensional Minkowski space,
established in Müller-Struwe r 111 by a different method.
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A core ingredient in the analysis - both in the stationary and in the time-
dependent case - are the weak compactness results of Freire-Miiller-Struwe [7],
[8] which make contact with work of Bethuel [1], [2], Evans [5], Helein [9] and
stress the importance of Hardy space estimates for Jacobians, due to Coifman-
Lions-Meyer-Semmes [3], and the H’-BMO-duality, due to Fefferman-Stein [6].

2. - Notation

Denote as T = R 2/Z2 the flat 2-dimensional torus, and let x = (x 1, x2)
denote a generic point in T; also let = 1, 2, denote the standard basis
for R 2

For h &#x3E; 0 with E N consider the lattice Th = with generic
point xh = (x~ , xh ) . For I E N and xh E Th also let

denote the square of edge-length l h with lower left corner xh and for x E T
denote as the unique point E Th such that x E Q h 

Given a discretely defined map u h : Th - R", we may J extend u h to T by
letting

The forward and backward difference quotients in direction ea, defined as

for x E Th, a = 1, 2, then also trivially satisfy the relation

for x ~ T.

Finally, we also introduce forward and backward means

and translates

for x E T, a = 1, 2.
Observe that, in particular, there holds

moreover, we have

for any a = 1, 2.
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3. - Difference calculus

For completeness, we quickly review the basic formulas from difference
calculus that we will need.

3.1. - Product rule

Let -~ R. Then

and similarly for a = 1, 2.
In particular, by (7) we have

In view of (10), later we will be able to avoid unnecessary shifting of
arguments by working with backward differences.

3.2. - Discrete integration

For uh : Th ~ R we define the integral of uh as

where in the latter integral uh denotes the piecewise constant extension of uh
as in (3). Obviously, we have

for any uh : Th -~ R, a = 1, 2. Hence from (9) and (7) we obtain the following
formula for integrating by parts

in particular,
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3.3. - Dirichlet integral

For uh as above, denote its energy density at a point x E Th as

and define

We compute the first variation of Eh at uh in direction vh as

where / is the discrete (5-point) Laplacian.

3.4. - Exterior calculus

Differential forms on Th can be most easily expressed in terms of the
standard basis dx", a - respectively. A 1-form cph on Th
then can be identified with a pair of functions = 1, 2, such that cph =

similarly a 2-form bh on Th can be identified with a function f3h
such that bh = f3hdxl A dx2.

Two 1-forms cph = and 1/Ih = are contracted by
letting

also let

The Hodge *-operator acts on the basis elements as

and * is linear with respect to multiplication by functions. In particular, there
holds
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and

for any p-form cph on Th.
For a function u h : Th -~ R or a 1-forum I the discrete

differential is defined as

The co-differential operator is given by

Note that for any u h : Th ~ R and any 1-form cph on Th we have

that is, _3±h is the adjoint of d±h with respect to the inner product on forms
defined by contraction and the L2-inner product on Th.

Moreover, a direct computation shows that

The Laplacian on p-forms (with the analysts’ sign convention) is defined as

By (8) there holds Oh = Moreover, it is easy to check that Ahacts as
a diagonal operator with respect to the standard basis on forms; in particular,
for a 1-form cph = La we have

3.5. - Hodge decomposition

As in the continuous case, the following result holds.
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PROPOSITION 3.1. Any cph = ¿a CPadxa may be decomposed uniquely
as 

....w ... ,,:I .

where

PROOF. Letting ah, bh be the unique solutions to the equations

normalized by (15), for the remainder ch = cph - dhah _ 8hbh we obtain

as claimed. 0

REMARK 3.2. Solving (16) for ah can be achieved, for instance, by mini-
mizing the functional

confer (14), and similarly for bh .

4. - Interpolation and discretization

In addition to the trivial extension of a map u h: Th -~ R to the torus,
defined by 3, we introduce the bilinear extension of u h , defined by letting

for E T.

The following result is immediate from the definition.

LEMMA 4.1. We have Iih E n L ’ (T), and with a uniform constant C there
holds
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In view of Lemma 4.1 iii) we will say that u h - u weakly in H 1 ~ 2 ( T ) as
h - 0 if uh - u weakly in H 1 ~2 (T ), and similarly for vector-valued maps.

Observe, however, that for uh : Th -~ N C R" the range of uh in general
will not lie in N. On the other hand, we have

LEMMA 4.2. Suppose uh ~ u weakly in H 1,2 (T; as h - 0, where
u h : Th ~ N. Then u (x ) E N for almost every x E T.

PROOF. For 3 &#x3E; 0, h &#x3E; 0 let

By Lemma 4.1 i) then there holds

and hence

Here, ,CZ denotes 2-dimensional Lebesgue measure. Since iih ~ u weakly in
R) and hence strongly in L2(T; JRn), after passing to a sub-sequence, if

necessary, we may assume that uh - u almost everywhere as h - oo. Thus,
for any 3 &#x3E; 0 we infer

as claimed. 0

In contrast to interpolating functions uh : Th - R , discretizing functions
cp E is somewhat subtle, as such maps, for instance, are only defined
pointwise almost everywhere. Moreover, interpolating the discretized map cp
should recover the regularity properties of w as much as possible.

Of the many possible choices we define as a discretized function cp the

map
I-

Note that if w is the trivial extension of a map 1/Ih: Th -~ R, defined by (3),
then cph = 1/Ih; however, in general, and even if w is piecewise bilinear, cp ~ cph,
the bilinearly interpolated discretized map.

LEMMA 4.3. Let w E H 1 ~2 (T ). Then with a uniform constant C there holds
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PROOF. i) Estimating, for x E T,

we obtain

ii) By the Lebesgue differentiability theorem

for almost every x E T. Moreover, for any Q c T we can estimate

if ,C2 (S2)  JLo(8), by absolute continuity of the Lebesgue integral. Thus, the
family of indefinite integrals uniformly absolutely continuous,
and the assertion follows from Vitali’s convergence theorem. D

5. - Harmonic maps

~. map uh : Th - N c R" by definition is harmonic if uh is a critical point
for Eh among maps vh : T ~ N ; that is, if the first variation
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for all where

for all

is the pullback tangent bundle, with Tp N denoting the tangent space to N at a
point p E N. By (14), equation (17) is equivalent to the relation

where "1" means orthogonal with respect to the scalar product (.,.) in the

ambient 

Introducing a local frame vk+1, ... , vn for the normal bundle near a

point p = E N, we an also locally express (18) in the form

The coefficient functions À1 can be determined as

Also recall that a smooth map u : T ~ N C JRn is harmonic if u is critical for
E among maps v : T 2013~ N, or, equivalently, if

where A(p): TpN x Tp N ~ is the second fundamental form of N C R.

Locally, with respect to a smooth local frame vk+ 1, ... , Vn for we have

where

denotes the second fundamental form of vl , k  I  n.

Our main result then is the following.

THEOREM 5. l. For a sequence of numbers h --~ 0, li-1 1 E N, suppose uh: Th -
N C JRn is harmonic and uh ~ u weakly in N) as h - 0. Then u is

harmonic.
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6. - Equivalent Hodge system

As observed by Christodoulou-Tahvildar-Zadeh [4] and Helein [9], we may
assume that T N is parallelizable. Let e 1, ... , be a smooth orthonormal frame
field on N, such that ~e 1 ( p), ... , e,~ ( p)) is an orthonormal basis for Tp N at

any p E N .
Given u h : Th ~ N, and a family of rotations Rh : Th -~ S O (k), then

is a frame for 
Let 

~

Then

It follows that uh : Th -~ N is discretely harmonic, if and only if

Letting vk+1, ... , vn be a smooth local frame for the normal bundle, we can
expand

The presence of the error term 17h li,a marks one major difference between the
discrete and continuous cases. 

’
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LEMMA 6.1. There is a constant C = C (N) such that

PROOF. Since uh: Th ~ N and since for p, q E N, with C = C (N) we
have

it follows that

Hence the second term defining 171 h can be estimated as claimed. For the first
it suffices to note that

In the following we denote

With this notation then uh is discretely harmonic if and only if there holds

Observe that

Similarly, if u E N) is weakly harmonic and if ei = o u is a
frame for with connection 1-forms

then, letting

the equation holds

(23)

and conversely.
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7. - Coulomb gauge

Equations (22), (23) involve an arbitrary choice of frame for the pull-back
bundle. We may use this gauge freedom of rotating the frames to fix a frame
with particularly nice analytic properties. Following Helein [9], we impose
Coulomb gauge, as follows.

For each h choose Rh : Th -~ S O (k) such that

Observe that trivially

LEMMA 7.1. Let Rh : Th - SO (k) satis, fy (24). Then there holds the equation
for the connection I -form associated with the frame

PROOF. For rh = r ~ : Th -~ TidSO(k) = so(k), letting t

and using (9), (11), and (10) we compute

where we also used anti-symmetry rt = -rt to obtain the last equation.
Recalling that

we infer that

for all rh E so(k). Since by (9) we have

we conclude that

as claimed.
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In view of the gauge condition we may assume that

Let

be the Hodge decomposition of In view of the gauge condition 8hwt = 0,
it follows that

Moreover, we have

Hence we may assume

where

Let Then

Note that

Thus, we have
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8. - Convergence

Passing to the limit h ~ 0 in the distribution sense is no problem for the
terms c ~ . The term

is easily dominated

in the same way as see Lemma 6.1. These and similar error terms will
be dealt with later. 

’

Now we concentrate on the term

This term has the structure of a Jacobian determinant. In the continuous limit
h = 0 concentration-compactness arguments yield weak convergence results for
such terms. Our aim in the following will be to reduce the discrete case to the
continuous one.

Choose a smooth testing function cp E 1. Discretize cp to
obtain a map Th - R. We intend to prove

as h - 0.
Let v h = fJt, w h = ~ . cph for brevity. Note that u h - u, v =

fJij, wh --r w = ejcp weakly in HI,2 as h ~ 0.

LEMMA 8.1. For any uh , vh , wh : Th -~ JRn there holds

where

with an absolute constant C.
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PROOF. It suffices to prove the first estimate; the second is obtained replacing
forward by backward difference quotients. Moreover, considering each triple of
components separately, we may assume that n = 1 to simplify the notation.

We have

Taking the difference of these two equations, since = the middle
terms on the right cancel. Integrating the resulting identity and shifting, we thus
obtain

where 
r r r r I I r I I I r I . I .

can be estimated as claimed. 0

Let be the bilinearly interpolated functions uh, etc. Observe the
following:

for xh E Th, ~ E Q (0), and similarly for 1Jh and wh . In particular,

for all xh E Th , ~ E Qh(O).
Thus, for instance,

In view of this identity,



728

Shifting coordinates,

bounded like r~3,4, and similarly with 8f and a2 exchanged.
Thus 

’

and by Lemma 8.1 the latter

It follows that

where are all bounded as above.
We can now use the concentration-compactness argument from [8], proof

of Theorem 1.1, based on [10], Lemma 4.3, to pass to the limit in (22). In

fact, [10] implies that, as h ~ 0,

in the sense of distributions, where K is at most countable and I  oo.

For the error terms we have a similar result. We combine all these

terms in a single term satisfying the estimate

with a constant C = C (N) independent of ~p.
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LEMMA 8.2. There exists an at most countable set in T and numbers

Y/j &#x3E; 0 such that, as h ~ 0 suitably, r~h ~ Ej } in measure, where Y/j =

and ¿j 12/3  00.

PROOF. Passing to a subsequence, if necessary, we may assume that ~ 1}
in measure. Let 8 &#x3E; 0. As observed in Lemma 4.2 above, denoting

there holds

Possibly passing to a further subsequence, we may assume E~ 2013~ E’, where
(  oo. 

h

Moreover, for h &#x3E; 0 we have

and for fixed w E Coo (T) we can estimate

while for each xh E E h 3 in view of Lemma 4.1. i) we find

Thus, for 8 &#x3E; 0 we may decompose where

and where for each E E b we have

with

independent of 8 &#x3E; 0. (In the latter estimate we also used concavity of the
function t H t2/3 to obtain the desired bound in case different sequences (xh)
in Eh should converge to the same limit Xj E ~8.) Passing to the limit 6 - 0,
the assertion follows. 0
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Passing to the limit h ~ 0 in (22), thus we obtain the equation

But the left hand side belongs to the space H-1 + Ll which does not contain
any atoms. Therefore all pj and vk must vanish and we find (23), as desired.
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