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A Convex Darboux Theorem

PIERRE-ANDRÉ CHIAPPORI - IVAR EKELAND

Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)
Vol. XXV (1997), pp. 287-297

In memory of Ennio de Giorgi

Abstract. We give a necessary and sufficient condition for a vector field to be a
linear combination of gradients of concave functions with positive coefficients.

Let w be a smooth 1-form, defined on a neighbourhood Ll of some point
x in When is (J) a linear combination of K differentials? In other words,
given a N, when can we find 2K functions ak and uk, with
1  k  K, such that:

The case K = 1 was solved by Frobenius, and the general case by Darboux:
a necessary and sufficient condition for such a decomposition to hold on some
neighbourhood V of x is that cv A 0 on U, where denotes the k-
fold wedge product A dco. See [1] or [2] for a proof of Frobenius’
theorem, and [2] for a proof of Darboux’ theorem.

This paper addresses a further question, which arises from certain applica-
tions to economic theory: when can the functions uk be taken to be concave,
and the ak positive? In the problems we have in mind (see [8] for the state of
the art until 1971, and [4], [5], [6], [7], for recent developments), the uk are

to be understood as (direct or indirect) utility fuctions, and the ak as Lagrange
multipliers. The concavity and positivity requirements are then essential for the
mathematical results to have an economic interpretation.

Necessary conditions are easy to find. The first one, of course, is the
Darboux condition co A = 0. Let us retrace it quickly: taking the exterior
derivative of equation (1), we get:
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so that:

A second necessary condition follows from differentiating at x. Define the
matrix Q by:

Then, rewrite equation (1) as follows:

and differentiate at x . We get:

which we rewrite as:

where X (9 Y denotes the rank one matrix X’Yj and we have set:

Since the uk are concave, the Qk are negative semi-definite; recall also
that the ak are assumed to be positive. It then follows from equation (7) that
Q is the sum of a symmetric, negative semi-definite matrix, and of a matrix of
rank K.

We will now prove that these necessary conditions are also sufficient.
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THEOREM 1. Let (o be an analytic I -form such that:

on a neighbourhood U of x. Define a matrix S2 by:

and assume that

where the matrix Q is symmetric and negative definite, and the matrix R has rank K.
Then there exists a convex neighbourhood V E U of x, and real analytic func-

tions u 1, ..., UK andal, ..., defined on V, such that the uk are strictly convex,
the ak are positive, and:

It will follow from the proof that the duk can be chosen arbitrarily close

to w, and the Hessians arbitrarily close to Q, which implies, of course,
i J

that the Àk will be arbitrarily close to 1/AB
The proof itself relies on the Cartan-Kahler theorem (see [3], [2], or [5]).

This is a theorem of Cauchy-Kowalewska type, so everything has to be real
analytic. In contrast, the standard (non-convex) Darboux theorem only requires
cv to be C 1 (or weaker; see for instance the work of Hartman: [9], [10]). We
conjecture that our result holds true with weaker regularity, C°° for instance,
but we have no idea how to prove it. However, V. M. Zakaljukin has proved
the following result [ 11 ], which is another kind of convex Darboux theorem

THEOREM 2. Let cJ be a C 1 I -form on a neighbourhood U of x such that:

Then there exists a convex neighbourhood V E U C2 functions u 1, ... , U K+l
and C 1 functions ... , defined on V, such that the Uk are strictly convex,
the ak are positive, and:
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Let us now prove Theorem 1. We will take K = 2; the proof in the
general case is basically the same, but the notations obscure the argument. So
we have, on a neighbourhood Ll of x :

and we are seeking concave functions u and v, positive functions a and b, all

analytic, and such that:

Let us point out some algebraic consequences of equation (18):

LEMMA 1. There are analytic I -fonns w, a, a’, such that, in some neigh-
bourhhood of x:

PROOF. Let us work in the cotangent space to JRN at x. By Proposition L 1.4
in [2], we have:

and by Theorem I.1.5 in the same reference, there exists linear forms : -.-
such that:

Writing this into equation (18) (at z), we see that:

I

So the five linear forms belong to the same four-dimen-
sional subspace of Expressing if, for instance, in terms of and
the other vectors, we get:

for suitable linear forms wf, 57, 2F~ in 
The same construction extends analytically to neighbouring points, and

formula (21) follows. D
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Introduce the 3N-dimensional space E defined by:

Define analytic 1-forms a and fl on E by:

In E, consider the subset M defined by the equations:

These are = equations in the 3N variables ai, f3j, xn . Since
there are many more equations than variables, our first task will be to show
that is non-empty.

Define A = {(a, ~B, x) OJ, f3 ~ cJ, x E M}; it is an open subset of E.
We set:

LEMMA 2. M is a (n + 5)-dimensional submanifold of E defined by the equa-
tions :

PROOF. Equation (32) means that cv, a, f3 are linearly dependent: there exists
functions f and g such that

Writing this into equation (33), we get:

Applying Lemma 1, we get:

so a must belong to the linear span of cr, a’, cv, which is three-dimensional.
Once a is chosen, fJ must belong to the linear span of a, (o, which is two-
dimensional. Conversely, if a and P are chosen in this way, they satisfy
equations (32) and (33), which means that (a, fl, x) belongs to M. D
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In the manifold we consider the exterior differential system:

Recalling the definition of a and f3, we can rewrite this system in a more
explicit way:

Any integral manifold of this system in M provides us with functions kk
and Vk, k = 1, 2, satisfying equation (20). Indeed, because of relation (43), this
submanifold will in fact be the graph of the map x - 
and equations (41) and (42) will imply, by the Poincare lemma, that there are
functions U and V such that a = d U and f3 = dV. Going back to the definition
of M (equation (32)) we see that:

which is the algebraic way of expressing the fact that úJ is a linear combination
of d U and d V :

It is easy to see that the coefficients then depend analytically on
x. Note that, if this integral manifold goes through (a, fl, x), then the relations
a = d U and f3 = d V imply that:

and:
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Choose (a, E M. We will find such integral manifolds through this
point by applying the Cartan-Kahler theorem: the system (41), (42), (43) has
to be closed, there has to be an integral element, and the point (a, j4, x) has
to be ordinary.

The system is obviously closed, since dd = 0. We proceed to finding an
integral element. To do this, we will write the system in an equivalent, but
simpler, form

LEMMA 3. There exists five linearly independent 1- forms ~, (x ), v(x),
o (x ), y (x), analytic and defined on a neighbourhood of x, such that the exterior
differential system (41 ), (42), (43) on M can be reformulated as follows:

PROOF. By Lemma 2, the defining equations can be written as follows:

which, by formula (21), can again be rewritten:

By taking the exterior derivative of equation (60) and applying Lemma 1,
we have:

This means that there exists analytic 1-forms such that:

By relation (40), we know that o~ can be expressed as a linear combination
of (o, or and a. This gives us equation (53)
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Taking the exterior derivative of equation (59), we can relate da and df3.
Namely:

But we know from Lemma 2 that a and f3 belong to the linear span of
and which is three-dimensional. So the first term in the last equation

vanishes, and we are left with:

Since, by relation (35), ~8, a and ware linearly dependent, we can write
f3 = sa in the preceding equation, which becomes:

So there exists I-forms () and y such that:

Writing d a - 0 in this equation gives us equation (54). Hence the
lemma. 0

To find an integral element, we differentiate equations (53) and (54), and
we substitute:

We complete to, a and cr into a basis of the cotangent space, and we develop
the exterior products on that basis. Equation (53) then gives us (3N - 6)
linearly independent conditions on Ai, J and Bi,j, while (54) gives us (2N - 3)
additional ones. To see this, consider for instance equation (53): expanding
the first monomial on the right-hand side gives us (N - 1 ) terms (there is no
term in N A the second one gives us (N - 2) more (because the term in
N A a has already appeared in the first expansion), and the third one (N - 3)
more (because the terms in 60 A o- and a A o~ have already appeared in the two
preceding expansions).

So integral elements are defined by (SN-9) linearly independent conditions.
In other words, the codimension of the submanifold of integral elements in the
full Grassmannian of tangent N-planes to is C = 5N - 9. Since has
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dimension (N + 5), this Grassmannian has dimension 5N, and the manifold of
integral elements has dimension 9. 

_

It remains to check that the point is ordinary. Applying the
procedure described in [2] or [5], we find the values:

which gives:

This coincides with C, so the point 73, x) is ordinary, and we can apply
the Cartan-Kahler theorem. Note that the Cartan characters are:

so that every integral manifold will be determined by two functions of one
variables, two functions of two variables, and one function of three variables.

By the Cartan-Kahler theorem, for every integral element at (a, ~,3c), there
will be an integral manifold going through (a, ~8, x) and tangent to that integral
element. In other words, for every choice of symmetric matrices Ai, j and

Bi,j such that dai = ".A..dxj and = ".B..dxj satisfy equations (53)
and (54), there will be an integral manifold going through and such

that = and  = Bi,j. So we know, for instance, that a) can be
axi 

- 

] 

-

decomposed into the form (48):

But this is not enough for our purposes: we want a and b to be positive,
and u and v to be concave. By relations (51 ) and (52), the latter amounts to
showing that we can take A and B to be negative definite.

Choose any real-valued functions f (x ) , g(x), h(x), k(x), and set:
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Clearly, a (x) and satisfy equations (35), (36) and (37), so that the
matrices and define an N-plane in the tangent space to

at (a, B, x). This tangent space will be an integral element if and only if
A and B are symmetric. Differentiating relations (88) and (89), we have:

where

By assumption (see equation (14) in Theorem 1), Q is the sum of a sym-
metric, positive definite matrix Q, and a matrix R of rank 2. The antisymmetric
part of this matrix R can be computed:

On the other hand, by equation (87), we have:

Comparing the two values of we get:
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where y = and ~ = da - and the numbers s and t are arbitrary.
Taking F = H = -y and G = K = -~, we kill the antisymmetric part

of equations (90) and (91), and since U and V are symmetric, we get

Setting , and this becomes:

Since Q is negative definite, so will be A and B if E is small enough. On
the other hand, writing these values into equations (88) and (89), we get:

which implies that a (x ) and are linearly independent, and tha
1

~

This concludes the proof of Theorem 1.
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