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On the Convergence of Eigenvalues for Mixed Formulations

DANIELE BOFFI - FRANCO BREZZI - LUCIA GASTALDI

Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)
Vol. XXV (1997), pp. 131-154

Abstract. Eigenvalue problems for mixed formulation show peculiar features that
make them substantially different from the corresponding mixed direct problems.
In this paper we analyze, in an abstract framework, necessary and sufficient con-
ditions for their convergence.

1. - Introduction

In a general way, we say that a variational problem is written in mixed

form if it fits the following abstract setting. We assume that

(1) 4) and E are Hilbert spaces,

(2) (p) and b(~/r~, ~) are bilinear forms on (D x (D and (D x E respectively,

and, to simplify the presentation, we also assume that

(4) a (~, .) is symmetric and positive semidefinite.

Setting := (a (~P, ~P ) ) 1 ~2 (which in general will only be a seminorm on 1»
this immediately gives

Properties (1) to (4) will be assumed to hold throughout all the paper.
For any given pair ( f, g) in 1&#x3E;’ x E’ we consider now the problem
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It is known that, in order to have existence, uniqueness and continuous de-
pendence from the data for problem (6) it is necessary and sufficient that the
bilinear forms a ( ~ , .) and &#x26;(-, -) satisfy the following conditions

where the kernel K is defined as:

EXAMPLE 1. Stokes problem. We take (D = (HJ(Q))2, 8 = L2 (S2)~~, a(1/I, ~p) =
b(*, ~) = -(div *, ~) where, as usual, (.,.) is the inner product in

L2 (S2) or in (L2 (S2))2. It is easy to see that (7) and (8) are satisfied. Moreover
if we take g = 0 the solution of (6) is related to the solution of the Stokes

problem

by the relations 1/1 = u and X = p. Approximations based- on this approach are
classical and are usually called approximations in the primitive variables.

EXAMPLE 2. Dirichlet problem with Lagrange multipliers. We take 4S = 
E = a(1fr, cp) = (V1/I, Vcp) and b(~, ~) _ (~, (duality between

and ~). It is easy to see that (7) and (8) are satisfied. Moreover,
for every f E H-1 (Q) and g e the unique solution of (6) is related
to the solution of

by the relations 1fr = u Approximations based on this approach
where first introduced by B abuska [2].

EXAMPLE 3. Mixed formulation of second order linear elliptic problems. We take
4$ = H(div; Q), E = L2(S2), cp) = (~, ~) = (div *, ~). It is easy
to see that (7) and (8) are satisfied. Moreover if we take f = 0 the solution
of (6) is related to the solution of the problem

by the relations x = u and 1/1 = V u. Approximations based on this approach
where first introduced by Raviart-Thomas [24].
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EXAMPLE 4. Biharmonic problem. We take (D = Hl(Q), 8 = Ho’(0), a (1/1, cp) =
(1/1, cp) and &#x26;(~, ~) = -(V1/l, V~). It is easy to see that (7) is satisfied, but (8)
is not. However, if SZ is smooth enough and we take f = 0 then (6) has a
unique solution, related to the solution of

by the relations X = u and 1/1 _ - 0 u . Approximations based on this approach
where first introduced by Glowinski [16] and analyzed by Ciarlet-Raviart [13]
and Mercier [20].

For many other examples of mixed formulations of boundary value problems
related to various applications in fluidmechanics and in continuous mechanics
we refer, for instance, to [9].

Let us now consider the problem of discretization. Assume that we are

given two families of finite dimensional subspaces 4Sh and Eh of (D and E,
respectively. We consider the discretized problem:

It is known that discrete analogues of (7) and (8) are sufficient to ensure

solvability of the discrete problem together with optimal error bounds. More

precisely if the spaces 4$h and Eh satisfy the following conditions

there exists a &#x3E; 0, independent of h, such that

where the discrete kernel Kh is defined as

and

there exists f3 &#x3E; 0, independent of h, such that

then we have unique solvability of (13) and the following error estimate

As we shall see, conditions (14) and (15) are also necessary for having (16),
in a suitable sense.
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We turn now to the eigenvalue problems. As we can see from the ex-

amples above, the eigenvalue problem which is naturally associated with the
corresponding boundary value problem in strong form (namely (9), (10), (11)
or (12)) does not correspond to taking (À1fr, ÀX) as right-hand side of (6).
Instead, according with the different cases, the natural eigenvalue problem is
obtained by taking 0) or (0, 2013~x) as right-hand side of (6). One expects,
as for instance in [21], that (14) and (15), together with suitable compactness
properties, are sufficient to ensure good convergence of the eigenvalues. How-
ever, when the problem is set in mixed variational form, compactness is more
delicate to deal with. In a previous paper [5] we showed that, for the particular
case of Example 3, even if the operator mapping g into u in (11) is clearly
compact, assumptions (14) and (15) are not sufficient to avoid, for instance, the
presence of spurious eigenvalues in the discrete spectrum. Here we address a
more general problem, in abstract form, and we look for sufficient (and, pos-
sibly, necessary) conditions in order to have good approximation properties for
the eigenvalue problems having either (À1fr,O) or (0, at the right-hand
side. As we shall see, in each of the two cases, (14) and (15) might be neither
necessary nor sufficient for that.

Our approach turns out to be more similar to the one of [14] rather than
the one of [8] or [1]. Important references for the study of eigenvalue problems
in mixed form are [21], [3], [23]. As far as the suf,ficient conditions are

concerned, we have only little improvements over the previous papers. For

instance, our bilinear form a(., -) is not supposed to be positive definite as in
the previous literature. Moreover, previous related papers deal mostly with cases
in which the two components of the solution of the direct problem are both
convergent, while we accept discretizations that can produce singular global
matrices. On the other hand, having assumed symmetry of a(., .), we do not
have to consider adjoint problems as in [14]. However, in practical cases,

the actual gain is negligible. The major interest of the paper, in our opinion,
consists in showing that our sufficient conditions are, mostly, also necessary,
thus providing a severe test for assessing whether a given discretization is.
suitable for computing eigenvalues or not. This justifies, in our opinion, the
apparently excessive generality of our abstract approach. Indeed, as we shall see,
convergence of discrete eigenvalues does not even imply, for mixed formulations,
the nonsingularity of the corresponding global matrices.

Finally we point out that in this paper we do not look for a priori esti-
mates for eigenvalues and eigenvectors, but only deal with convergence. This is
somehow in agreement with the fact that necessary conditions are a major issue
here. However, in most cases, a priori error estimates can be readily deduced
checking the last step in the proofs of sufficient conditions and/or applying the
general instruments of, say, [7], [21], [3].

An outline of the paper is the following. In Section 2 we state the problem
and relate the convergence of the spectrum with the uniform convergence of the
resolvent operators. Moreover we point out the role of the discrete conditions
(DEK) and (DIS) is order to have existence and boundedness of the different

components of the solution of (13).



135

Section 3 and 4 are devoted to the analysis of the eigenvalue problems
associated to (6) when the right-hand side is of the type (~, 0) or (0, -ÀX),
respectively. In both cases we state sufficient and necessary conditions for the

good approximation of the spectrum. At the end of each section we will show
how the known good approximations of the problems in the examples above
satisfy our sufficient conditions for convergence of eigenvalues and eigenvectors,
and more generally we discuss the validity of other possible approximations in
light of our conditions.

2. - Statement of the problems

Let H be a Hilbert space and T : H - H a selfadjoint compact operator.
To simplify the presentation we assume that T is nonnegative.

We are interested in the eigenvalues k E R defined by

In the above assumptions it is well-known that there exists a sequence and
an associated orthonormal basis luil such that

We also set, for i E N, Ei = span(ui).
The following mapping will be useful. Let m : N 2013~ N be the application

which to every N associates the dimension of the space generated by the

eigenspaces of the first N distinct eigenvalues; that is

Clearly, ~,m ( 1 ) , ... , (N E N) will now be the first N distinct eigenvalues
of (17).

Assume that we are given, for every h &#x3E; 0, a selfadjoint nonnegative
operator Th : H - H with finite range. We denote by À? e R the eigenvalues
of the problem

Let Hh be the finite-dimensional range of Th and dim Hh =: N (h ) ; then Th
admits N (h ) real eigenvalues denoted À? such that
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The associated discrete eigenfuntions u 7, i = 1,..., N (h), give rise to an

orthonormal basis of Hh with respect to the scalar product of H. Let 

We assume that

It is a classical result in spectrum perturbation theory that (22) implies the

following convergence property for eigenvalues and eigenvectors:

F), for E and F linear subspaces of H, represents the gap between
E and F and is defined by

Viceversa, it is not difficult to prove that (23) is a sufficient condition
for (22).

We are interested in having (23) for eigenvalue problems in mixed form.
Let us therefore go back to the abstract framework already used in the

introduction, with the assumptions therein. In particular assume, for the moment,
that (7) and (8) are satisfied and that (13) has a solution for every ( f, g) in
1&#x3E;’ x E’. Problems (6) and (13) define then, in a natural way, two operators
S( f, g) = (1fr, X) (solution of (6)) and Sh ( f, g) = (1/!h, Xh ) (solution of (13)).

It is well-known (see [9]) that (DIS) and (DEK) (cfr. equations (15)
and (14)) imply that the discrete operator Sh is bounded from (D’ h x Eg to

~ x E, uniformly in h (see (16)). Moreover, the converse holds true, as it
is proved in the following Lemma 1. Before it we introduce the following
notation: for every h &#x3E; 0 we define

LEMMA 1. If there exists a constant C such that for all f E (D’ and g E E’

for all h &#x3E; 0, then (DIS) and (DEK) are verified.
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PROOF. Let 1frh belong to Kh, then (1frh, 0, f, 0) satisfies (13) with f , CPh) :=
for all CPh E 4Sh. Hence the inequality (26) gives (DEK) with a -

1/(C2Ma), Ma being the continuity constant of a (see (3)).
If Xh E Sh, then (0~,/,0) satisfies (13), with (1, CPh) for

all CPh E 4Sh. Hence the inequality (26) yields (DIS) with fl = 1 / C. 0

REMARK 1. In the statement of Lemma 1 we implicitly assumed that the
operator Sh was defined for every f and g. However, as it can be clearly seen
in the proof, this was not really necessary. Indeed it is sufficient to assume
that there exists a constant C &#x3E; 0 such that for every h &#x3E; 0 and for every
quadruplet (1frh, xh, f, g) E 4Sh x Eh x 1&#x3E;’ x E’ satisfying (13), one has

This should not surprise, as (13) is always a linear system with a square matrix.D

Consider now the eigenvalue problem. For the sake of simplicity, let us
assume for the moment that there exist two Hilbert spaces HD and 7/s such
that we can identify

and such that

hold with dense and continuous embedding, in a compatible way.
The restrictions of S and Sh to x T~s define now two operators from
x T~s into itself.
As a consequence of (16) and Lemma 1, it is immediate to prove the

following proposition.

PROPOSITION 1. Assume that (DIS) and (DEK) hold. Then Sh converges uni-
formly to S in x HE) if and only if S (from HD x HE into itself) is compact.

This proposition concludes our convergence analysis for the eigenvalue
problems associated to (6) and (13). However in the applications one finds
more often eigenvalue problems associated to (6) and (13) when one of the two
components of the datum is zero. Let us set these eigenvalue problems in their
appropriate abstract framework introducing the following operators:
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and their adjoints

We shall say that (6) is a problem of the type (f ) if the right-hand side
in (6) satisfies g = 0. Similarly, we shall say that (6) is a problem of the type

x if the right-hand side in (6) satisfies f = 0. Correspondingly, we shall
study the approximation of the eigenvalues of the following operators:

Whenever the associated discrete problem? are solvable, we can introduce the
discrete counterparts of TD and 7s as: ,

, -,

In the remaining part of this section we are going to relate the solvability and
boundedness - of the discrete operators with either (DIS) or (DEK).

PROPOSITION 2. If (DEK) (see (14)) holds and g = 0, ~then problem ( 13) has
at least one solution (1frh, Xh ). Moreover 1frh is uniquely determined by f and

(where a is the constant appearing in (14)).

PROOF. Let 1frh be the unique solution of a(1frh, = (f, for all ~Oh
in Kh. Clearly 1frh exists, is unique and satisfies (34). Now look for Xh in Eh
such that Xh) = ( f , - a(1frh, for all E As the right-hand
side is in the polar set of Kh, the system is compatible and hence has at least
one solution. 1:1

PROPOSITION 3. Assume that there exists a constant C &#x3E; 0 such that for every
h &#x3E; 0 and for every quadruplet Xh, f, 0) E (Dh X 8h x (D’ x S’ satisfying (13)
one has

then the operator T; is defined in all ~’ and (DEK) holds with a = 1 / (C2 Ma ), Ma
being the continuity constant o, f a (see (3)).
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PROOF. With the same proof as in Lemma 1 we see that (DEK) holds true.
The solvability of (13) is now a consequence of Proposition 2. 0

PROPOSITION 4. Assume that the following weak discrete inf-sup condition
holds: for every h &#x3E; 0, there exists a constant flh &#x3E; 0 such that

Then for every g E S~ and f = 0 problem ( 13) has at least one solution (1frh, Xh )
and Xh is uniquely determined by g.

PROOF. The assumption (36) implies that, with obvious notation, Bh is

surjective. Hence for g E S/ there exists at least one 1fr g E 4$h such that

g. Then find 1frk e Kh such that = OCh.
Finally, take Xh such that = for all

e 4$h. Such a Xh exists, by the same argument used in the proof of
Proposition 2. Finally observe that solves (13) with (0, g) as

right-hand side.
To see the uniqueness, assume that (i = 1, 2) are two solutions.

Clearly a(1frt - = 0 for all e OCh. Taking = 1frt - 1frl one
obtains that 1frt -1frl) = 0 and hence as a is symmetric and positive
semidefinite, = 0 for all e (use (5)). Now 

xl) = 0 for all in and (DISh ) implies xt = xl. 0

PROPOSITION 5. Assume that there exists a constant C &#x3E; 0 such that for every
h &#x3E; 0 and for every quadruplet (1/!h, Xh, 0, g) E x Eh x ~~ x E’ satisfying (13)
one has

then the operator T h is defined in all S’ and the weak discrete inf-sup condition
(DISh ) holds. In general, (37) does not imply (DIS).

PROOF. Remark first that the assumption (37) implies that, with obvious
notation, Bh is injective, therefore Bh will be surjective and this implies (DISh ).

In order to see that (DIS) cannot be deduced in general, consider the case
when a w 0, 4$h = Eh and b is h times the scalar product in El

PROPOSITION 6. Assume that there exists a constant C &#x3E; 0 such that for every
h &#x3E; 0 and for every quadruplet (~h, Xh, 0, g) E (Dh X Sh x (D’ x S’ satisfying (13)
one has

then both T~ and C~ o Sh o Cs are defined on S’ and (DIS) holds with f3 = I/ C.
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PROOF. Remark first that, from Proposition 4, problem (13) has at least one
solution for every g E E’, but now the estimate (38) ensures that such solution
is unique. Hence C~ o Sh o Cs is also well-defined in ~’. Let now ~h be an
element of Eh, and let g E E’ be such that = 1 and ~g, ~h ~ = 

Taking 1fr; = C o Sh o CE9 we have

PROPOSITION 7. If there exists C &#x3E; 0 such that

for every h &#x3E; 0, then (DIS) holds with f3 = 1/C.

PROOF. The same proof as in Lemma 1. 0

We see from Propositions 3 and 7, that for problems of the type ~o~ the

estimate (35) on 1frh implies (DEK) and the estimate (40) on Xh implies (DIS).
Analogue properties do not entirely hold for problems of the type (0)

3. - Problems of the type ( )0
In this section, together with (1)-(4), we assume that (EK) and (IS) are

verified. We also assume that we are given a Hilbert space Hp (that we shall
identify with its dual space H.) such that

with continuous and dense embeddings. We consider the eigenvalue problem

which in the formalism of the previous section can be written

We assume that the operator Tp is compact from H(D to (D.
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Suppose now that we are given two finite dimensional subspaces 4$h and Eh
of (D and E, respectively. Then the approximation of (42) reads

that is

We are now looking for necessary and sufficient conditions that ensure the
uniform convergence of 7~ to To in 1» which, as we have seen, implies
the convergence of eigenvalues and eigenvectors (see (23)).

To start with, we look for sufficient conditions.
We introduce some notation. Let and E) be the subspaces of 4$ and E,

respectively, containing all the solutions * e 4$ and respectively, of
problem (6) when g = 0; that is, with the formalism of the previous section,

Notice that the following inclusion holds true:

The spaces and E) will be endowed with the natural norm: that is, for
instance,

DEFINITION 1. We say that the weak approximability of E§ is verified
if there exists cvl (h), tending to zero as h goes to zero, such that for every

Notice that, in spite of its appearance, (48) is indeed an approximability
property. Actually as E Kh, we have X) - X - for every
X I E Eh, which has, usually, to be used to verify (48).
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DEFINITION 2. We say that the strong approximability of is verified
if there exists úJ2(h), tending to zero as h goes to zero, such that for every
1fr E there exists *’ E Kh such that

THEOREM 1. Let us assume that (DEK) is verified (see ( 14)). Assume moreover
the weak approximability no and the strong approximability (Do . Then the
sequence T; converges uniformly to TD in (D), that is there exists úJ3(h),
tending to zero as h goes to zero, such that

PROOF. Let f E Ho and let (1fr, x ) E (DI x E) be solution of (6): (1fr, X ) =

S ( f, 0) . As we assumed (DEK) Proposition 2 ensures that T~ is well defined
on 4)’. Recall that 1fr := 7(/). Let 1frh := T ( f ) and let x 1 be such that

is a solution of (13) (such x 1 might not be unique). In order to

prove the uniform convergence of to To, we have to estimate the difference
I I ’~’ - ’fh I I ~ . We do it by bounding the where 1fr1 is given
by (49), and then by using the triangular inequality. We have

The result then follows immediately from the strong approximability of ~o
and the weak approximability of In particular we can take W3 (h) = (1 +

+ D

In the following theorem we shall see that the assumptions of Theorem 1

are also, in a sense, necessary for the uniform convergence of 7~ to Tcp in

,C(I~~,, ~).

THEOREM 2. Assume that the sequence T; is bounded in £(4)’, 4», and con-
verges uniformly to Tcp in 4» (see (50)). Then, the ellipticity in the kernel
property (DEK) holds true. Moreover, both the strong approximability of ~o and
the weak approximability are satisfied.
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PROOF. The (DEK) property can be obtained applying Proposition 3. Let

1fr be an element of 4$f. Then by definition of ~ there is f E Hcp such
that 1fr = Tcpf. Define 1fr1 := Uniform convergence implies the strong
approximability of ~o .

In a similar way, let X be an element of sf!. Then by definition of Sf!,
X = CsoSoCcpf for some f E Hcp. There might be more than one such f. We
chooser such CsoSoCcpf = X } Let

_ _ 

- 

o

:= Correspondingly let 1frh := T;1 and let Xh be such that (1frh, X h ) is
a solution of (13) with the same right-hand side (such Xh might not be unique).
Then we obtain

which gives (48) with úJ1(h) = that is the weak approximability
D

EXAMPLE 1. We go back to the Example 1 of the Introduction (Stokes
problem). = V = (Ho (S2))2 and E = Q = It is easy to see

that if S2 is, for instance, a convex polygon, ~o is and ~o is the

subspace of (H2 (S2) f1 Ho (S2))2 made of free divergence functions (see [19]). In
particular we can check ^’ i ( u ( I 2 

o 0

(with standard notation, here and in the following, we denote by II. Ilk the norm
in for kEN). Let Vh and Qh be finite dimensional subspaces of V
and Q respectively. The weak approximability will surely hold if

which is satisfied by all choices of finite element spaces that one may seriously
think to use in practice.

The strong approximability of (DH, which now reads

is more delicate, as u 1 has to be chosen in Kh. If the pair (Vh, Qh) satisfies the
inf-sup condition (DIS) then the property trivially holds. Remark, however, that
the typical way to proving the inf-sup condition is to show, following [15], that:
for every u in V there in Vh such v  c II!!II v (C independent of u

qh) = 0 Vqh E Qh, which is more difficult than proving (52)
directly. Moreover there are choices of elements that fail to satisfy the inf-sup


