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Nonuniqueness in the Martingale Problem and the
Dirichlet Problem for Uniformly Elliptic Operators

NIKOLAI NADIRASHVILI

Dedicated to Professor Carlo Pucci on the occasion of his seventieth birthday

1. - Introduction

Let L be an elliptic operator defined on 

where aij = aji i are measurable functions such that

À 2:: 1 being an ellipticity constant.
There exists a diffusion (~t, Px) related to the operator L, [Kl], [S-V].

Such a diffusion can be defined as a solution of the martingale problem:
1. Px(~o = x) = 1,
2..0 (~t) - .0 (~0) - fo’t is a Px-martingale for all q5 E 

which has always a solution (Stroock, Varadhan, [S-V]).
Let S2 c M" be a bounded domain with a smooth boundary a Q and let

g E Consider the following Dirichlet problem:

The diffusion (~t, Px ) defines a solution to problem (2):

where r is the first time when the path leaves the domain Q.

Pervenuto alla Redazione il 5 novembre 1996.
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Below we also give an analytic definition of a solution to the Dirichlet
problem (2). There is an important problem on the uniqueness of the solutions
which we define. If the coefficients aij are smooth functions then the uniqueness
of the solution of the Dirichlet problem and of the martingale problem is well
known. The uniqueness is also known for special types of elliptic equations, see
the discussion below, but for the general elliptic operator (1) with measurable
coefficients the problem of uniqueness is open. This problem was rised and
discussed by various authors, see e.g. [K3], [LI], [P-T]. The aim of this paper
is to show that there is NO uniqueness in general.

We study directly the Dirichlet problem (2) and prove a nonuniqueness
result without using probability methods. We give now an analytic definition
of a solution to the Dirichlet problem (2). Let Lk, 1, 2,..., be a sequence of
elliptic operators in 0

with a common ellipticity constant k and with smooth coefficients such that
aij a.e. in S2 as k ~ oo. Let uk be the smooth solution of the Dirichlet

problem

From Krylov-Safonov’s theorem [K-S] it follows that there exists a convergent
subsequence ukm . We define a solution u of the problem (2) as a limit of 

A so defined solution u was called in [C-E-F2] "good solution" to the
problem (2).

THEOREM. There exists an elliptic operator L 1 of the form (1) defined in the unit
ball B1 C &#x3E; 3, and there is a function g E C2 (a B1 ), such that the Dirichlet
problem (2) has at least two good solutions.

REMARK. Nonuniqueness in the martingale problem simply follows from
the Theorem, see [K-2], [K-3].

In view of the Theorem it is interesting to discuss when uniqueness holds.
The uniqueness holds: if dimension n = 2 (Bers, Boyarskii, Morrey, Nirenberg,
see [B-J-S]), if À - 1  E (n) where E (n) &#x3E; 0 is a sufficiently small constant
(Cordes, [C], Talenti, [T]), if coefficients aij are continuous functions (Strook,
Varadhan, [S-V]). For other results, see [A-M], [A-T], [B-P], [M-P], [L2], [L].

Let E c Q be the set of points of discontinuity for the coefficients 
The uniqueness of good solution to the Dirichlet problem (2) holds if E is
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sufficiently "small" (Caffarelli, Cerutti, Escauriaza, Fabes, Krylov, Safonov,
[C-E-F1], [C-E-F2], [K3], [S2]). In this direction the best known result is
the following: the uniqueness holds if the Hausdorff dimension of the set E is
less than E = &#x3E; 0, [S2].

There is also a uniqueness result via Alexandrov-Pucci maximum principle,
[A], [P]: the Dirichlet problem (2) has no more than one good solution in the
Sobolev space W2’n (S2). But generically the problem (2) is unsolvable in the

space W2’n (S2), [SI].
Regularity and some other properties of good solutions were studied in [N].

Acknowledgment.
I thank E. Landis, P. Manselli and A. Veretenikov for fruitful discussions.

2. - Proof of the theorem

(2.1) Assumptions. We assume that dimension n = 3. For any n &#x3E; 3 the
construction of the required elliptic operator is analogous.

We assume by contradiction that the good solution of the Dirichlet problem
(2) is always unique.

Thus to prove the Theorem it will be sufficient to show the existence of
two sequences Lk, Lo, k = 1, 2, ... , of uniformly elliptic operators of the form
(1) with measurable coefficients defined in B1 c and a function g E C2 (a B1 )
such that if = 1, 2,... are good solutions of the Dirichlet problems:

then

(2.2) We consider an elliptic operator L of type (1) defined in whith smooth
coefficients aij wich are periodic functions of each variable with period 1.

Denote 
- -
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Let S2 C R’ be a bounded domain with a smooth boundary, g E 

As the parameter t goes to 0o the functions ut tend uniformly in S2 to a solution
u of a problem 

-

where

an elliptic operator with constant coefficients, cf. [B-L-P]
If we consider L 1 as an elliptic operator defined on the n-dimensional torus

Tn, then by standart arguments from the Fredholm alternative it follows that
there exists a unique equilibrium probability measure m d x on T n such that
L * m = 0 on T n , m &#x3E; 0 on T n and

where L* is an operator adjoint to the operator L. The following equalities
hold (Freidlin [F], see also [B-L-P]:

Let p be a quadratic form on R’ and L p = 0. Set f = Lp. Then f is a
periodic function of each variable with period 1, such that

Therefore there exists a solution v of the following problem

REMARK. Let f be a positive scalar function on T n . Then evidently we
have ( f L)" - CL for some positive constant C. Thus we can consider the

operator " as a map from the field of positive defined quadrics on the cotangent
bundle to T n into the set of positive defined quadrics.

(2.3) Now let us assume that the elliptic operators Lt defined in (2.2) have mea-
surable coefficients. Let Lk, k = 1, 2, ... , be a sequence of uniformly elliptic
operators on T n with smooth coefficients which tend a.e. to the coefficients of



541

L = L as k ~ oo. Let mk be an equilibrium probability measure of Lk. We
assume that mk converge weakly in to a function m as k -~ oo. Let ai~
be given by (3) and let p be a quadratic form in R’ such that L p = 0. From
assertion (2.2) it follows that there exists a good solution v of the problem

such that v is a periodic function of each variable with period 1. We have

We denote by the set of all solutions u of the equation Ltu = 0 in
Q c be a limit of in the C ( S2 ) -topology as t - oo. Let
Br be the ball Ixl I  r. If u E ~ (B2), e E B1 I then u (x - I 

E E (B I ) hence
if ~ E then (u * Denote A = (E (B2) * W)IBl’ We
have

Let v E Denote by j (v) the two-jet of function v at the point
the 0 (Taylor expansions up to the oder 2), and let J be the set of all two-jets
at 0. By the maximum ¢ j ( A ) . Thus j (A) is a proper linear

subspace of j. From (4) it follows that p e A. Therefore for all Lu(O) = 0
for all u E A and hence L u = 0 in B 1. Since we can assume suppBl1 E BE may
be chosen for arbitrary small E &#x3E; 0 we obtain that any function h 

satisfies the equation Lh = 0. Thus we proved that the result of Assertion (2.2)
is valid for good solution of elliptic equations with measurable coefficients.

(2.4) Let Lt, Q be defined as in (2.2). Set

Let P be an elliptic operator of the type (1) such that P = Lt on QE for some
t, E &#x3E; 0. Let u 1, u 2 be solutions of the two following problems:

and

PROPOSITION.
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PROOF. Since  Cie in Q it follows that (  C2E on
Cj , C2 &#x3E; 0. From the Assertion (2.3) and from the maximum principle

it follows that u 1- u2 ~ [  2C1 E in Q for sufficiently large t &#x3E; 0. Pick 8 &#x3E; E and
set w = u 1 - u2. We have [  C3 in = 0 on Iwl [  2C1 E on
aS2s. For sufficiently small 8 &#x3E; 0 we get P((dist(x, aS2s))2) &#x3E; 1 in and
hence by the maximum principle the following inequality holds for sufficiently
small E &#x3E; 0: 

- -

We conclude [  4C8 for sufficiently small 8, E &#x3E; 0. Since the constants

8, E &#x3E; 0 can be chosen arbitrarily small the Proposition follows.

(2.5) PROPOSITION. Let L be an elliptic operator of the type (1) defined in a bounded
domain Q C R n with a smooth boundary. Let S2o C C S2 be a subdomain with a
smooth boundary. Let a be the distribution in SZ given by the surface area of a S2o.
Let u satisfies the following differential inequality in the sense of distributions:

Then u  C, where C = Qo, X).

PROOF. Let r be a component of a 00 and Q1 1 be the part of Q bounded
by aS2 and r. Let v be a solution of the problems:

Then e1 where e1 = C1(Q, r, À), see [G-T]. We set V := v in 521,
V := 1 in 0 B Then -L V and hence the Proposition follows from
the maximum principle.
(2.6) Let Q1 1 C C Q2 C S2 C R n be bounded domains and let a 0 be

smooth surfaces. Let 
nn 

an elliptic operator of the type (2) defined in SZ and 1 
= const. Let Lt t be

the elliptic operator defined in Section (2.2). Assume that

We define Ptl := Q on Q B 522, Ptl := Lt on Q2, P2 := Q on (Q B Q2) U Q1,
P,2 := L t on Q2 B S21. Let u t be solutions of the following problems

PROPOSITION.
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PROOF. Assume by contradiction that there exists a sequence tk 2013~ oo such
that the following limits

exist and u 1 ~ u2.
We have Qu 1 = 0 on Q2 and hence u1 1 is a smooth function on Q2. Let

vt be a solution of the following problem

By the maximum principle ( v
Assertion (2.4) it follows that

From

as k - 0. The Proposition is proved.
LEMMA. Let w be a good solution of the problem

PROOF. Choose domains Gi C C 522, i - 1, 2, ... , such that

Set Rt t := Q
the problem

Let hi t be a solution of

By the Proposition there exists a (i ) such that for any t (i ) &#x3E; a (i ) the following
inequality holds:

Since the coefficients of the operators R~ ~i ~ as converge a.e. in S2 as i - o0

to the coefficients of Q, then h’(i) and thus the Lemma

immediately follows.

(2.7) Let L be an elliptic operator of the type (1) with continuous coefficients
defined in a bounded domain S2 c Let
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a differential operator of the second order with measurable coefficients eij,
I eii I  e. It is well known, e.g. [G-T], that for 1  p  oo the map

is an isomorphism. Hence for sufficiently small E &#x3E; 0, E = E (L , Q, p) the map

is also an isomorphism.

(2.8) Let I be a 3x3-matrix. We say that II is in the class M if its

eigenvalues are 1, 1, 3.
Below in Section (2.13) we define an elliptic operator H on T 3 of the

type (1): 
-

with continuous coefficients and with the following properties:

(b) there is an open non-empty set G C T 3 with smooth boundary such that

(2.9) Let L be an elliptic operator of the type (1) defined in B1 c ~3. Set

Let u be a good solution of the Dirichlet problem:

By Assumptions (2.1 ) u is unique. We denote

It is elementary to check that

and
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(2.10) This is the main Section in the proof of the Theorem. We define by
induction a sequence of open sets Gk c B1 C R 3 and a sequence of elliptic
operators Lk, k = 1, 2, ... , in B1 with a common ellipticity constant À,

such that the following holds:

(a) Gk+1 C Gk and meas c meas Gk for some constant c  1;

We will consider the elliptic operator Ho of Section (2.8) as an elliptic
operator defined in R3 with periodic coefficients hi j and the set G as a periodic
set in I~3 . We define G1 := G

where the constant t1 is chosen so large that

Assume now that operator Lk is already defined for some k  1.
Let D be an elliptic operator on B1,

such that D = Lk on B1 B Gk, dijl I  E on Gk, E &#x3E; 0, dij are piecewise
constant on Gk, E M for x E Gk.

By Assertion (2.7) for a sufficiently small E &#x3E; 0 the following inequality
holds: 

-

Let z E G k be an eigenvector of the I corre-

sponding to its largest eigenvalue. Let
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be an unitary map of R 3 which maps the vector 1, into the axis x3. We define
an elliptic operator P on B1: let T &#x3E; 0 be a sufficiently large constant, set

We set

By Assertion (2.6), the following inequalities hold for a sufficiently large T:

hence

and therefore a (
We have Lk = Lk+1 - Lo - on B1 B Gk. Thus the coefficients of

the sequences Lk and Lo are convergent on the set B B E where E = 
By (a) measE = 0. Thus from (a) and (b) it follows that the existence of the

sequences Lk, L§ proves the Theorem.
In order to complete the proof of the existence of Lk, Lo we still need to

show the existence of the operator H of Section (2.8).

(2.11) Let Q be a Gilbarg-Serrin operator on R2

where = + It is easy to check, e.g. [G-S], that

(2.12) Let cp (t), t E R, be a smooth function such that

Let vp be a solution of the Dirichlet problem:
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From (2.11) it follows that vp - o0 on B p as p - oo.
By the Alexandrov-Pucci theorem we have

where the constant C &#x3E; 0 may be chosen independently of p &#x3E; 0.

(2.13) Let 0  p  r  1/4. We define an elliptic operator L on T2:

By symmetry L = A. Let m be an equilibrium probability measure on T 2 for
the operator L. Pick constants r, p &#x3E; 0 so small that

By Assertion (2.12), the last inequalities hold for sufficiently small t, p &#x3E; 0.
Set 

~

We set Lo = L on T 2 B B~, Lo = A on Let mo be a probability equilibrium
measure for Lo on 7~. Set

For sufficiently small p &#x3E; 0 we obtain :
Let y,z satisfy the following linear system:

It is elementary to check that y &#x3E; 0, z &#x3E; 0. Let us define functions 1fr1, ~2 on
T2 by:
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Then

We defined as a piecewise continuous function on T2. Evidently 1fr1 may be
defined as a continuous function such that equalities (5), (6) hold and 1fr1 = 1/2

We set

We define elliptic operators H, Ho on T 3 :

We denote by the probability equilibrium measures associated to the
operators H(Ho). Since the operators Hl , Ho are invariant with respect to the
shifts along variable x3 we obtain _ m (x 1, x2 ), m 2 (x 1, x2x3 ) -

Hence
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