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A Relation between
the Riemann Zeta-Function and the Hyperbolic Laplacian

YOICHI MOTOHASHI

1. - Introduction

The aim of the present paper is to show a meromorphic continuation of
the function

to the entire complex plane, where ~ stands for the Riemann zeta-function. It
will turn out in particular that there are infinitely many simple poles on the

straight and that they are contained in the set of the complex
zeros of the Selberg zeta-function for the full modular group. As an application
of this fact we shall prove a new omega result for E2(T), the remainder term in
the asymptotic formula for the fourth power mean of the Riemann zeta-function.

We start our discussion with a brief survey of results on E2(T), since its
study was our original motivation. Thus we have, by definition,

with a certain polynomial P4 of degree four. We also put

where T and A are arbitrary positive parameters. In our former paper [8] an
explicit formula for I(T,A) has been proved, which yields, among other things,

Pervenuto alla Redazione il 13 Dicembre 1993 e in forma definitiva il 30 Dicembre 1994.
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with an explicitly computable c &#x3E; 0. Although this has some significance, it is
far from what is generally believed to be true about the size of E2(T): It is

conjectured that

would hold for any fixed c &#x3E; 0. This must be extremely difficult to prove, for
it would imply a deep estimate for the Riemann zeta-function on the critical
line. But it should be stressed that the mean square estimate

which supports the conjecture (1.2), has been proved in our joint paper [4] with
Ivic as another consequence of the explicit formula for I(T, A).

On the other hand, as for the lower bound of E2(T) a result that appears to
be essentially the best possible has already been established. In fact an assertion
in [5] (see also [3, Theorem 5.7]) states that

We maintain that (1.4) is more significant than the upper bound ( 1.1 ). The
reason for this is explained in our survey articles [9] [12]; here we say only
that (1.4) seems to reflect a highly peculiar nature of the Riemann zeta-function
that should be discussed with the Riemann hypothesis in the background.

In general, proofs of omega results require representations of the relevant
number theoretical quantities that are explicit in a certain sense. For instance,
without the explicit formula for the Tchebychev function in the theory of prime
numbers or the Voronoi formula for the sum of the number of divisors it would
not be possible to discus~ the omega properties in the distribution of primes
and divisors. This applies to (1.4) as well. For, its proof depends on the explicit
formula for I(T, A).

Our proof of (1.4) contains, however, a drawback. It does not seem to be
able to yield a two-sided omega result for E2(T) that is naturally inferred from
the experience in the theory of the mean square of the Riemann zeta-function. A
reason of this shortcoming lies in the fact that in [5] we employed the process
of taking a multiple average of the explicit formula for I(T, A) with respect to
the parameter T. This made it difficult for us to handle the problem of large
deviations of the size of E2(T) while tracing its sign changes.

Now, the meromorphic continuation of Z2(~) yields a comparatively direct
approach to the problem, and we are able to prove the following improvement
upon (1.4):

THEOREM 1.
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This confirms the conjecture expressed by several people, especially by Ivic [3,
(5.183)]. We think that there is a possibility that our new argument might yield
even

with an explicit k(T) that increases monotonically to infinity with T. But this will
definitely require some deep facts about the distribution of discrete eigenvalues
of the hyperbolic Laplacian that are not available currently.

The proof of (1.5) is achieved by the combination of a version of Landau’s
lemma (Lemma 1 below) and an explicit configuration of non-trivial poles of
Z2(~). The latter is, in turn, implied by a spectral decomposition of Z2(~). More
precisely, we have:

THEOREM 2. The function Z2(~) is meromorphic over the entire complex
plane. In particular, in the half-plane »1(ç) &#x3E; 0 it has a pole of order five
at == 1 and infinitely many simple poles of the r..i; all other poles

are of the form Here k2 + 1 4 is in the discrete spectrum of the hyperbolic
4

Laplacian with respect to the full modular group, and p is a complex zero of
the Riemann zeta-function.

It should be noted that this assertion depends on a non-vanishing theorem [7,
Theorem 3] about special values of automorphic L-functions, as it is to be shown

in our explicit computation of the residues at § + xi in the final section. Wep p 2

remark also that this theorem makes clearer the relation between the Riemann
zeta-function and the hyperbolic Laplacian than the theorem of [8] does.

The proof of Theorem 1 is immediate, if once we prove Theorem 2. For,
we have:

LEMMA 1. Let g(x) be a continuous function such that

converges absolutely for a ç. Let us suppose that G(~) admits an analytic
continuation to a domain including the half line [Q, oo), while having a simple
pole at u + ib, S ~ 0, with the residue 1. Then we have

This is a version of Landau’s lemma; for the proof see e.g., [1]. Theorem 2

implies that we may set g(x) = E2(x); hence (1.5) follows.
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It is appropriate to remark here that there exists a close resemblance
between the problems on E2(T) and those on the binary additive divisor problem

where d is the divisor function and a &#x3E; 0. A comprehensive account on both
D(N, a) and its dual version can be found in our recent work [10]. There, for
example, an analog of (1.4) is proved. But, recently Szydlo [14] replaced it
with a two sided omega result. While our work [10] relied on Kuznetsov’s
trace formulas, Szydlo took the approach that was devised by Takhtadjan and
Vinogradov [13] (cf., Jutila [6]). They considered a spectral decomposition of
the additive divisor zeta-function

which corresponds to our Z2(~). Szydlo observed that this spectral decomposition
could be combined with Landau’s lemma to produce a two sided omega result
for D(N, a). Our present paper is a result of the stimulus that we got from a
talk of Szydlo at the Meigaku Seminar in Tokyo. However, our argument is
essentially a variant of our former work [8], and independent from Takhtadjan
and Vinogradov’s work. It appears to us that their argument may not easily be
extended so as to be able to cope with the fourth power moment of the Riemann
zeta-function. Also, we stress that our argument developed in [10] is able to

yield a spectral decomposition of Da(0 that contains more explicit details than
Takhtadjan and Vinogradov’s work could show. In fact, we need only to set

= xL(x + in Theorem 3 of [10], where L is to be sufficiently large.
Although this weight does not have a compact support that is required there, it
is easy to see that the argument of [10] is applicable to it as well.

It should also be remarked that in [8, p. 182] (cf. [9] [12]) we gave
a tentative explanation why there is a connection between the Riemann
zeta-function and the hyperbolic Laplacian, though we formulated it in terms
of generic four-fold sums over integers since the fourth power mean problem
is reduced to such a situation. There a four-fold sum is regarded as a sum
over 2 x 2 integral matrices, and the summands are classified according to the
value of determinant, which amounts to a natural extension, to four-fold sums,
of Atkinson’s dissection argument [2] for double sums. Then we appeal to

Hecke’s classification of integral matrices of given determinant with respect to
the full modular group. In this way a four-fold sum can be taken for a sum of
sums over the full modular group; to each of the inner-sums we may apply the
spectral decomposition, and the outer-sum may be analyzed with the theory of
Hecke operators.
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The above reveals, to some extent, a structure behind our Theorem 2. On
the other hand it might give the impression that only the fourth, but no higher,
power mean of the Riemann zeta-function should have to do with the spectral
analysis of the full modular group. But this is not correct. For, we have recently
shown in [11] that the eighth power mean

admits an expression in terms of the objects pertaining to automorphic forms
over the full modular group.

Acknowledgement. The author is grateful to Profs. A. Ivi6, M. Jutila and
the referees for their kind comments and suggestions.

2. - Spectral decomposition

Now we shall show a meromorphic continuation of Z2 ( ~) to the region
?(0 &#x3E; 0; further continuation may be left out, since it is just a matter of
technicality.

To this end we consider the expression

where both ~(~) and D are assumed to be positive and large, at least initially.
Obviously we have, for any D &#x3E; 0,

where h(~, D) is a function regular for R(~) &#x3E; 0. Also we have, by partial
integration,

where p5 is a polynomial of fifth degree with constant coefficients. The assertion
(1.3) implies that the last integral is uniformly convergent for ?($) &#x3E; 4. Thus
we see that is regular &#x3E; _ 1 except for the pole at = 1 of order2

five, though the argument below will yield the same in a different way.
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To continue Z2 (~) beyond the line !R(Ç) = -, we need a spectral
decomposition of Y(~, D). One way to achieve it is to incorporate [8, Theorem]
into the relation ,

Here an obvious modification of the statement of [8, Theorem] is needed because
there the parameters T and A are to satisfy a constraint that is not fulfilled by
the present supposition. But we shall not take this approach. For, we think that
the spectral decomposition of Y(~, D) is to be understood in a more general
context.

Thus we introduce

which may be termed the biquadratic zeta-transform of the function f. A careful
analysis of the argument developed in sections 2 to 5 of [8] will reveal that it
works verbatim for 22(f) as well, provided f satisfies the following conditions:

Co : f (t) is even.

Cl : There exists a large positive constant L such that f is regular and
O (( 1 + in the horizontal strip  L.

The first condition is introduced only for the sake of simplicity. As for the
second, we note that it is possible to work with rather small values of L, but
the stringent condition given above seems to be sufficient for most purposes.

To state the spectral decomposition of Z2 ( f ) we have to introduce
some notions. Thus, we first define briefly the standard symbols from
the theory of automorphic forms; for the details see [8]: We denote by

+ 1; ~ ~ &#x3E; 0 - 1 2 ... U { 0 } the discrete spectrum of the hyperbolic
Laplacian acting on the space of all non-holomorphic automorphic functions with
respect to the full modular group. Let pj be the Maass wave form attached to
the eigenvalue Aj so that (pj) forms an orthonormal base of the space spanned
by all cusp forms, and each pj is an eigen-function of every Hecke operator
T(n) (n &#x3E; 1). The latter means that there exists a certain real number tj(n)
such that T(n)pj = With the first Fourier coefficient pj of pj we put
aj = The Hecke L-series Hj(s) attached to CPj is defined by
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This is actually an entire function, and of polynomial order with respect to Itj
if s is bounded.

As for the holomorphic cusp forms, we let  j  iy(k)l stand
for the orthonormal base, consisting of eigen functions of all Hecke operators
Tk(n), of the Petersson unitary space of holomorphic cusp forms of weight
2k with respect to the full modular group. This means, in particular, that we
have with a certain real number tj,k(n). With the first
Fourier coefficients of we put aj,k = As before
we define the Hecke L-series Hj,k(s) by

Again this is entire, and in any fixed vertical strip it is of polynomial order
with respect to the weight, uniformly for the index j, if s is bounded.

Further we need to define a transform of the function f that satisfies the

conditions Co and C1 . Thus we put, for R(q) 1conditions Co and Ci. Thus we put, for !R(’1) 2

where F is the hypergeometric function, and f the Fourier transform of f :

We then put, for real r,

Now, the spectral decomposition of Z2(f ) runs as
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LEMMA 2. If f satisfies the conditions Co and Cl, then we have

where q4 is a polynomial of order four, and h(t) is regular and 0((l + ItB)-1

(log(It +2))2) in the strip  1/2; moreover both are independent of f.2

Here we should remark that the condition C, implies the existence of a
c &#x3E; 0 such that

for large positive r. Since Hj ( ~ ). 1 are of polynomial order and
aj, aj,k are constant on average, the sums and the integrals in (2.3) are all

absolutely convergent. To show the estimates (2.4) briefly, we put,  1,

By shifting the path vertically and applying Stirling’s formula it can be seen

that f*(s) is, in fact, regular and for  L/2, where
L is as in Cl. Then we have, instead of (2.2),

where the path separates the poles of r 1 + - s and r(s) to the right andp P 2 
n

1
the left, respectively. If 9K?y) &#x3E; -- then the path can obviously be drawn. The2

assertion (2.4) is now a result of an application to (2.5) the above estimate of
f * (s) and Stirling’s formula.
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3. - Specialization

We may now return to the function Y (~, D). Thus we set f (t) to be

where the parameter D is omitted on the left side for the sake of notational

simplicity. Obviously this satisfies the conditions Co and Cl, provided both D
and R(I) are large, though the condition on ~ will be relaxed later. We stress
that throughout this section D is assumed to be large, and all statements below
are possibly dependent on it.

Now, the spectral decomposition (2.3) gives, instead of (2.1)

where the last three terms stand for the contributions of the continuous spectrum,
the discrete spectrum, and the holomorphic cusp forms, respectively. To get an
analytic continuation of this decomposition we need to prove the following
assertion on the analytic property of as a function of two complex
variables q and ~:

LEMMA 3. Let us assume either that 7y is in a fixed vertical strip where

&#x3E; -1 or that q is on the half line [1, oo). Then, for any bounded C withR(n) . g, 
or that n is on the half line for any with

- 8
&#x3E; -1 the unction8 

is regular and

provided D is sufficiently large.

We consider first the case where q is in a vertical strip; thus we may
assume that there is a positive constant c such that

and
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We note that for x &#x3E; 0

where Kv is the K-Bessel function of order v. Then, invoking Euler’s integral
representation of hypergeometric functions, we have

where

and

The asymptotic property of the K-Bessel functions implies that A(x, ~)
is of rapid decay when x tends to infinity. On the other hand the behavior of
A(x, ç) when x is close to 0 can be inferred from the defining relation

where

More precisely, we have, for each p &#x3E; 0,

Also we have

uniformly for x &#x3E; 0. Then the expression
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yields an analytic continuation of to the domain defined by the
conditions (3.3) and (3.4).

To show the estimate (3.2) in the present case, we turn the line of

integration in (3.10) through a small positive angle 0. Thus we have

The estimate (3.8) holds for ~) too; and also we have, instead of (3.9),

We then divide the integral in (3.11) into two parts corresponding to 0  x  1
and the rest; accordingly we get a decomposition of f~). If 0 is small, the
first part is

and the second part is

This obviously ends the proof of (3.2) in the case where (3.3) and (3.4) hold.
Next, we consider the case where q &#x3E; 1, and the condition (3.4) holds.

Here the regularity of is easy to check; thus let us prove the decay
property (3.2) only. To this end we note that we now have, for x &#x3E; 0,
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which can be shown by computing the maximum of the integrand. We insert
this into (3.10). The part corresponding to 0  x  1 is easily seen to be 0(2-’1).
The remaining part is

which is much smaller than r¡-D/2. This ends the proof of Lemma 3.

4. - Analytic continuation

We are now ready to finish the proof of Theorem 2. To this end we note
first that we have

Lemma 3 implies immediately that this sum is regular for ?($) &#x3E; -. On the
other hand the contribution of the discrete spectrum is 

8*

where

is the result of changing the sign of all K,j in Yd’ (~, D). Then
Lemma 3 implies that is regular except for the simpleP d (03BE,D ) g (03BE)&#x3E; 

8 P

poles at - 1 1 - ik where x runs over the set of the distinct elements of2 2 )
such that

In our former paper [7] we have shown that there are infinitely many r. that

satisfy this non-vanishing condition. Thus Yd(~, D) has indeed infinitely many
simple poles on the straight line R(03BE) = 4.4
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Let us compute the residue R(x) of Yd(~, D) at the pole
We have

By (3.10) we have

But we have, by (3.5)-(3.7),

provided R(03BE)  1/4. Hence we have, after a rearrangement,2

Next, we consider the contribution of the continuous spectrum. We have

where the path is the straight line R(r) = 0; note that here it is assumed that

R(£) is sufficiently large. Let P be an arbitrary positive number such that
on the lines R(s) = -3:2P, and also 1~(ç)1 (  P/4. We then move the

path in the last integral to the one that is the result of connecting the points

i P, i oo with straight lines. The resulting integral is regular
4 4 g g ~ g

by virtue of Lemma 3. In this procedure we encounter poles_ 

8 
Y p p

at r = 2 and ( 1 - p)/2, where p runs over complex zeros of the zeta- function2
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such that I  2P. As a function of the residue at r = I is regular for2

R(03BE) &#x3E; , except for the point = 0, which is at most a simple pole. Further,8 
1

the residue at r = ( 1 - ) p / 2 is regular for R(03BE)&#x3E;- except for the pole at- 

8

03BE = p/4. Since P is arbitrary, this proves that D) admits a meromorphic
continuation at least to the domain R(£) &#x3E;

8

Collecting the above discussion, we find that Z2(03BE) is meromorphic at

least for &#x3E; 0, having simple poles possibly ixj (j = 1 &#x3E; 2 &#x3E; ... ) while all
other poles in this region are of the form p/2 (~(p) = 0). This ends the proof
of Theorem 2.

CONCLUDING REMARK. If 1t2 + ~, It &#x3E; 0, belongs to the discrete spectrum,
then we have 

4

where T = 1 - and is as above. Thus, providing that Ay is a simple

eigenvalue, we may recover the value of from those of the Riemanng y j 2
zeta-function. Actually we are able to extend this fact to Hj (s) , 1  !R(s)  1,

by considering, instead of Z2(~), the expression 

In fact it has a simple pole at ~ = 1 - s - ixj with the residue involv-

ing Hj 1 2 in the place of providing an obvious non-vani-(1/2)HJ(s)in the place of Hj (1/2)3
shing condition. Thus it is possible to view the Riemann zeta-function as a
generator of Maass wave form L-functions. Since the Riemann zeta-function
corresponds to the Eisenstein series, the above fact suggests that there might be
a way to generate Maass waves by integrating the Eisenstein series. To these
topics we shall return elsewhere.
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