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Elimination of L1 Singularities
on Hölder Peak Sets for CR Functions

A.M. KYTMANOV1 - C. REA2

We deal in this article with those functions on a CR submanifold M
of the euclidean complex space which are CR functions in the complement of
some relatively closed subset S c M and we prove, with suitable hypotheses
on S and M, that those functions are actually restrictions of CR functions on
M. Thus our results are of the form

This can be viewed in the spirit of the classical Riemann theorem on elimination
of singularities for holomorphic functions in C, which may be written as follows

for some zo in an open set Q c C.
A particular role will be played by characteristic submanifolds and by

peak sets in M.
A connected submanifold N c M is said to be characteristic if dim N 

dim M but dimcR N = dimCR M. A point of M which is not contained in any
characteristic submanifold is said to be a minimal point.

A subset S’ c M is said to be a CA peak set, 0  A  1, if there exists a
non constant function h E CÀ(M) n CR(M) such that S - (h = 1}, but Ihl  1

on MBS.
We now state our results.

THEOREM 1. Each minimal point p of a CR manifold of class C2,0l,
0  a  1, has a neighbourhood M such that, if S is a CÀ peak set in M,

1 During the preparation of the manuscript the first author was a visiting professor at the

University of Roma - La Sapienza, with M.P.!. funds.
2 Supported by M.P.I. funds.
Pervenuto alla Redazione il 13 Aprile 1993 e in forma definitiva il 25 Luglio 1994.
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then

Our proof can be sketched as follows. For any f E Ll (m) n CR(MBS),
g - (h - 1)2/Àf is in CR(M) (Lemma 3). By minimality, g and u - (h - 1)2/À
extend holomorphically to an open wedge over M. Then, by a careful study
of Bishop’s and Tumanov’s constructions (next Proposition 5), one obtains that

in and that g/u, which is holomorphic in 1~V, has f as limit, in the Ll
sense, on M.

An anonymous referee indicated to us how to derive from Lemma 3 and
from Proposition 5 below an analogue of ( 1 ) for a general complex vector field
(not necesserely the operator 8b), when there exists a hölder solution which
peaks on ,S and ,S has measure 0. More precisely we shall prove the following:

n a
PROPOSMON 3. Let L = E aj (x) a 

. 

be a complex vector field, with cl
j=1 9xj

coefficients, in the open set Q c and let h E CA (L2), 0  A  1, be a
solution of Lh = 0, such that 1 in il. If the maximum set (h = 1 } has
vanishing Lebesgue measure, then each weak solution f E of L, f = 0 in
L2B I h = 1 } is also a solution in Q.

On the other hand, Proposition 5, gives easily the next:

PROPOSITION 4. In a CR manifold of class C2 cl each minimal point has
a neighbourhood M such that any CÀ peak set in M has vanishing Lebesgue
measure.

These propositions obviosly imply Theorem 1. We present both proofs
here.

In order to give a stronger version of Theorem 1 for real analytic manifolds
(next Theorem 3), the minimality assumption in Theorem 1 can be considerably
relaxed using the following:

PROPOSITION 1. Let M be a CR submanifold and N an embedded
characteristic submanifold of M. If M and N are of class Cl, then

Further, if N has codimension 1 and, conversely,

holds, then N is characteristic.3

3 This Proposition is valid not only for CR functions but holds in general for functions
annihilating a vectorfield in the complement of a manifold which is tangent to it. In this form the
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For optimal use of this proposition, it is convenient to disregard those
characteristic manifolds which are not isolated but are contained in an isolated
one of larger dimension. Therefore we define as characteristic of maximal
dimension any characteristic manifold which is not contained in another one of

higher dimension.
Assume for a moment that p is non minimal. The first part of Proposition

1 obviously implies that the conclusion of Theorem 1 still holds if p belongs to
an isolated characteristic manifold of maximal dimension. This procedure can
be carried further: Let 10 be the family of characteristic manifolds of maximal
dimension in some neighbourhood of p. For instance 10 could consist of a
sequence of isolated manifolds converging to some manifold. This situation

escapes Theorem 1, but Proposition 1 is applicable twice: first for eliminating
the sequence and then for eliminating the limit. This kind of argument can be
pushed further:

Set 1n = isolated elements of starting with n = 1. If p E 10
but n 1n = 0, then Theorem 1 still holds. Thus we have showed that minimality
in Theorem 1 can be weakened:

THEOREM 2. If p does not belong to any perfect family of characteristic
manifolds of maximal dimension, then the conclusion of Theorem 1 is still
valid.4

We consider now the real analytic case. The next Proposition generalizes
a result of Khurumov [7].

PROPOSITION 2. If M is a connected, real analytic CR submanifold of C v
and has at least one minimal point, then its characteristic manifolds of maximal
dimension form a locally finite family.

So we obtain, without need of proof, the following

THEOREM 3. If the connected, real analytic CR manifold M C CV has at
least one minimal point, then (1) holds for any 0). peak set S.

Finally we discuss the hypotheses with an example which has a double
purpose. On one hand it illustrates the role displayed by the measure assumption
for the peak set in Proposition 3, on the other hand it shows how sharp is the
hypothesis on the characteristic family containing p in Theorem 2.

THEOREM 4. There exists a smooth, psuedoconvex hypersurface M C c~ 2
with the following properties:

(i) M contains a closed set S, with positive Lebesgue measure and no interior
point, which is both a peak set for a smooth, CR function and the union

statement is probably known and can be proved along the line of our proof up to replace the entire

approximation theorem by a standard mollification argument.
4 A perfect set is a closed set without isolated points.
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of all complex curves contained in M.5

(ii) n CR(MBS) 9! CR(M).6

(iii) MBS is strictly pseudoconvex.
REMARK 1. A C 1 submanifold M’ of the complex euclidean space E’

is said to be generic if T M’ + iT M’ = E’. It is well known that any CR

submanifold M of the euclidean space E is locally equivalent to a generic one,
i.e. for each p E M there exists a neighbourhood U in E, a generic manifold
M’ and a C’ diffeomorphism W : M n !7 -~ M’ which is CR together with its
inverse.

Indeed one can fix a complex supplement of E’ - T M +iT M and consider
the corresponding projection 7r : E ~ E’. For suitably small U, T =- 
is a diffeomorphism onto a generic submanifold M’ c E’ and, since 03C0 is

holomorphic, W is a CR map. Thus T-1 is also CR.

So, since all of our statements are local, we shall implicitly assume that
the given CR manifold is generic.

A particular case of Theorem 1 has been proved by Kytmanov [9]. There
the absence of characteristic submanifolds is replaced by a non vanishing
hypothesis on the Levi form. In this case one can use a construction due
to Bogges and Polking ([2]) of a particularly nice family of analytic discs
similar to the family 03A6 in our Proposition 5.

In our case we use Tumanov’s method ([15], [16]) but the "nice family"
is not furnished there and some work must be spent for its construction.

Elimination of L 1 singularities of CR functions is of some interest in
various problems as for instance the study of rational functions on compact
subsets of boundaries ([10]).

After Harvey and Polking’s article [4], much has been done about
eliminable or removable singularities of CR functions by Henkin, Lupacciolu,
Stout, Kytmanov and many other authors. A result in our spirit is a Rado
theorem for CR functions which are continuous on a hypersurface whose Levi
form vanishes at most on a suitably thin set. This has been established by J.P.
Rosay and E.L. Stout [13] but has no intersection with our results. For a wide
survey we refer to Henkin [5] and Stout [14]. We are indebted to E.M. Chirka,
A. Schiaffino and Y.V. Khurumov for useful conversations.

5 A characteristic manifold here is necessarily a regular, complex curve.
6 In fact we prove more i.e. L°°(M) n CR(M).
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1. - Proof of Proposition 1

We first need the following, simple result:

LEMMA 1. Let g be a real Cl function on the generic Cl submanifold
M C CV such that g and dg do not vanish together, f E n CR(M) and
1/J a smooth (v, v’)-form in C v with supp 1/J n M compact and v + v’ + 1 = dim M.
Then for almost all 0  c « 1 we have

PROOF. supp b can be taken so small in order that there exists a sequence
of holomorphic polynomials fn converging to f in (see [9], Lemma
2). The formula holds for fn, for all n and c &#x3E; 0. Since f E = ê}),
then, by the Fubini Theorem, for almost all 6 and after taking a subsequence,
the restrictions of fn to suppv n {g = el converge to f in Ll (see also [9]).
Obviously on the left side we have convergence too. D

PROOF OF PROPOSITION 1. Let z = z(t, T) be a local parametric
representation of M, with t E T E ITI  R, and let N be given
by {z(t, 0), t E II~~-d}, P, = dim M. Since N is characteristic, the zj’s can be
reordered so that dzl , ... , dzd depend linearly on dTl , ... , dTd, dzd+ I I... , dzv, at
the points of N. This can be verified taking M and N linear. Thus we have

where aaj are continuous functions and continuous 1-forms. Thus, if
7r-’ : M --+ M is the map (t, T) H (t, cT) and dz - dzl A... A dzv, we obtain

where X, is a v-form with coefficients depending continuously on t, T, c.
Let be f E Ll loc (m) n CR(MBN).
We must prove

for all smooth compactly supported forms v of Since f E 
we have for the integral in (3)
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and thanks to lemma 1, with g = ir I, we obtain

for almost all c &#x3E; 0.

Thus it remains to prove

when c varies in a full measure subset of (0, R).
We introduce polar coordinates in V and write dr = where

Wd-I is the pull-back to of the standard measure on Sd-1 I via the map
T H We have = ·

After shrinking M so that f E but still supp V) C C M, we have

We can conclude that g : dt A Wd-1| is a function in L1(0, R).Ni

On the other hand we have from (2)

Since dt Awd- 1 is a positive maximal form on Nl, we have = bcdt Awd- 1
where b03B5, is a continuous, bounded function of t, T, c. Thus

Since the limit of the left side exists, for e 10 in a full measure subset of
(0, R), and g E L 1 (o, R), we obtain (4) as we wanted.

For the second part, since the statement is local, we can assume that N
divides M into two components and observe that the function which is equal
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to 1 on one of them and 0 on the other, is a CR function if and only if N is
characteristic. 0

2. - Proof of Theorem 1

Theorem 1 depends on the construction of analytic discs which will be
done in Proposition 5 below.

D will be the unit disc and r its boundary.
We must study some properties of the analytic discs of 0 defect at some

point of M.
Roughly speaking an analytic disc p : D --+ CV, with boundary pr c M

at p = has defect 0 if §3D fills an open wedge over M, when 0 varies
among all small perturbations of p, keeping §3r c M and p = 

Let p be a minimal point of a generic real submanifold M c of
codimension m, CR dimension n and class C2~a, 0  a  1. Thus n + m = v.
Choose coordinates (w, z) E so that p = (0,0), and M, near p, can be
given the form

where Bpn, Bp are the usual balls, k(0, 0) = dk(O,O) = 0.
Fix /3 with 0  /3  a and let W be the Banach space of C1,p maps

w : D - which are holomorphic in D and such that w(1) = 0. Set

W03B4={w~W,||w||1,03B203B4}.
A small analytic disc ~p, near (0,0) in of class C1,p, attached to M,

can be written in the form

where (w°, y°, w) is chosen arbitrarily in Bin x x W6 and the z-component
is uniquely determined by the condition pr c M via the Bishop construction.
Hence we can write ~)=~(~B~B~).

p depends C1 on the parameters (see [16]) and, as they vary in
Ban x x W~, ~p describes a neighbourhood of zero in the set of all analytic
discs satisfying pr c M.

DEFINITION. The disc is said to have defect 0 if the map

has surjective differential at w.
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By semicontinuity of the rank, 0 defect discs are an open set and the main
point in [15] is that at a minimal point p there are arbitrarily small discs p of
0 defect with = p.

By minimality of p there exists a neighbourhood V of p in M and an
open wedge ’W over V such that functions in CR(M) extend holomorphically
to ([15]). This extension must be viewed in a continuous or Ll sense if

the given function is continuous or L 1 respectively and is obtained by covering
with small perturbations 03C8 of p, still satisfying 1/Jr c V, and, for each

h E CR(V), extending h 0 1/J : r ~ C inside the unit disc. In particular, if h is a
peak function then its extension to W, which is still called h, satisfies h ~  1

and hence lhl  1 in W for otherwise h - 1 because is open.

LEMMA 2. Let p be a minimal point of a generic manifold M. If Sp,
Spr c M, has defect 0 and is sufficiently small, then for any peak function
h the modulus of the extension of h o Sp is strictly smaller than 1 in D and

1 almost everywhere in r.

PROOF. For A  1 very close to 1 the point p(A) belongs to yV; thus the
modulus of the extension of h o p is not identically 1 in D and, since it is  1
at the boundary, it is  1 in D and h[p(g)] f 1 a.e. on IF. - D

In Prop. 5 we want to construct a particular family of discs of defect 0.
For we need some more information about the Bishop map B. 2n x B§F X W8 3
(w 0, y0, W) F-+ considered above.

We shall use the Hilbert transform as the continuous linear map T :
-~ cl,,8(r) defined on real functions by the property that f + iT f is the

boundary value of a holomorphic function in the disc, and T f ( 1 ) = 0.
For given (w°, y°, w), the trace on r of z(~) =- is defined by

the equation z(~) = k[w° + w(~), y(~)] + i y(~), ~ ~ ~ = 1, where y(~) is the solution
of Bishop’s equation y = In D z is defined by its trace

on r via Poisson formula. Thus the jacobian matrix is the solution of
= + w, y) + 1. By the continuity of T and the condition dk(O,O) = 0

we conclude that has non vanishing determinant if 0  b « 1.

We are now in a position to prove the following

PROPOSITION 5. Let p be a minimal point of a generic real submanifold
M C C" of codimension m and class C2~_a, 0  a  1, and let B be the ball of
~2v-m-1, There exists a C1 1 map (D : B x D --~ ell with the following properties

(i) 0(0,1) = p, r) c M and (D(b, .) is holomorphic in D, Vb E B.

(ii) The map Oj Bxr : B x r -~ M has non vanishing jacobian.

(iii) For each v E f1 CR(M) there exists v E L’(B x D), holomorphic
with respect to g E D, such that v o (DBxr is the boundary value of v on



219

B x r in Ll sense .7 In particular, for almost all b E B, v(b,.) belongs to
the Hardy class H 1.

(iv) If v is also continuous then v E C°(B x D) and v = v on B x r.

(v) If in addition v is a peak function then v ~  1 in B x D.

(vi) If S is a hölder peak set in M, then, for any fixed b E B, the set

~ ~ E r, (D(b, ~) E S } has Lebesgue measure 0 in r.

PROOF. The statement is local thus M can be assumed to be given by (5)
and p will be reduced if necessary. Since (0, 0) is minimal, for any 6 &#x3E; 0, we
can fix w E W6 such that [w(.), z(O, 0, w ~ -)] has defect 0. Thanks to the openness
of the set of these discs, we can also assume w~ (~) ~ 0 for I = 1 and that those
properties are still fullfilled by [w(-), z(wo, y 0, w (-)] when w 0 E B 6 2n, y0 E B;5B
after reducing 6. Using the notation w,, = (w 1, ... , I wn-1), we set, for It  6,

A  1 will be chosen later very close to 1.
We consider first the jacobian. of the map B103B4 x 0393---&#x3E; Cwn given

b t 8 ---&#x3E; Define E so thatby (t,03B8) f-+ Define E n /B n = /B dB so that

E(o, 8) - and choose now A  1 very close to 1 in order
to have E(0~)~0 ‘d9 and thus, reducing 8, on B) x r. The map
B~n-2 x r - en given by (w°, t, 8) f--~ (w2 has obviously
nonvanishing jacobian too.

Now set o£(g) = ~M 2013 wn ( 1 ) and consider, for any E

B~n-2 x the analytic disc

which has 0 defect if t ~ « 1.
For the jacobian of the corresponding map x BJ x B’8 x r --+ M

is ±E - det and does not vanish as we observed before.
We only have to put b - B C Bln-2 x BI x B’8, and obtain

that 0(6~) = fullfills (i) and (ii) by construction. (iv) follows from the
Baouendi-Treves approximation theorem ([ 1 ]), (v) and (vi) from lemma 2 and
the fact that ~(b, ~) is a disc of defect 0 for all b E B. To show (iii) one
notices that, if vn is the sequence of polynomials given by the Baouendi-Treves
approximation operator, then vn --&#x3E; v in Lloc(M). The fact that 03A6|Bx0393 has non
vanishing jacobian implies that Vn converges in x r) and the limit
v is ~-holomorphic in B x D. D

REMARK 2. A family 4S satisfying the condition (i)-(iv) of the proposition
can be trivially constructed for any CR manifold. The crucial point in the
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proposition are the conditions (v) and (vi) for which the minimality displays
a crucial role. For example if M were the hyperplane {z E CV, Yv = 0}, then
for any closed set C C the set cv-l x C is a peak set and thus it can
have interior points. Hence the conclusions of Proposition 5 and of Theorem 1
cannot hold ((v) and (vi) cannot be satisfied).

One could think that, in the last example, Proposition 5 and Theorem 1 do
not hold because analytic discs with boundary on this manifold lie completely
in the manifold and that a family 0 with the properties (i)-(iv) of Prop. 5
but such that 0(6, D) f1 M = 0, Vb E B, would also satisfy condition (v) and
consequently Th. 1 holds as soon as such a family exists.

This is false as the next example shows

ExAMPLE. M - z z = 1 y3 = 0; 1 X31 ~, IZ21 2 . We have
dim M = 4, dimCR M = 1. M is fibered by a family of characteristic

submanifolds N - M = t} with It  1, 2 thus no point of M is minimal.
M is also fibered by the boundaries of analytic discs whose interiors are

disjoint with M. These discs are

We have

Nevertheless since every function f (x3 ) is a CR function, M has peak sets with
interior points and thus Prop. 5 and Th. 1 do not hold for M.

This shows that for the validity of (v) in Proposition 5 (and hence of Th.
1) it is necessary that the discs in the family have defect 0. Roughly speaking
it must be possible, keeping their boundary on M and a point fixed, to perturb
them so much to fill an open set.

Before proving Theorem 1 we need also two lemmas from [9]. For sake
of completeness we also give the proofs, which are very short.

n a
LEMMA 3. Let L a be a complex vector field, with C’~ Xj p

coefficients, in the open set Q c Rn, and u E C~‘ (SZ), 0  A  1, a solution of
Lu = 0. Then, for each f E which solves L f = 0 weakly in K2Bfu = 0},
we have L(u 21,lf) = 0 in Q. 

loc

PROOF. Set d for the distance from ju = 0}. We have  Cd2. Let
n

~ E be an arbitrary test function. Setting, as usual, 
j=1

we must prove that f dx = 0. For each 6, 0  6 « 1, we can choose a
Q

smooth function Xb with compact support contained in  36} and equal
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to 1 in a neighbourhood of supp1!J n {d  8}, such that IdX51  Clb. Since
= 0 in a neighbourhood of the support of (1 - we have

with Cl independent of 6 which is arbitrarily small. D

The next lemma concerns Hardy classes in the disc.

LEMMA 4. If g E E 0(D), &#x3E; 0 in D for some it &#x3E; 0, and

g = uf on r with f E then gu-l E H1.

PROOF. We can apply Smirnov’s theorem (Hp nL-1 c Hs for p  s, see

[3] p. 65 or [8] p. 102), indeed if were in HP for some p &#x3E; 0, then
f E would imply E For all 0  q  it we have

which is harmonic, thus u-1 I E Hq. for norms

on I z I = r  1. For fixed 0  p  1, the Holder inequality with exponents
1 /p, 1/(l - p), applied to gPu-P thus, for

p  ¡.¿/(1 + ~), we have q - p  ~u and hence gu-1 E HP. D
1-p

PROOF OF THEOREM 1. By remark 1 we can assume M to be generic. We
shall first apply Lemma 3, in which we set u = 1- h, and the family 03A6 of discs
constructed in Proposition 5. Since (D has non vanishing jacobian on B x r,
U - x r) is an open, relatively compact neighbourhood of p in M and, for
u - (1 - h)2~~‘, u f E L’(U) n CR(U). Thus, according to Prop. 5 (iii), we have
a ~-holomorphic function g E x D) such that, for almost all b E B, ~(6,’)
has u f o ~’(b, ~ ) as boundary value in H 1 sense. We can now apply (iv), (v) of
Prop. 5 to h and conclude that we have a ~-holomorphic h E C°(B x D) such
that h = on B x rand  1 on B x D. Thus, if we define u - ( 1- h)2/Å,

has positive real part on B x D.
Using the non vanishing property of the jacobian of we can affirm

that is in for almost all b E B and is the boundary value
of 4ii- I (b, .). Thus lemma 4 applies to g(b, ~) and u(b,.) and we conclude that

E H 1 for a.a. b E B. Now, since f o 03A6|Bx0393 E x r), by the
Lebesgue and Fubini theorems we have = in the L1 1

t 
r

sense, where rr is the circle = r. If gn and un are sequences of holomorphic
polynomials converging respectively to u f in and to u in CO(M), then
those sequences converge on 0(B x D) in Ll and uniform sense respectively
and we have g = g o = u o 1&#x3E;. By reasons of continuity has a non

vanishing jacobian if r  1 is very close to 1 and thus Mr - x rr) is a
Cl-smooth manifold. By the previous remark, we have
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In particular, if V) is a smooth (v, v’)-form, with v+v’+1 = dim M and supp 03C8nm
is compact, we have

We shall be done if we prove

Since un converges uniformly on B x D to a function which is bounded
away from 0 on rr, for r  1 very close to 1, so we have, for n &#x3E; n(r),

By continuous dependence of the constant in the Stiltijes-Vitali theorem ([6]),
gn converges uniformly on compact subsets of B x D, thus gn converges
uniformly to g on Mr. Hence, for n --+ oo, we have

but since gnu;1 1 is holomorphic in a neighbourhood of Mr the first integral
vanishes. This gives (6). The proof is complete. D

We noticed in the introduction that Th. 1 follows immediately also from
Prop. 3 and 4. We shall now show that these are consequences of Lemma 3
and Proposition 5 respectively.

PROOF OF PROPOSITION 3. The statement being local we can assume

f E Set S = {h = 1} and Sc = {x E f2, s.t.lh - 11 ]  -I, by hypothesis
m(Sc) - 0 when c 1 0. ,

As m goes to infinity, the sequence um = [1 - (h + 1)rn/2m]2~~‘ tends to 1,
uniformly on Since (h + 1)m/2m is also a CA solution of Lu = 0 which
peaks on S, L(um f ) vanishes by Lemma 3. We have

and hence um f - f in Li(Q). But then, for any test function 0 E we


