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Vacuum Solutions of a Stationary
Drift-diffusion Model

P.A. MARKOWICH - A. UNTERREITER

1. - The Model

We consider a stationary drift-diffusion model for a bipolar semiconductor:

Here n, In and Tn denote the electron density, the electron current density
and the electron temperature respectively; p, Ip, Tp are the analogously defined
quantities for the positively charged holes, namely the hole density, the hole
current density and the hole temperature respectively. Obviously we require that
n &#x3E; 0, p &#x3E; 0, Tn &#x3E; 0 and Tp &#x3E; 0. V denotes the electrostatic potential, C = C(x)
the prescribed doping profile characterizing the device under consideration and
92 C m = 1, 2 or 3, the (bounded) semiconductor domain.

Equations ( 1.1 )-( 1.3) can be obtained as limit of the hydrodynamic model
for a bipolar semiconductor as the electron and hole mean free paths tend to
zero (see [1] ] and [2]).

We supplement the equations by the following physically motivated mixed
boundary conditions (see [3]):

where aSZ splits into the disjoint subsets rN and rD. T denotes the exterior
unit normal vector of ~SZ (which is assumed to exist almost everywhere). rN

Pervenuto alla Redazione il 14 Ottobre 1991 e in forma definitiva il 13 Ottobre 1992.
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models the union of insulating boundary segments (zero outflow) and rD the
union of Ohmic contacts, where an external potential (represented by VD) is

applied. We shall assume that the (m - I)-dimensional Lebesgue measure of rD
is nonzero.

Generally, the particle temperatures Tn and Tp are determined from
additional equations, which are coupled to ( 1.1 )-( 1.3). In this paper we shall,
however, be concerned only with the isentropic case, where Tn and Tp are given
as functions of the densities n and p respectively. For the sake of simplicity,
we shall assume that these functions are equal, i.e.

with T : [0, oo) -~ [0, oo). Equivalently, we may assume that the electron and
hole pressures rn and rp, determined by the ideal-gas law:

are given (and equal) functions of the particle densities:

with

Then equations ( 1.1 ) and (1.2) can be re-written as:

Note that r’(n) and r’(p) are the (generally nonlinear) diffusion coefficients
of (1.10) and (1.11) respectively. They are non-negative since (as physically
reasonable) we assume r’(p) &#x3E; 0 for p &#x3E; 0.

In the case of a linear pressure function

(i.e. constant diffusivities, isothermal model with Tn = 7p = 1), the problem
(1.10), (1.11), (1.3), (1.4), (1.5) reduces to the standard drift-diffusion model
based on Boltzmann statistics, which has been extensively analysed (see
[2], [3] and the references therein). Moreover, the drift-diffusion model with
the particular nonlinear pressure function r arising from the assumption of
Fermi-Dirac equilibrium particle distributions was analysed in [4]. For both
cases the existence of a solution with n &#x3E; 0 and p &#x3E; 0 in S2 was shown for
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all doping profiles C E and all sufficiently regular boundary data with
nD &#x3E; 0 and pD &#x3E; 0 on rD.

It turns out that major ingredients for these existence proofs are the

asymptotic values of the enthalpy function

as p - 0+ and p -~ oo. More precisely, the proofs are based on the properties

However, the usual thermodynamic considerations on which the isentropic
hydrodynamic semiconductor model and consequently its zero-mean-free-path
limit (1.10), (1.11) are based, suggest a pressure function of the form (see [5]):

For i &#x3E; 1 we obtain

and hence

The main result of this paper concerns the case excluded so far in the existing
literature and represented by (1.15), namely h(O+) &#x3E; -oo and h(oo) = oo. We
shall extend the existence result to this case (assuming sufficient regularity on
the data and nD &#x3E; 0, PD &#x3E; 0 on rD); however, we demonstrate the occurence
of a vacuum for at least one particle type (i.e. the existence of a subset of Q
in which either n = 0 or p = 0) under certain assumptions on the data.

This result does not seem totally surprising, since (1.10), (1.11) contain
the porous media type operator A(u7) when (1.13) with i &#x3E; 1 is employed.

This paper is organized as follows. In Section 2 we specify assumptions
on the enthalpy h and on the data which guarantee non-vacuum solutions;
Section 3 is concerned with the analysis of possible vacuum solutions in the
case h(-oo) &#x3E; -oo, h(oo) = oo. In this case the solutions will be obtained as
limits of non vacuum solutions of approximating problems by a compactness
method.
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2. - Non-vacuum Solutions

We shall use the following assumptions for the subsequent analysis:

If n &#x3E; 0 and p &#x3E; 0 in Q we can re-write (1.10) and ( 1.11 ) as

This suggests the introduction of the (so called Fermi-) potentials:

From assumption (Al) we deduce that h maps the interval (0, oo) bijectively
into its range (h, h), where

Note that -oo  h  0  h  oo. We denote the inverse function of h by g,
i.e. g : (h, h) -~ (0, oo), g = Obviously g is strictly increasing.

Then, E (h, h), we can compute the densities n and p from
(2.3):
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and (1.10), (1.11), (1.3) can be re-written as

subject to the boundary conditions

The boundary value problem (2.5)-(2.10) must admit an equilibrium solution
(for a certain yet undetermined boundary potential VD) in order to be physically
reasonable. At the thermal equilibrium In - Ip m 0 holds and, consequently,
(2.1) and (2.2) give

where the index e refers to thermal equilibrium. Then (2.3) implies h(ne)+h(pe) ==
1/;e + U e and evaluation at the Dirichlet boundary rD gives the condition:

We remark that the Dirichlet data nD and PD are independent of the state of
the semiconductor (see [3]), i.e. nD and pD are the same functions for thermal

equilibrium and away from equilibrium.
Obviously, the potential V is only determined up to a constant or,

equivalently, an arbitrary constant can be added to one of the Fermi-potentials.
We choose 

-

and obtain from (2.10) and (2.11):

The equilibrium potential Ve satisfies:
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As usual in semiconductor modeling, the boundary potential VD for

non-equilibrium situations is written as the sum of the boundary equilibrium
potential and an externally applied potential UD E 

The Dirichlet boundary Fermi-potentials then read:

and (2.5)-(2.9) are supplemented by the Dirichlet conditions:

For UD _ 0 the problem (2.5)-(2.9), (2.15) reduces (by construction) to the

equilibrium problem (2.12)-(2.14). Non-equilibrium situations are described by

For the standard drift-diffusion model with r(p) = p, condition (A5) reads

(see [2] and [3]), and for T(p) = &#x3E; 1, we obtain

Obviously, any analysis of the system (2.5)-(2.8) has to be based on a control
of 0 + V and a - V. In particular, the estimates

guarantee that n and p are finite and the estimates

imply ellipticity of (2.6) and (2.7). The existence proof to be presented in this
Section is based on maximum principle estimates for (2.6)-(2.8) which allow
the control of 0 + Y and a V.

For notational simplicity we write

for functions p E L°°(rD). We now denote
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and define the functions

with

It is easy to check that D(G) # 0 and D(G) ~ 0. Obviously, (Al) implies that G
and G are strictly increasing functions on D(G) and D(G) respectively.

We then have:

LEMMA 2.1. Assume

Then

The proof is a straight-forward calculation.
Another simple calculation gives:

LEMMA 2.2. If the conditions (Bl) and

hold, then there exist unique values wl, w2 E D(G) n D(G) such that

We now set

and
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Obviously, (B 1 ) and (B2) imply

We now state the main result of this Section.

THEOREM 2.1. Let the assumptions (A1)-(A5) and the conditions (B 1 ) and
(B2) hold. Then there exists a weak solution (n, p, 1/;, a, V) E 
of the problem (2.5)-(2.9), (2.15), which satisfies the estimates

a. e. in SZ.

PROOF. The proof is a modification of the (already classical) existence
proof for the standard drift-diffusion problem with a linear pressure (see [2]
and [3]).

We construct the fixed point operator T with domain

as follows. Given M, consider the Poisson equation

where VD is given by (2.15)(a). We set

Obviously, Go(., x) is monotonely increasing on D(Go). Lemma 2.1 and the
definition of M imply that

Also,
in Q.

and almost everywhere

With w, and w2 given by Lemma 2.2 we conclude that
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and, from the monotonicity of Go and (2.21), that

The maximum principle then implies that V is an upper solution and V a lower
one, i.e.

Existence and uniqueness of a solution of (2.26), (2.27) are easily established
using the a-priori bounds (2.28).

Since

we can define

The bounds

clearly hold. Then, to complete the construction of the fixed point operator T,
we solve

for 0 1 and

for a 1. The maximum principle and definitions (2.17)(a) and (b) imply that

Setting we conclude that T is well-defined and a self map
of the set M.
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The standard elliptic estimate gives

and we conclude that T(M) is precompact in (L2(SZ))2.
It is an easy exercise to show that T : M 2013~ M is continuous when M

is equipped with the (L2(o.))2-topology. Thus, since M is closed and convex in
(L2(SZ))2, the Schauder fixed point theorem implies the conclusion of Theorem
2.1..

The assumptions (A 1 )-(A4) are highly natural for the drift-diffusion

problem, while (Bl) and (B2) restrict the set of admissible data: (B 1 ) is

obviously a smallness assumption on UD trivially satisfied in thermal equilibrium
( UD - 0); (B 1 ) holds for all UD E if h = - h = - oo .

(B2) is a smallness assumption on C (depending on UD). Only in the case
h = -oo = -h no restriction on IICIILOO(Q) is required.

In particular, Theorem 2.1 asserts the existence of non-vacuum solutions
of the drift-diffusion model for the nonlinear pressure function r(s) = s’~, ~y &#x3E; 1,
if the data satisfy

The necessity of imposing a smallness condition on the doping profile is easily
understood by considering the equilibrium problem for r(p) = p2. We have in
this case: 

.1

The equilibrium problem reads

The equilibrium densities are given by

It is easy to construct functions C such that either n, or p, become negative
somewhere in Q. For these doping profiles the equilibrium problem (2.34),
(2.35) has no physically acceptable solution. We shall see in the next Section
that the reason for this lies in the reformulation (2.5)-(2.8), which is based on
n&#x3E;0 andp&#x3E;0.
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3. - Vacuum Solutions

We now assume that r = r(s) satisfies (Al) and that h &#x3E; -oo, h = +oo.
The subsequent analysis is based on an approximation of the pressure

function. For 0  c  1 we set

and calculate the enthalpy

where h = h(s) is the enthalpy associated with the pressure function r = r(p).
Obviously

We set ge := and, as in Section 2, g := h-1. A simple computation gives:

and we deduce that

where g° is the 0-extension of g:

We now study the approximating problem:

with VD given by (2.15)(a).
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We shall show that a solution of

with n &#x3E; 0, p &#x3E; 0 can be obtained from (3.7) by the limit procedure -~ 0.

THEOREM 3.1. Let the assumptions (A 1 )-(AS), h &#x3E; - oo and h = oo hold.
Then there exists a weak solution (n, p, V) E (Loo(Q)3 of problem (3.8) with
n &#x3E; 0, p &#x3E; 0 and (r(n), r(p), V) E (Hl (Q))3.

PROOF. From assumption (A3) and from (3.2) we conclude that there exists
6-0 &#x3E; 0 such that = h(nD) and = h(pD) on rD for all - E (0, 60).
Thus a := h(nD) + h(PD) is independent of c E (0, EO). Since _h~ _ -00 = -h~
Theorem 2.1 implies the existence of a solution (n’5, p", V-) E (HI (0.) n Loo(Q))3
of (3.7) for all c E (0, -0), C E and UD E H1/2(rD) n L°°(rD). Also, the
values 1/;, 1¡), Q and f defined in (2.17) are independent of c E (0, -o) and the
values c~2 of Lemma 2.2 are now defined by

Consider the functions

We have and

we conclude that
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from (3.6). Thus, the equations G (w) = 0 and = 0 have unique solutions
w° and wfl respectively. Using (3.5) we conclude that:

Consequently, the upper and lower solutions for the potential defined, as in
(2.21), by 

-~

are bounded uniformly as ê - 0 and therefore there exist numbers N &#x3E; 0 and
P &#x3E; 0 independent of - c (0, -0) such that

Since ir and p6 are the upper bounds for n’ and p~ defined in (2.22) and (2.23),
we conclude that

for c E (0, êO) with appropriate constants Ym  VM. Thus, there exist functions
V°, n° and p° satisfying the bounds (3.12) such that (possibly after extracting
a subsequence):

From (3.7)(a), (d) and (e) we conclude immediately that

(where from now on K denotes not necessarily equal constants, which are

independent of c). Thus

weakly

and, since VD is independent of - E (0, -0), we conclude that VO is a H 1 -weak
solution of

The standard localization argument for the Poisson equation then gives the
estimate



384

for every subdomain Qo compactly contained in Q. Thus (possibly after

extracting another subsequence)

strongly.

On the other hand, the functions are bounded uniformly in and

thus 
-

weakly

(after extracting a subsequence). From (3.13) and (3.16) we conclude that

weakly

and since Qo cc Q is arbitrary, we have f = NOVVO. Thus

weakly.

We now set uê := and V’ := uêr(nD), where nD E is a positive
H 1 (Q) -extension of nD. Then v-’ is the weak solution of the problem

i.e. it solves:

Since is bounded uniformly in £2(Q) and since = 

L2(S2) we conclude that vl is bounded uniformly in Ho (SZ U rN) and therefore

(after extracting another subsequence). Taking the limit as - -~ 0 in (3.17)
proves that u° is the weak solution of the problem:
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We still have to show that
For 1  m  3 we have. compactly. Thus

in strongly (after extracting a subsequence). Since
we have

Hence r(n~) ~ UO in strongly. Now let q be the inverse function
of r i.e. q = r-1, q : [0,oo) - [0, too). Since the functions nê are uniformly
bounded in LOO(Q), the same holds for r(n~). The continuity of q implies

strongly in Ll(i2), and no = q(u°), uo = r(n°) follows.
Clearly n° E LOO(Q) holds.

The assertion of the Theorem follows by proceeding analogously with the
p-equation. ·

REMARK. Theorem 3.1 requires no restrictions 
because the converging sequence (né, pê, Vê) solves the approximating problem
when h is replaced by h~ and _h~ _ - oo = - h~ .

It is crucial for the proof that 91 is defined on R and ~ 0

as - 0. An analogue construction of g~ is impossible if h  +oo, since then
lim +00. No sequence defined on R for all - E (0, -0) can tend to
s-h- 

_

90 uniformly on (h, h). In this case, restrictions on C and UD are required to
prove existence of vacuum solutions.

Consider now the equilibrium problem:

as directly obtained from (2.12)-(2.14).
and since

strongly

(after extracting a subsequence, see (3.14)) we conclude (using (3.5)) that Y°
solves:



386

with the equilibrium densities

Since a/2+V,0:5 A implies h and «/2 -Y°  h implies 
the right-hand side of (3.22) is a strictly increasing function of VO. Thus (3.22),
(3.23) has a unique weak solution V ° e n for every C E L°°(Q),
if nD E Hl/2(rD) n L°°(rD), &#x3E; 0 on rD. For the same reason we have,
for arbitrary x° E K2: 

-

i.e. ne and p, cannot have a vacuum at the same points.
In case r(p) = p2 existence of a solution of (3.22), (3.23) with a vacuum

in (at least one of) the particle densities n° and p°, for appropriately chosen
doping profiles C, follows from the non-existence of a solution of (2.34), (2.35)
with positive densities ne and pg.
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