Annali della Scuola Normale Superiore di Pisa *Classe di Scienze*

GERD SCHMALZ

Solution of the $\bar{\partial}$ -equation on non-smooth strictly q-concave domains with Hölder estimates and the Andreotti-Vesentini separation theorem

Annali della Scuola Normale Superiore di Pisa, Classe di Scienze 4^e série, tome 18, nº 1 (1991), p. 67-82

<http://www.numdam.org/item?id=ASNSP_1991_4_18_1_67_0>

© Scuola Normale Superiore, Pisa, 1991, tous droits réservés.

L'accès aux archives de la revue « Annali della Scuola Normale Superiore di Pisa, Classe di Scienze » (http://www.sns.it/it/edizioni/riviste/annaliscienze/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

Solution of the $\overline{\partial}$ -equation on Non-smooth Strictly q-concave Domains with Hölder Estimates and the Andreotti-Vesentini Separation Theorem

GERD SCHMALZ

0. - Preface

In the present paper we show that the approach from [10] can be used to solve the $\overline{\partial}$ -equation with Hölder estimates on strictly *q*-concave domains and to prove the Andreotti-Vesentini separation theorem with Hölder estimates on non-smooth domains.

A real-valued C^2 function ρ defined on the domain $U \subseteq \mathbb{C}^n$ will be called (q+1)-convex if its Levi form has at least q+1 positive eigenvalues in every point on U. A domain $D \subset X$, in some *n*-dimensional complex manifold X, will be called *strictly q-concave* $(1 \le q \le n-1)$, if there exists a (q+1)-convex function $\rho: U \to \mathbb{R}$ defined in some neighbourhood U of ∂D such that

$$(0.1) D \cap U = \{ \varrho > 0 \}.$$

(We do not assume that $d\varrho(z) \neq 0$ for all $z \in \partial D$.)

For these domains, and for all $1 \le r \le q - 1$, we prove in the present paper the following

THEOREM 0.1. The space of forms f, for which $\overline{\partial}u = f$ can be solved on \overline{D} by a continuous (0, r - 1)-form u, has finite codimension in the space of all $\overline{\partial}$ -closed continuous (0, r)-forms on \overline{D} .

If the (q+1)-convex function ρ in (0.1) can be chosen even of class $C^{2+\alpha}$, with $0 < \alpha \le 1/2$, then we prove the following

THEOREM 0.1'. The space of forms f, for which $\overline{\partial}u = f$ can be solved on \overline{D} by an α -Hölder-continuous (0, r - 1)-form u, has finite codimension in the space of all $\overline{\partial}$ -closed continuous (0, r)-forms on \overline{D} .

Pervenuto alla Redazione il 6 Febbraio 1990.

Theorem 0.1' was published in 1976 without proof in the case that ∂D is of class C^{∞} by N. Øvrelid [8]. In 1979, I. Lieb [6] proved Theorem 0.1' in the case that ∂D is of class C^{∞} . In the case that the (q+1)-convex function ρ in (0.1) is of class C^3 and the critical points of ρ on ∂D are non-degenerate, Theorem 0.1' was proved in the book [5]. The assertion of Theorem 0.1' is there formulated under the weaker condition that ρ is only of class C^2 and with $\alpha = 1/2$. But the proof is correct only if ρ is of class C^3 . It seems to be not clear whether Theorem 0.1' is right for $\alpha = 1/2$ and $\rho \in C^2$. In Section 2 we give an example which shows that the approach from [5] and of the present paper does not give such a result.

In Section 4 we prove a version of the Andreotti-Vesentini separation theorem with Hölder estimates. The main result can be formulated as follows:

THEOREM 0.2. Let $D \subset X$ be a strictly q-concave domain in an n-dimensional compact complex manifold X, $1 \leq q \leq n-1$, such that the defining (q + 1)-convex function in (0.1) can be chosen of class $C^{2+\alpha}$, with $0 \leq \alpha \leq 1/2$. Then the space of $\overline{\partial}$ -closed continuous (0,q)-forms f on \overline{D} , for which $\overline{\partial}u = f$ can be solved with an α -Hölder-continuous form u on \overline{D} , is topologically closed with respect to the max-norm.

Theorem 0.2 was proved in the book [5] under the condition that the (q+1)-convex function ρ in (0.1) is of class C^3 and has only non-degenerate critical points on ∂D ; the case q = n - 1 and $d\rho(z) \neq 0$, $z \in \partial D$, has been proved in [3].

Acknowledgements

The author is very grateful to Professor J. Leiterer for his help and support.

1. - Local solution of $\overline{\partial} u = f_{0,r}$ on strictly q-concave domains with $1 \le r \le q-1$

First we recall some definitions concerning q-convexity (according to the terminology used in [5]).

Let $U \subseteq \mathbb{C}^n$ be an open set, and $\varrho: U \to \mathbb{R}$ a C^2 function. Then the function

$$F_{\varrho}(z,\zeta) = 2\sum_{j=1}^{n} \frac{\partial \varrho}{\partial \zeta_{j}} (\zeta_{j} - z_{j}) - \sum_{j,k=1}^{n} \frac{\partial^{2} \varrho(\zeta)}{\partial \zeta_{j} \partial \zeta_{k}} (z_{j} - \zeta_{j})(z_{k} - \zeta_{k}),$$

defined for $\zeta \in U$ and $z \in \mathbb{C}^n$, is called the *Levi polynomial* of ϱ . The function ϱ is called *q*-convex on U $(1 \le q \le n)$ if the Levi matrix $(\partial^2 \varrho(z)/\partial z_j \partial \overline{z}_k)_{i,k=1}^n$

has at least q positive eigenvalues for each $z \in U$ ("*n*-convex" means then "strictly plurisubharmonic"). The function ρ will be called *normalized q-convex* if, for all $z \in U$, the matrix $(\partial^2 \rho(z)/\partial z_j \partial \overline{z}_k)_{j,k=1}^q$ is positive-definite (i.e., ρ is strictly plurisubharmonic with respect to z_1, \ldots, z_q) and, moreover, there are some constants $\beta > 0$ and $B < \infty$ such that, for all $z, \zeta \in U$,

DEFINITION 1.1. (see [10], Definition 2.1) A quadruple $[U, \varrho, \varphi, D]$ is called *q*-convex configuration in \mathbb{C}^n if the following conditions are fulfilled:

- (i) $U \subseteq \mathbb{C}^n$ is a convex open set, and $\varphi : U \to \mathbb{R}$ is a convex C^2 function such that $\emptyset \neq \{\varphi < 0\} \subset \subset U$;
- (ii) $\varrho: \tilde{U} \to \mathbb{R}$ is a normalized (q+1)-convex function in some neighbourhood \tilde{U} of \overline{U} ;
- (iii) $d\varrho(z) \wedge d\varphi(z) \neq 0$ for all $z \in \{\varrho = 0\} \cap \{\varphi = 0\};$

(iv)
$$D = \{z \in U : \varrho(z) < 0, \varphi(z) < 0\}$$
 and $\emptyset \neq D \neq \{\varphi < 0\}$.

In this case, D is called the domain of the configuration, and we say that $[U, \varrho, \varphi]$ defines the q-convex configuration $[U, \varrho, \varphi, D]$.

DEFINITION 1.2. $[U, \varrho, \varphi, H, D]$ will be called a *q*-concave configuration of class $C^{2+\alpha}$ in \mathbb{C}^n , $0 \le \alpha \le 1/2$, $1 \le q \le n-1$, if $[U, -\varrho, \varphi]$ defines a *q*-convex configuration in \mathbb{C}^n , where $\varrho \in C^{2+\alpha}$ and the following conditions (a)-(d) are fulfilled:

(a) $H = H(z), z \in \mathbb{C}^n$, is a function of the form

(1.2)
$$H(z) = H'(z) + M \cdot \sum_{j=q+2}^{n} |z_j|^2,$$

where H'(z) is a holomorphic polynomial in $z \in \mathbb{C}^n$ and M is a positive number;

- (b) $\varphi(z) < 0$ for all $z \in U$ with $\operatorname{Re} H(z) = \varrho(z) = 0$;
- (c) $D = \{z \in U : \varrho(z) < 0, \varphi(z) < 0, \text{Re } H(z) < 0\} \neq \emptyset;$

(d)
$$d \operatorname{Re} H(z) \neq 0$$
 for all $z \in U$ with $\operatorname{Re} H(z) = 0$,
 $d \operatorname{Re} H(z) \wedge d\varphi(z) \neq 0$ for all $z \in U$ with $\operatorname{Re} H(z) = \varphi(z) = 0$,
 $d \operatorname{Re} H(z) \wedge d\varrho(z) \neq 0$ for all $z \in U$ with $\operatorname{Re} H(z) = \varrho(z) = 0$.

In this case, D is called the *domain* of the configuration and we say that $[U, \varrho, \varphi, H]$ defines the q-concave configuration $[U, \varrho, \varphi, H, D]$.

LEMMA 1.3. Let $\varrho: X \to \mathbb{R}$ be a (q+1)-concave function (i.e., $-\varrho$ is a (q+1)-convex function) on an n-dimensional complex manifold $(1 \le q \le n-1)$, and let $y \in X$ be such that $\varrho(y) = 0$.

Then there exists a holomorphic map h, from some neighbourhood V of y onto the unit ball, such that h(y) = 0 and the following statement holds true: We can find a function $\tilde{\varrho}$ on h(V) and a function H of the form (1.2), a number r with 0 < r < 1 and neighbourhoods $y \in V_1 \subset \subset V_2 \subset \subset V$ such that

$$[h(V), \tilde{\varrho}, \varphi = |z|^2 - r^2, H]$$

defines a q-concave configuration in \mathbb{C}^n ,

$$\tilde{\varrho} = \varrho \circ h^{-1}$$
 on $h(V_1)$
 $\tilde{\varrho} \ge \varrho \circ h^{-1}$
 $\tilde{\varrho}$ has not degenerate critical points in $h(V \setminus V_2)$.

PROOF. Analogously to Lemma 2.2 in [10], it can be shown that there exist neighbourhoods $y \in V_1 \subset \subset V_2 \subset \subset V$, holomorphic coordinates $h: V \to \mathbb{C}^n$, and a *q*-convex function $-\tilde{\varrho}$ on h(V), such that $\tilde{\varrho} \leq -\varrho \circ h^{-1}$ on $h(V_1)$, $\tilde{\varrho}$ has not degenerate critical points in $h(V \setminus V_2)$, $\tilde{\varrho} = \varrho \circ h^{-1}$ on $h(V_1)$, h(V) is the unit ball, h(y) = 0 and, for some r with 0 < r < 1, $[h(V), -\tilde{\varrho}, |z|^2 - r^2]$ defines a *q*-convex configuration. It remains to construct the function H. Since $-\tilde{\varrho}$ is normalized (q + 1)-convex, there are constants $C < \infty$, $\beta > 0$ with

$$-\operatorname{Re} F_{\tilde{\varrho}}(z,0) \geq \tilde{\varrho}(z) + \beta \cdot \sum_{j=1}^{q+1} |z_j|^2 - C \cdot \sum_{j=q+2}^n |z_j|^2$$

for all $z \in h(V)$. Setting

$$\tilde{H}(z) = -F_{\tilde{\varrho}}(z,0) + (C+\beta) \sum_{j=q+2}^{n} |z_j|^2$$

we obtain a function of the form (1.2) such that $\operatorname{Re} \tilde{H}(z) \ge \beta |z|^2$ for all $z \in h(V)$ with $\tilde{\varrho}(z) \ge 0$.

Hence, $[h(V), \tilde{\varrho}, |z|^2 - r^2, \tilde{H} - \frac{\beta}{2}r^2]$ fulfils all conditions in order to define a *q*-concave configuration, except for (possibly) condition (d). By a lemma of Morse (cf., for instance, [5], Lemma 0.3 in Appendix B), for almost all complex linear maps $L : \mathbb{C}^n \to \mathbb{C}$, the function

$$\operatorname{Re}\left(\tilde{H}-\frac{\beta}{2}r^{2}+L(z)\right) \quad z\in\mathbb{C}^{n}$$

has not degenerate critical points. The same is true for the restriction of this function to the surface $\{\varphi = 0\}$.

Furthermore, the hypersurface $\{\tilde{\varrho} = 0\}$ has in $h(V \setminus V_2)$ only non-degenerate and, hence, isolated singularities. The neighbourhood $V_2 \ni y$ can be chosen small enough, so that $\operatorname{Re} H(z) \neq 0$ in \overline{V}_2 . Then, without loss of generality, we can assume that L(z) has been chosen such that the restriction of $\operatorname{Re}\left(\tilde{H} - \frac{\beta}{2}r^2 + L(z)\right)$ on $\{\tilde{\varrho} = 0\} \cap h(V \setminus V_2)$ has not degenerate critical points either. This implies that, for almost all real numbers ε , the function $H(z) := \left(\tilde{H} - \frac{\beta}{2}r^2 + L(z)\right) + \varepsilon$, $z \in \mathbb{C}^n$, fulfils condition (d) in Definition (1.2). If, moreover, L and ε are sufficiently small, then H fulfils also the other conditions in this definition.

The set $\text{Div}(\varrho)$. Let $[U, -\varrho, \varphi, D]$ be a fixed q-convex configuration $(1 \le q \le n-1)$.

Choose C^1 functions $a_{jk}: U \to \mathbb{C}, j, k = 1, ..., n$, such that

(1.3)
$$\left|a_{jk}(z) - \frac{\partial^2 \varrho(z)}{\partial z_j \partial z_k}\right| < \frac{\beta}{2n^2}$$

for all $z \in U$. For $z, \zeta \in U$ we define

(1.4)
$$w_1^j(z,\varsigma) \coloneqq 2 \frac{\partial \varrho}{\partial z_j} + \sum_{k=1}^n a_{jk}(z)(\varsigma_k - z_k)$$

if $1 \leq j \leq q+1$,

$$w_1^j(z,\varsigma) := 2 \frac{\partial \varrho}{\partial z_j} + \sum_{k=1}^n a_{jk}(z)(\varsigma_k - z_k) + (B + \beta)(\overline{\varsigma}_j - \overline{z}_j)$$

if $q + 2 \le j \le n$, and we set $w_1 = (w_1^1, \dots, w_n^n)$.

Then, it follows from (1.1) and (1.3) that

for all $\varsigma, z \in U$.

Further, we define

$$w_2^j = w_2^j \ (z, \zeta) = \frac{\partial \varphi(\zeta)}{\partial \zeta_j}$$

for j = 1, ..., n and $z, \zeta \in U$, and we set $w_2 = (w_2^1, ..., w_2^n)$. Since φ is convex and, for fixed $\zeta \in \{\varphi = 0\}$, $\{z : \langle w_2, \zeta - z \rangle = 0\}$ is the complex tangent plane of $\{\varphi = 0\}$ at ζ , we have the relation

$$(1.6) \qquad \langle w_2, \zeta - z \rangle \neq 0$$

for all $\varsigma \in \{\varphi = 0\}$ and $z \in \{\varphi < 0\}$.

The set Div(H). Let H be of the form (1.2), i.e.,

$$H(z) = H'(z) + M \cdot \sum_{j=q+2}^{n} |z_j|^2, \quad z \in \mathbb{C}^n,$$

where H' is a holomorphic polynomial and M a positive number.

DEFINITION. By Div(H) we denote the set of all n-tuples $v = (v^1, \ldots, v^n)$ of complex valued C^1 functions $v^j : \mathbb{C}^n \times \mathbb{C}^n \to \mathbb{C}$ which are obtained by the following

Construction: Take holomorphic polynomials $v'_j = v'_j(z,\zeta), \ j = 1, ..., n$, in $(z,\zeta) \in \mathbb{C}^n \times \mathbb{C}^n$ such that

$$H'(\zeta)-H'(z)=\sum_{j=1}^n v_j'(z,\zeta)(\zeta_j-z_j),$$

set $v^j = v'_j$ for $j = 1, \ldots, q+1$, and $v^j = v'_j + M(\overline{\varsigma}_j + \overline{z}_j)$ for $j = q+2, \ldots, n$.

REMARK. For any $v \in Div(H)$, we have the relation

$$\langle v(z,\varsigma),\varsigma-z\rangle = H'(\varsigma) - H'(z)$$

+ $M \cdot \sum_{j=q+2}^{n} (|\varsigma_j|^2 - |z_j|^2 + \overline{z}_j\varsigma_j\overline{\varsigma}_jz_j)$

and, hence,

(1.7)
$$\operatorname{Re} \langle v(z,\zeta), \, \zeta - z \rangle = \operatorname{Re} H(\zeta) - \operatorname{Re} H(z).$$

CANONICAL LERAY DATA AND MAPS 1.4. (cf. [5], Section 13.4). Let $[U, \varrho, \varphi, H, D]$ be a q-concave configuration in \mathbb{C}^n , $1 \leq q \leq n-1$. Set $\psi_1 = \varrho$, $\psi_2 = \varphi$, $\psi_3 = \operatorname{Re} H$ and

$$Y_j = \{z \in U : \psi_j = 0\}, D_j = \{z \in U : \psi_j < 0\} \text{ for } j = 1, 2, 3.$$

Then $D = D_1 \cap D_2 \cap D_3$ is a domain with piecewise almost C^1 boundary, and (Y_1, Y_2, Y_3) is a frame for D (cf. [5], Sect. 3.1).

PROPOSITION. Let (w_1, w_2, w_3) be such that

(1.8)
$$w_{1} \in \operatorname{Div}(\varrho)$$
$$w_{2} = \nabla^{\mathbb{C}}\varphi, \text{ where } \nabla^{\mathbb{C}} = \left(\frac{\partial}{\partial\varsigma_{1}}, \dots, \frac{\partial}{\partial\varsigma_{n}}\right)$$
$$w_{3} \in \operatorname{Div}(H).$$

Then

(1.9)
$$\langle w_j(z,\varsigma), \varsigma - z \rangle \neq 0$$

for all $\zeta \in Y_j$, $z \in D_j$ and j = 1, 2, 3.

PROOF. This follows from (1.5), (1.6) and (1.7).

DEFINITION. We say (w_1, w_2, w_3) is a canonical Leray datum for $[U, \varrho, \varphi, H, D]$ (or for D) if (1.9) holds true.

We set

$$S_j = Y_j \cap \partial D, \ S_{ij} = S_i \cap S_j, \ (i, j = 1, 2, 3).$$

Then, by (1.9), the following Leray maps are correctly defined

$$\eta_j = \eta_j(z, \zeta) = \frac{w_j(z, \zeta)}{\langle w_j(z, \zeta), \zeta - z \rangle}$$

for all $z \in D$ and $\zeta \in S_j$ (j = 1, 2, 3). Further, let

$$\Delta = \{\lambda = (\lambda_0, \lambda_1, \lambda_2, \lambda_3) \in \mathbb{R}^4 : \lambda_0 + \lambda_1 + \lambda_2 + \lambda_3 = 1, \ \lambda_j \ge 0, \ j = 0, 1, 2, 3\}$$

be the 3-dimensional standard simplex, $\Delta_{ij} = \{\lambda \in \Delta : \lambda_i + \lambda_j = 1\}$, and $\Delta_{0ij} = \{\lambda \in \Delta : \lambda_0 + \lambda_i + \lambda_j = 1\}$. We set

$$\eta_{ij} = \eta_{ij}(z,\zeta,\lambda) = \lambda_i \eta_i(z,\zeta) + \lambda_j \eta_j(z,\zeta)$$

for $z \in D$, $\varsigma \in S_{ij}$, $\lambda \in \Delta_{ij}$;

$$\eta_{0j} = \eta_{0j}(z,\zeta,\lambda) = \lambda_0 \frac{\overline{\zeta} - \overline{z}}{|\zeta - z|^2} + \lambda_j \eta_j(z,\zeta)$$

for $z \in D$, $\varsigma \in S_j$, $\lambda \in \Delta_{0j}$, j = 1, 2, 3; and

$$\eta_{0ij} = \eta_{0ij}(z,\varsigma,\lambda) = \lambda_0 \frac{\overline{\varsigma} - \overline{z}}{|\varsigma - z|^2} + \lambda_i \eta_i(z,\varsigma) + \lambda_j \eta_j(z,\varsigma)$$

for $z \in D$, $\zeta \in S_{ij}$, $\lambda \in \Delta_{0ij}$.

Further, we shall use the following notations: if $A = (a_{ij})_{i,j=1}^n$ is a matrix of differential forms, then

$$\det' A := \frac{1}{(2\pi i)^n} \sum_{\sigma} \operatorname{sgn}(\sigma) a_{\sigma(1),1} \wedge \ldots \wedge a_{\sigma(n),n},$$

where the summation is over all permutations σ of $\{1, \ldots, n\}$. If a_1, \ldots, a_m are vectors of length n of differential forms and $s_1, \ldots, s_n \ge 0$ are integers with $s_1 + \ldots + s_m = n$, then

$$\det'_{s_1,\ldots,s_m}(a_1,\ldots,a_m) := \det' (\underbrace{a_1,\ldots,a_1}_{s_1 \text{ times}},\ldots,\underbrace{a_m,\ldots,a_m}_{s_m \text{ times}}).$$

We set $\omega = \omega(\varsigma) = d\varsigma_1 \wedge \ldots \wedge d\varsigma_n$.

Now, for each continuous differential form f on \overline{D} , we define the following integral operators (integration over S_1 means integration over the regular part of S_1 , which is well defined by Lemma 1.3 in [10]):

$$\begin{split} L_{j}f &= \int_{S_{j}} f(\varsigma) \wedge \det'_{1,n-1} \left(\eta_{j}(\cdot,\varsigma), \ \overline{\partial}_{z,\varsigma}\eta_{j}(\cdot,\varsigma) \right) \wedge \omega(\varsigma), \ j = 1, 2, 3, \\ L_{ij}f &= \int_{S_{ij} \times \Delta_{ij}} f(\varsigma) \wedge \det'_{1,n-1} \left(\eta_{ij}(\cdot,\varsigma,\lambda), \ (\overline{\partial}_{z,\varsigma} + d_{\lambda})\eta_{ij}(\cdot,\varsigma,\lambda) \right) \wedge \omega(\varsigma), \\ R_{j}f &= \int_{S_{j} \times \Delta_{0j}} f(\varsigma) \wedge \det'_{1,n-1} \left(\eta_{0j}(\cdot,\varsigma,\lambda), \ (\overline{\partial}_{z,\varsigma} + d_{\lambda})\eta_{0j}(\cdot,\varsigma,\lambda) \right) \wedge \omega(\varsigma), \\ R_{ij}f &= \int_{S_{ij} \times \Delta_{0ij}} f(\varsigma) \wedge \det'_{1,n-1} \left(\eta_{0ij}(\cdot,\varsigma,\lambda), \ (\overline{\partial}_{z,\varsigma} + d_{\lambda})\eta_{0ij}(\cdot,\varsigma,\lambda) \right) \wedge \omega(\varsigma), \\ Bf &= \int_{D} f(\varsigma) \wedge \frac{\det'_{1,n-1}(\overline{\varsigma z}, d\overline{\varsigma} - d\overline{z})}{|\varsigma - z|^{2n}} \wedge \omega(\varsigma). \end{split}$$

LEMMA 1.5. (cf. Lemma 13.7 in [5]). Let $[U, \varrho, \varphi, H, D]$ be a q-concave configuration in \mathbb{C}^n , $1 \le q \le n-1$, let D_2 , D_3 be as in Section 1.4, and let η be a canonical Leray map for $[U, \varrho, \varphi, H, D]$. Then, for any integer r with $0 \le r \le n-2$, there exists a linear operator

$$M_r: Z^0_{0,r}(\overline{D}) \to Z^0_{0,r}(D_2 \cap D_3)$$

which is continuous with respect to the Banach space topology of $Z_{0,r}^0(\overline{D})$ and the Fréchet space topology of $Z_{0,r}^0(D_2 \cap D_3)$, such that

$$M_r f|_D = L_{23} f$$

for all $f \in Z^0_{0,r}(D)$.

PROOF. The proof is analogous to the proof of Lemma 13.7 in [5].

THEOREM 1.6. (cf. Theorem 13.10 in [5]). Let $[U, \varrho, \varphi, H, D]$ be a *q*-concave configuration in \mathbb{C}^n , $1 \le q \le n-1$. Then, for each $1 \le r \le q-1$, the following assertions hold true:

- (i) For any $\overline{\partial}$ -closed continuous (0, r)-form f in \overline{D} , there exists a continuous (0, r 1)-form u in D with $\overline{\partial}u = f$.
- (ii) Set

$$\tilde{D} := \{ z \in U : \varphi(z) < 0, \text{ Re } H(z) < 0 \}.$$

Let $T := B + R_1 + R_2 + R_3 + R_{13} + R_{23}$ be the Cauchy-Fantappiè operator for the Leray map η on $D(R_{12} = 0 \text{ since } S_{12} = \emptyset)$ and

$$M_r: Z^0_{0,r}(\overline{D}) \to Z^0_{0,r}(\tilde{D})$$

the continuous operator from Lemma 1.5. Then for any $f \in Z^0_{0,r}(\overline{D})$, we have the representation

(1.10)
$$f = \overline{\partial}Tf + M_rf \quad in \ D.$$

Moreover, there exists a continuous (0, r - 1)-form g on \tilde{D} with $M_r f = \overline{\partial}g$ on \tilde{D} . Hence, u := Tf + g solves the equation $\overline{\partial}u = f$ in D.

PROOF. Part (i) is included in part (ii). For the proof of part (ii), let $f \in Z^0_{0,r}(\overline{D})$. Then it can be proved analogously to [5], Lemma 13.6, that $L_1f = L_2f = L_3f = L_{13}f = 0$, and hence the piecewise Cauchy-Fantappiè formula (cf. [5], Theorem 3.12) takes the form

$$f = \overline{\partial}Tf + L_{23}f \quad \text{in } D.$$

Since $L_{23}f = M_r f$ on D (cf. Lemma 1.5), this implies (1.10). Since, \tilde{D} is completely pseudoconvex, which can be proved analogously to Lemma 13.5(i) in [5], and by Theorem 5.3 in [5], it follows, for instance from Theorem 12.16 in [5], that $M_r f = \overline{\partial}g$ for some continuous (0, r - 1)-form g on \tilde{D} .

2. - Uniform estimates for the local solutions of the $\overline{\partial}$ -equation and finiteness of the Dolbeault cohomology of order r with uniform estimates on strictly q-concave domains with $1 \le r \le q - 1$

EXAMPLE 2.1. The following example shows that the Leray maps used in the present paper admit only to find solutions of the $\overline{\partial}$ -equation which is Hölder continuous with exponent α .

Let D be the domain of a 2-concave configuration in \mathbb{C}^3 $[U,\varrho,\varphi,H,D]$ such that

- (i) For any $z \in U$ and $\alpha > 0$, $\frac{\partial^2 \rho}{\partial z_1 \partial \overline{z}_1}$ is not Hölder continuous with exponent α ,
- (ii) $\frac{\partial^2 \varrho}{\partial z_i \partial \overline{z}_j} \in C^{1/2}$ for $(i, j) \neq (1, 1)$.

Furthermore, let f be a continuous (0, 1)-form such that

$$\operatorname{supp} f \subseteq G_{\varepsilon} = \{\varphi < -\varepsilon\} \cap \overline{D}$$

Then

$$R_1 f = \frac{\partial^2 \varrho}{\partial z_1 \partial \overline{z}_1} K_1(f, z) + K_2(f, z),$$

where $K_i(f, z) \in C^{1/2}$. Hence, we can choose a form f such that $K_1(f, z) \neq 0$, and therefore $R_1 f \notin C^{\alpha}$ for any $\alpha > 0$. Since the other operators from the integral representation admit an 1/2-Hölder estimate, it follows that the solution defined in Theorem 1.6 is in general not Hölder continuous.

LEMMA 2.2. (cf. Lemma 5.2 in [10]). If $w(z, \varsigma)$ is of the form (1.4) and $t(z, \varsigma) = \text{Im} \langle w(z, \varsigma), \varsigma - z \rangle$, then the following assertions hold true:

(i) $\|\mathbf{d}_{\varsigma}t(z,\varsigma)\|_{\varsigma=z}\| = \|\mathbf{d}\varrho(z)\|$ for all $z \in U$;

(ii) $\|d\varrho(z)\| \le n^{1/2} \|d\varrho(z) \wedge d_{\varsigma}t(z,\varsigma)|_{\varsigma=z}\|$ for all $z \in U$;

(iii) If $x_j = x_j(\varsigma)$ are the real coordinates of $\varsigma \in \mathbb{C}^n$, with

$$\zeta_j = x_j(\zeta) + \sqrt{-1} x_{j+n}(\zeta),$$

then there is a constant $K < \infty$ such that

$$\left|\frac{\partial t(z,\,\cdot)}{\partial x_j}(\varsigma)-\frac{\partial t(z,\,\cdot)}{\partial x_j}(z)\right|\leq K |\varsigma-z| \text{ for all } \varsigma,z\in D_2, \ j=1,\ldots,2n;$$

(iv) If $\varsigma \in \partial D$ with $\varrho(\varsigma) = d\varrho(\varsigma) = 0$, then there exists a constant $K < \infty$ such that

 $|t(z,\varsigma)| \leq K \; (||d\varrho(\varsigma)|| \; |\varsigma-z|+|\varsigma-z|^2) \; \text{ for all } z,\varsigma \in D_2.$

PROOF. The proof is analogous to the proof of Lemma 5.2 in [10].

THEOREM 2.3. (cf. Theorem 14.1 in [5]). Let $[U, \varrho, \varphi, H, D]$ be a q-concave configuration of class $C^{2+\alpha}$ in \mathbb{C}^n , $1 \le q \le n-1$, $0 \le \alpha \le 1/2$, η a canonical Leray map for D, $\varepsilon > 0$, and

$$D_{\varepsilon} := \{ z \in U : \varphi(z) < -\varepsilon, \operatorname{Re} H(z) < -\varepsilon \}.$$

Then there exist constants $C_{\alpha} < \infty$ such that: for all continuous differential forms f on \overline{D}

$$(2.1) ||T^v f||_{\alpha, D_{\varepsilon}} \leq C ||f||_{0, D}.$$

Moreover, the operator T is compact as operator from $C^0_r(\overline{D})$ into $C^0_{r-1}(D_{\varepsilon})$ (for $\alpha > 0$, this follows by Ascoli's theorem from (2.1)).

PROOF. The proof of (2.1) is a repetition of the proof of Theorem 5.1 in [10] with the following exceptions:

(i) The operator T is now of the form

$$T = B + R_1 + R_2 + R_3 + R_{13} + R_{23}$$

76

and we have to add the remark that, since $S_3 \cap \overline{D}_{\varepsilon} = S_{13} \cap \overline{D}_{\varepsilon} = \emptyset$, estimates (2.1) holds true also with R_3 , R_{13} , R_{23} instead of T.

- (ii) Instead of Lemma 5.2 in [10], we have to use Lemma 2.2 from this paper.
- (iii) Furthermore, w_1 is only $C^{1+\alpha}$ with respect to z and therefore Lemma 4.1 in [10] gives the result (2.1) with the exponent α .

We prove that T is compact for $\alpha = 0$. Let $\chi(z, \zeta)$ be a C^{∞} -function such that $\chi = 0$ if $|z - \zeta| > 2\varepsilon$, and $\chi = 1$ if $|z - \zeta| < \varepsilon$. Set

$$R_1^{\varepsilon}f = \int \chi f(\varsigma) \, \det_{1,n-1}' \left(v_{01}(\,\cdot\,,\varsigma\,,\lambda), \, (\mathbf{d}_{z,\varsigma} + \mathbf{d}_{\lambda})v_{01}(\,\cdot\,,\varsigma\,,\lambda) \right) \wedge \omega(\varsigma)$$

Then, by standard arguments, the operator $R_1 - R_1^{\varepsilon}$ is compact. Therefore it is sufficient to show that $||R_1^{\varepsilon} f|| \to 0$ for $\varepsilon \to 0$. Analogously to the proof of Theorem 5.1 in [10]

$$\begin{split} |R_{1}^{\varepsilon}f(z)| &\leq C_{3} ||f||_{0,D} \int_{\substack{\zeta \in S_{1} \\ |z-\zeta| < 2\varepsilon}} \frac{||\mathbf{d}\varrho|| \ \mathbf{d}S_{1}}{(|\mathrm{Im}\, \Phi(z,\zeta)| + |\zeta - z|^{2}) \ |\zeta - z|^{2n-3}} \\ &+ C_{3} ||f||_{0,D} \int_{\substack{\zeta \in S_{1} \\ |z-\zeta| < 2\varepsilon}} \frac{\mathbf{d}S_{1}}{|\zeta - z|^{2n-2}}. \end{split}$$

The second integral is estimated in [10], (3.3), by $C\varepsilon$ (set there y = z). The first integral can be estimated analogously to (3.17) in [10] with one exception: since $d\varrho(y)$ does not necessarily vanish, we get only the following estimate for |t(y, x)|

 $|t(y, x)| \leq C \varepsilon$ (instead of $C \varepsilon^2$).

This implies the estimate $||R_1^{\varepsilon}|| \leq C \varepsilon^{1/2}$ which is sufficient to prove the compactness of R_1 .

3. - Invariance of the Dolbeault cohomology of order $0 \le r \le q-1$ with respect to the boundary

DEFINITION 3.1. (cf. [5], Def. 14.3). Let $D \subset X$ be some domain in an *n*-dimensional complex manifold X and q an integer with $1 \le q \le n - 1$. The boundary of D will be called *strictly q-concave with respect to X* if the intersection of D with any connected component of X is non-empty, and there exists a strictly (q + 1)-concave function $\varrho: U \to \mathbb{R}$ in some neighbourhood of ∂D such that

$$D \cap U = \{z \in U : \varrho(z) < 0\}.$$

GERD SCHMALZ

THEOREM 3.2. Let X be an n-dimensional complex manifold and $D \subset X$ a domain with strictly q-concave boundary with respect to X such that the defining function $\varrho \in C^{2+\alpha}$ ($0 \le \alpha \le 1/2$). Furthermore let E be a holomorphic vector bundle over X. Then

$$E_{0,r}^{\alpha \to 0}(\overline{D}, E) = E_{0,r}^0(D, E) \cap Z_{0,r}^0(\overline{D}, E)$$

for all $1 \leq r \leq q - 1$.

(Here $E_{0,r}^{\alpha\to 0}(\overline{D}, E)$ is the space of continuous *E*-valued (0, r)-forms *f* on \overline{D} such that there exists on \overline{D} an α -Hölder-continuous *E*-valued (0, r-1)-form *u* on \overline{D} with $\overline{\partial}u = f$. $E_{0,r}^0(D, E)$ is the same with *D* instead of \overline{D} and $\alpha = 0$. By $Z_{0,r}^0(\overline{D}, E)$, we denote the space of $\overline{\partial}$ -closed continuous *E*-valued (0, r)-forms on \overline{D}).

PROOF. This follows by well-known arguments (see, e.g., the proof of Theorem 2.3.5 in [4]) from Theorems 1.6 and 2.1 as well as Theorem 15.11 in [5].

4. - The Andreotti-Vesentini separation theorem

CONSTRUCTION 4.1. Let U be a ball in \mathbb{C}^n and ρ a normalized (q+1)-convex function defined in some neighbourhood of \overline{U} .

We set

(4.1)

$$w^{j} = -2 \frac{\partial \varrho}{\partial z_{j}} - \sum_{k=1}^{n} a_{jk}(z)(\varsigma_{k} - z_{k}), \quad 1 \leq j \leq q+1,$$

$$w^{j} = -2 \frac{\partial \varrho}{\partial z_{j}} - \sum_{k=1}^{n} a_{jk}(z)(\varsigma_{k} - z_{k}) + (B+\beta)(\overline{\varsigma}_{j} - \overline{z}_{j}), \quad q+2 \leq j \leq n,$$

where a_{ik} are some C^1 functions on U such that

$$\left|a_{jk}(z)-\frac{\partial^2\varrho(z)}{\partial z_j\partial z_k}\right|<\frac{\beta}{2n^2}.$$

Analogously to (1.5), it follows that

$$\operatorname{Re} \langle w(z,\varsigma), \varsigma - z \rangle \geq \varrho(z) - \varrho(\varsigma) + \frac{\beta}{2} |\varsigma - z|^2 \quad \text{for all } z, \varsigma \in U.$$

This implies that $\langle w(z,\zeta), \zeta - z \rangle \neq 0$ for $\varrho(\zeta) = 0$, $\varrho(z) > 0$. Hence w is a Leray datum for $D = U \cap \{\varrho > 0\}$. The corresponding Leray map for D is defined by

(4.2)
$$\eta = \frac{w(z,\varsigma)}{\langle w(z,\varsigma),\varsigma-z\rangle}, \qquad \tilde{\eta} = \lambda \frac{\overline{\varsigma}-\overline{z}}{|\varsigma-z|^2} + (1-\lambda)\eta.$$

As in Section 1.4, we define the operators L, R and B with respect to the Leray map (4.2) for differential forms which are continuous on \overline{D} . Since we consider special differential forms (cf. Lemma 4.2), we need not define other Leray maps and L and R operators. Set T = B + R. Then we have the following

LEMMA 4.2. Let U, ϱ, D be as above and f a continuous $\overline{\partial}$ -closed (0,q)-form on \overline{D} such that supp $f \subseteq U'$ for some $U' \subset U$. Then Lf = 0 and, hence, the Cauchy-Fantappiè-formula takes the form

$$(-1)^q f = \overline{\partial} T f.$$

Moreover, if $\varrho \in C^{2+\alpha}$, with $0 \le \alpha \le 1/2$, then there exists a constant C which depends only on U' and D such that for all f

$$||Tf||_{\alpha,D} \leq C ||f||_{0,D}.$$

PROOF. We can find a C^2 function $\tilde{\varrho}$ such that $\tilde{\varrho} \leq \varrho$ on U, $\varrho = \tilde{\varrho}$ on U' and $[U, \tilde{\varrho}, \varphi]$ (where $\{\varphi < 0\}$ is some ball U'' with $U' \subset \subset U'' \subset \subset U$) defines some q-convex configuration (cf. Definition 1.1). Therefore we have the following Cauchy-Fantappiè formula (cf. [10])

$$(-1)^q f = \tilde{L}f + \overline{\partial}\tilde{T}f + \tilde{T}\overline{\partial}f$$

for all f such that f and $\overline{\partial} f$ are continuous on the closure of $\tilde{D} = U'' \cap \{\tilde{\varrho} > 0\}$, where \tilde{L} and \tilde{T} are some integral operators with the following properties

$$\tilde{L}f = Lf$$
, and
 $\tilde{T}f = Tf$ for all f with supp $f \subseteq U'$.

From Theorem 2.3 we get an estimate

$$||Tf||_{\alpha,D} \leq C ||f||_{0,D}.$$

It remains to prove that Lf = 0. Since f is of bidegree (0, q), the kernel of the integral defining Lf takes the form

$$\Lambda_q(z,\zeta) = (-1)^q \binom{n-1}{q} \operatorname{det}'_{1,q,n-q-1} (\eta, \overline{\partial}_z \eta, \overline{\partial}_\zeta \eta) \wedge \omega(\zeta)$$

(here $\omega(\zeta) = d\zeta_1 \wedge \ldots \wedge d\zeta_n$). The Leray map η depends holomorphically on $\zeta_1, \ldots, \zeta_{q+1}$ and therefore $\overline{\partial}_{\zeta} \Lambda_q = 0$ for $(U \setminus D) \times D$. Moreover, for fixed $z \in D$, Λ_q is $\overline{\partial}$ -closed in some neighbourhood of $(U \setminus D)$ and, by Theorem 8.1 in [5], it can be uniformly approximated on $S = \partial \tilde{D} \cap \{\varrho = 0\}$ by a sequence $(g_p)_{p \in \mathbb{N}}$ with $g_p \in Z_{n,n-q-1}^0(\mathbb{C}^n)$. Then

$$Lf(z) = \int_{S} f(\varsigma) \wedge \Lambda_{q}(z,\varsigma) = \lim_{p \to \infty} \int_{S} f(\varsigma) \wedge g_{p}(\varsigma).$$

Since f and g_p are $\overline{\partial}$ -closed in D, it follows that $f \wedge g_p$ is also $\overline{\partial}$ -closed in D. Therefore, by Stokes' Theorem,

$$0 = \int_{\partial \tilde{D}} f \wedge g_p = \int_{S} f \wedge g_p + \int_{\partial \tilde{D} \cap \partial U''} f \wedge g_p = \int_{S} f \wedge g_p$$

(since $\partial U'' \cap \text{supp } f = \emptyset$). Hence Lf(z) = 0.

DEFINITION 4.3. Let K be a closed subset of the n-dimensional complex manifold X. Then we say that X is a q-convex extension of class $C^{2+\alpha}$ of K, $0 \le \alpha \le 1/2$, $1 \le q \le n-1$, if there exist constants c, C,

$$-\infty < c < C \leq +\infty,$$

and a (q+1)-convex function of class $C^{2+\alpha}$, $\varrho: U \to (-\infty, C]$, in a neighbourhood of $\overline{X \setminus K}$, such that $K \cap U = \{ \varrho \le c \}$ and $\{ c \le \varrho \le t \}$ is compact for all t < C. Now we go to prove the following

THEOREM 4.4. (cf. Theorem 2.1 in [7]). Let *E* be a holomorphic vector bundle over the *n*-dimensional complex manifold *X* and let $\Omega \subseteq X$ be an open (not necessarily relatively compact in *X*) such that its boundary in *X* is compact, and *X* is a *q*-convex extension of class $C^{2+\alpha}$ of $\overline{\Omega}$, $1 \leq q \leq n - 1$. Then for each $f \in Z_{0,q}^0(X \setminus \Omega, E)$ with compact support, there exists $u \in C_{0,q-1}^{\alpha}(X \setminus \Omega, E)$ with compact support such that $\overline{\partial}u = f$ on $X \setminus \overline{\Omega}$.

PROOF. The proof is analogous to the proof of Theorem 2.1 in [7]. Instead of Lemma 2.2 of [7] we have to use the following

LEMMA 4.5. Let E, X, Ω, q, α be as in Theorem 4.4 and ϱ some function which realizes the q-convex extension. Then, for each point $\xi \in \partial \Omega$, there exists a neighbourhood Θ of ξ such that the following holds: For each open set $\Omega_0 \subseteq X$ with $\Omega \subseteq \Omega_0$ such that the defining function ϱ_0 of Ω_0 is of class $C^{2+\alpha}$ and sufficiently close to the function ϱ with respect to the C^2 -topology and, for each $f \in Z_{0,q}^0(X \setminus \Omega, E)$ with compact support, there exists a form $u \in C_{0,q-1}^{\alpha}(\Theta \cap (X \setminus \Omega_0), E)$ such that $\overline{\partial}u = f$ on $\Theta \cap (X \setminus \overline{\Omega}_0)$.

PROOF. By [5] Lemma 7.3, there exist holomorphic coordinates $h: W \to \mathbb{C}^n$ in a neighbourhood W of ξ such that $\varrho \circ h^{-1}$ is normalized (q+1)-convex on h(W). Without loss of generality, we can assume that h(W)=U is a ball. We fix some neighbourhoods $V_1 \subset C_2 \subset V_3 \subset C_4 \subset U$. Let $\Omega_0 \subseteq X$ be a domain defined by a function ϱ_0 sufficiently close to ϱ in the C^2 -topology. Then X is a q-convex extension of $\overline{\Omega}_0$ too, and $\varrho_0 \circ h^{-1}$ is normalized (q+1)-convex on U.

Now we can find a function ϱ'_0 which fulfils the following conditions:

i) 𝒫'₀ is sufficiently close to 𝒫₀ such that 𝒫'₀ ◦ h⁻¹ is normalized (q+1)-convex;
ii) 𝒫₀ = 𝒫'₀ in some neighbourhood of U\(V₄\V₁);

iii) $\varrho'_0 < \varrho_0$ on $\overline{V}_3 \setminus V_2$.

Then there exists a neighbourhood Ω'_0 of $\overline{\Omega}_0$ so small that $\varrho'_0 < 0$ on $h(W \cap \overline{\Omega}'_0) \cap (\overline{V}_3 \setminus V_2)$ and therefore

(4.3)
$$h(W \cap \overline{\Omega}'_0) \cap (\overline{V}_3 \setminus V_2) \cap \{\varrho'_0 > 0\} = \emptyset.$$

Let $f \in Z_{0,q}^0(X \setminus \Omega_0, E)$, with compact support, be given. Since the manifold X is a *q*-convex extension of Ω_0 , by Theorem 16.1 in [5] and the regularity of $\overline{\partial}$, we can find a form

$$v \in \bigcap_{0 < \alpha < 1} C^{\alpha}(X \setminus \Omega_0, E)$$

with compact support such that $f = \overline{\partial} v$ on $X \setminus \overline{\Omega}_0$.

We choose a C^{∞} function χ on X, with $\chi = 0$ in a neighbourhood of $\overline{\Omega}_0$ and $\chi = 1$ in a neighbourhood of $X \setminus \overline{\Omega}'_0$, and set $f' = f - \overline{\partial}(\chi v)$ on $X \setminus \Omega_0$. Then supp $f' \subset \subset \Omega'_0 \setminus \Omega$ and, in view of (4.3), by

$$\varphi := \begin{cases} (h^{-1})^* f & \text{on } D'_0 \cap V_3 \\ 0 & \text{on } D'_0 \backslash V_2, \end{cases}$$

a form $\varphi \in Z^0_{0,q}(\overline{D}'_0, (h^{-1})^*E)$ is correctly defined. Since $(h^{-1})^*E$ is trivial over U (U is a ball), φ can be viewed as a vector of forms from $Z^0_{0,q}(\overline{D}'_0)$ which fullfils the condition of Lemma 4.2. Therefore there exists $w \in C^{\alpha}_{0,q-1}(\overline{D}'_0)$ such that $\varphi = \overline{\partial}w$. Let us set $\Theta = h^{-1}(V_1)$ and $u = \chi v + h^*w$ on $\Theta \cap (X \setminus \Omega_0)$. Then $u - w \in C^{\alpha}_{0,q-1}(\Theta \cap (X \setminus \Omega_0), E)$ and $\overline{\partial}u = f$ on $\Theta \cap (X \setminus \Omega_0)$.

Theorem 4.4 implies the following two versions of the Andreotti-Vesentini separation theorem.

THEOREM 4.6. Let E be a holomorphic vector bundle over the n-dimensional complex manifold X and let $\Omega \subset X$ be a relatively compact open set. Suppose, for some q, with $1 \leq q \leq n - 1$, the following two conditions are fulfilled:

- i) There exist a neighbourhood of $\partial \Omega$ and a strictly (q+1)-convex function ϱ of class $C^{2+\alpha}$ such that $\Omega \cap U = \{\varrho < 0\}$,
- ii) X is (n-q)-convex.

Then the space $Z_{0,q}^0(X \setminus \Omega, E) \cap \overline{\partial} C_{0,q+1}^\alpha(X \setminus \Omega, E)$ is closed in $C_{0,q}^0(X \setminus \Omega, E)$ with respect to the uniform convergence on compact subsets of $X \setminus \Omega$.

PROOF. The proof is the same as the proof of Theorem 2.4 in [7], with one exception. Instead of Theorem 2.1 of [7], we have to use Theorem 4.3 of the present paper.

THEOREM 4.7. Let n, q be integers, with $1 \le q \le n - 1$, let E be a holomorphic vector bundle over the n-dimensional (n - q)-convex complex manifold X and let $\Omega \subset \Omega' \subset X$ be two open sets, where Ω is defined

GERD SCHMALZ

by some (q + 1)-convex function $\varrho : U \to \mathbb{R}$ of class $C^{2+\alpha}$, (here U is some neighbourhood of $\partial \Omega$ and $0 \le \alpha \le 1/2$), Ω is strictly q-convex and Ω' is strictly (n - q)-convex. Set $D = \Omega' \setminus \overline{\Omega}$.

Then the space

$$Z^0_{0,q}(\overline{D},E) \cap \overline{\partial} C^{\alpha}_{0,q-1}(\overline{D},E)$$

is closed in $C_{0,q}^0(\overline{D}, E)$ with respect to the uniform convergence.

PROOF. The proof is the same as the proof of Corollary 2.5 of [7], with the following exceptions: instead of Theorem 2.4 of [7], we have to use Theorem 4.5 of the present paper, and instead of the local solutions with C^k estimates from Lieb and Range, we have to use the local solutions with Hölder estimates given in [10].

REFERENCES

- [1] A. ANDREOTTI H. GRAUERT, *Théorèms de finitude pour la cohomologie des espaces complexes*, Bull. Soc. Math. France **90** (1962), 193-259.
- [2] A. ANDREOTTI E. VESENTINI, Carleman estimates for the Laplace-Beltrami equation on complex manifolds, Inst. Hautes Études Sci. Publ. Math., 25, 1965.
- [3] G.M. HENKIN, *H. Lewy's equation and analysis on pseudoconvex manifolds* (Russian),
 I. Uspekhi Mat. Nauk 32 (1977), no. 3, 57-118; II. Mat. Sb. 82 (1977), 300-308.
- [4] G.M. HENKIN J. LEITERER, *Theory of Functions on Complex Manifolds*, Math. Monograph. **60**, Akademie-Verlag Berlin 1984.
- [5] G.M. HENKIN J. LEITERER, *The Andreotti-Grauert Theory by Integral Formulas*, Progress in Mathematics 74, Akademie-Verlag Berlin 1988.
- [6] I. LIEB, Beschränkte Lösungen der Cauchy-Riemannschen Differentialgleichungen auf q-konkaven Gebieten, Manuscripta Math. 26 (1979), 387-409.
- [7] Chr. LAURENT-THIÉBAUT J. LEITERER, The Andreotti-Vesentini separation theorem with C^k estimates and extension of CR-forms, Preprint P-Math-13/89 Karl-Weierstrass-Institut für Mathematik, Berlin 1989.
- [8] N. ØVRELID, *Pseudodifferential Operators and the* $\overline{\partial}$ *-equation*, Springer Lecture Notes, 512 (1976), 185-192.
- [9] J. MILNOR, Lectures on the h-cobordism theorem, Princeton University Press, Princeton, New Jersey 1965.
- [10] G. SCHMALZ, Solution of the $\overline{\partial}$ -equation with uniform estimates on strictly q-convex domains with non-smooth boundary, Math. Z. 202, 1989, 409-430.

Karl-Weierstraß-Institut für Mathematik Mohrenstraße 39, D-O-1086 Berlin