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Solution of the ~-equation on Non-smooth Strictly q-concave
Domains with Hölder Estimates and the Andreotti-Vesentini

Separation Theorem

GERD SCHMALZ

0. - Preface

In the present paper we show that the approach from [10] can be used to
solve the 9-equation with Holder estimates on strictly q-concave domains and
to prove the Andreotti-Vesentini separation theorem with Holder estimates on
non-smooth domain~.

A real-valued c2 function o defined on the domain U ç en will be called
(q + I)-convex if its Levi form has at least q + 1 positive eigenvalues in every
point on U. A domain D C C X, in some n-dimensional complex manifold X,
will be called strictly q-concave ( 1  q  n - 1), if there exists a (q + 1 )-convex
function g : U - R defined in some neighbourhood U of aD such that

(We do not assume that dg(z) =/ 0 for all z E aD.)
For these domains, and for all 1  r  q - 1, we prove in the present

paper the following

THEOREM 0.1. The space of forms f, for which o~u = f can be solved
on D by a continuous (0, r - I)-form u, has finite codimension in the space of
all a-closed continuous (0, r)-forms on D.

If the (q + 1 )-convex function p in (0.1 ) can be chosen even of class c2+a,
with 0  a  1 /2, then we prove the following

THEOREM 0.1’. The space of forms f, for which 9u = f can be solved
on D by an a-Hölder-continuous (0, r - l)-form u, has finite codimension in

the space of all a-closed continuous (0, r)-forms on D.

Pervenuto alla Redazione il 6 Febbraio 1990.
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Theorem 0.1’ was published in 1976 without proof in the case that aD
is of class C°° by N. 0vrelid [8]. In 1979, 1. Lieb [6] proved Theorem 0.1’ in
the case that aD is of class Coo. In the case that the (q + 1 )-convex function o
in (O.1 ) is of class c3 and the critical points of g on aD are non-degenerate,
Theorem 0.1’ was proved in the book [5]. The assertion of Theorem 0.1’ is
there formulated under the weaker condition that e is only of class c2 and with
a = 1/2. But the proof is correct only if e is of class c3. It seems to be not
clear whether Theorem 0.1’ is right for a = 1/2 and e E C2. In Section 2 we
give an example which shows that the approach from [5] and of the present
paper does not give such a result.

In Section 4 we prove a version of the Andreotti-Vesentini separation
theorem with Holder estimates. The main result can be formulated as follows:

THEOREM 0.2. Let D C C X be a strictly q-concave domain in an

n-dimensional compact complex manifold X, 1  q  n - 1, such that the

defining (q + I)-convex function in (O.1 ) can be chosen of class C2+«_, with
0  a _ 1 /2. Then the space of a-closed continuous (0, q)-forms f on D, for
which 9u = f can be solved with an a-Holder-continuous form u on D, is

. 

topologically closed with respect to the max-norm.

Theorem 0.2 was proved in the book [5] under the condition that the

(q + 1 )-convex function g in (O.1 ) is ,of class C3 and has only non-degenerate
critical points on 8D; the case q = n - 1 and 0, z E aD, has been

proved in [3].
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1. - Local solution of au = fo,r on strictly q-concave domains with 1  r 

q-1

First we recall some definitions concerning q-convexity (according to the
terminology used in [5]).

Let U C C I be an open set, and g : U - R a C2 function. Then the
function

defined for ~ E U and z E en, is called the Levi polynomial of e. The function
o is called q-convex on U (1 ~ q  n) if the Levi matrix 



69

has at least q positive eigenvalues for each z E U ("n-convex" means then
"strictly plurisubharmonic"). The function e will be called normalized q-convex
if, for all z E U, the matrix is positive-definite (i.e., e is

strictly plurisubharmonic with respect to zl , ... , zq ) and, moreover, there are

some constants ,Q &#x3E; 0 and B  oo such that, for all z, ~ E U,

DEFINITION 1.1. (see [10], Definition 2.1 ) A quadruple [U, o, y~, D] is called
q-convex configuration in en if the following conditions are fulfilled:

(i) U C C I is a convex open set, and U - R is a convex C2 function
such  0} cc U;

(ii) o : CJ -_-~ R is a normalized (q + I)-convex function in some neighbourhood
II of U;

(iii) 1B 0 for all z E (g = O} n {Sp = 0};
(iv)  0, and  O}.

In this case, D is called the domain of the configuration, and we say that
[U, o, y~] defines the q-convex configuration [U,,o, D].

DEFINITION 1.2. [U, o, ~p, H, D] will be called a q-concave configuration of
class in en, 0  a  1/2, 1  q  n - 1, if [!7, -~,~] defines a q-convex
configuration where e E c2+a and the following conditions (a)-(d) are
fulfilled:

(a) H = H(z), z C is a function of the form

where H’(z) is a holomorphic polynomial in z and M is a positive
number;

(b) yJ(z)  0 for all z E U with Re H(z) = = 0;

(c) D = f z e U : o(z)  0, ~o(z)  0, Re H(z)  0;

(d) dReH(z) =10 for all z E U with Re H(z) = 0,
d Re H(z) A for all z E U with Re H(z) = yJ(z) = 0,
d Re H(z) A for all z E U with Re H(z) = = 0.

In this case, D is called the domain of the configuration and we say that
[U, (2, rp, H] defines the q-concave configuration [U, o, rp, H, D].
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LEMMA 1.3. Let o : X --~ R be a (q + I)-concave function (i. e., - o is a

(q + I)-convex function) on an n-dimensional complex. manifold (1 ~ q  n - 1),
and let y E X be such that Lo(y) = 0.

Then there exists a holomorphic map h, from some neighbourhood V of
y onto the unit ball, such that h(y) = 0 and the following statement holds true:
We can find a on h(V ) and a function H of the form (1.2), a number
r with 0  r  1 and neighbourhoods y E VI C C V2 C C V such that

defines a q-concave configuration in en,

~ has not degenerate critical points in 

PROOF. Analogously to Lemma 2.2 in [10], it can be shown that there exist
neighbourhoods holomorphic coordinates h : V -~ C~ and
a q-convex function -[ on h(V ), such 1 

on has not

degenerate critical points in h(VBV2), ~ = go h- I on h(V1), hey) is the unit ball,
h(y) = 0 and, for some r with 0  r  1, IZ12 - r2] defines a q-convex
configuration. It remains to construct the function H. Since - o is normalized
(q + I)-convex, there are constants C  cxJ, # &#x3E; 0 with

for all z E h(V). Setting

we obtain a function of the form (1.2) such that Re H(z) &#x3E; for all z E h(V)
with &#x3E; 0.

Hence, lh(V), ~, H - r2 fulfils all conditions in order to

define a q-concave configuration, except or (possibly) condition (d). By a
lemma of Morse (cf., for instance, [5], Lemma 0.3 in Appendix B), for almost
all complex linear maps - C, the function

has not degenerate critical points. The same is true for the restriction of this
function to the surface lp = 0}.
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Furthermore, the hypersurface { o = 0} has in h(V BV2) only non-degenerate
and, hence, isolated singularities. The neighbourhood V2 D y can be cho-
sen small enough, so that Re H(z) =I 0 in V2. Then, without loss of gen-
erality, we can assume that L(z) has been chosen such that the restriction

of on {~ = ol n h(VBV2) has not degenerate critical

points either. This implies that, for almost all real numbers ê, the function

H(z) := H - ’~ r2 + L(z) + ~, z fulfils condition (d) in Definition (1.2).
If, moreover, L and - are sufficiently small, then H fulfils also the other
conditions in this definition..

The set Div(e). Let [~7,2013~,~,D] be a fixed q-convex configuration
(1  g ~- 1).

Choose C I functions ajk : U -~ C, j, k = 1,..., n, such that

for all z E U. For z, ~ e U we define

if 

if q + 2  j  n, and we set w 1 = (w 1, ... , 
Then, it follows from ( 1.1 ) and (1.3) that

for all 

Further, we define

for j = 1,..., n and z, ~ E U, and we set W2 = (wd,..., w2:). Since p is convex
and, for fixed ~ E (p = 0}, {z : ~w2, ~ - z) = 0} is the complex tangent plane
of (p = 0} at ~, we have the relation

for all ~ E {~p = 0} and z E {~p  0}.
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The set Div(H). Let H be of the form (1.2), i.e.,

where H’ is a holomorphic polynomial and M a positive number.

DEFINITION. By Div(H) we denote the set of all n-tuples v = (vl, ... , vn)
of complex valued C 1 functions which are obtained by the
following

Construction: Take holomorphic polynomials v’ = vj(z, ~), j = 1, ... , n, in
X Cn such that

set vj = v~ for j = l, ... , q + 1, and vi = v~ + M(~~ + Zi) for j = q + 2,..., n.
REMARK. For any v E Div(H), we have the relation

and, hence,

CANONICAL LERAY DATA AND MAPS 1.4. (cf. [5], Section 13.4). Let

[U,e,rp,H,D] be a q-concave configuration in C 1, 1  q  n - 1. Set

Then D = Di D3 is a domain with piecewise almost C 1 boundary, and
(YI, Y2, Y3) is a frame for D (cf. [5], Sect. 3.1 ).

PROPOSITION. Let (W 1, W2, W3) be such that



73

Then

for and j = 1, 2, 3.

PROOF. This follows from (1.5), (1.6) and (1.7)..

DEFINITION. We say (WI, W2, W3) is a canonical Leray datum for

[U, o, p, H, D] (or for D) if (1.9) holds true.

We set

Then, by (1.9), the following Leray maps are correctly defined

for all z E D and ~ E Sj ( j = 1, 2, 3 ). Further, let

be the 3-dimensional standard simplex, and
We set

for

for and

E A E 

Further, we shall use the following notations: if A = is a matrix
of differential forms, then 

’

where the summation is over all pennutations u of { 1, ... , n } . If a 1, ... , am are
vectors of length n of differential forms and s 1, ... , sn &#x3E; 0 are integers with
s + ... + sm = n, then



74

We set w = w(~) = d~l A ... A 
_

Now, for each continuous differential form f on D, we define the following
integral operators (integration over Si means integration over the regular part
of 81, which is well defined by Lemma 1.3 in [10]):

LEMMA 1.5. (cf. Lemma 13.7 in [5]). Let be a q-concave

configuration’ in en, 1  q  n - 1, let D2, D3 be as in Section 1.4, and let

r~ be a canonical Leray map for [U, (1, Sp, H, D]. Then, for any integer r with
0  r  n - 2, there exists a linear operator

which is continuous with respect to the Banach space topology of z8 reD) and
the Fréchet space topology of n D3), such that 

’

for all f E Z8,r(D).
PROOF. The proof is analogous to the proof of Lemma 13.7 in [5]..

THEOREM 1.6. (cf. Theorem 13.10 in [5]). Let -(U, be a

q-concave configuration in en, 1  q  n - l. Then, for each 1  r  q - l,
the following assertions hold true:

(i) For any a-closed continuous (0, r)-form f iri D, there exists a continuous

(0, r - I)-form u in D with au = f.
(ii) Set
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Let T := B + R, + R2 + R3 + R13 + R23 be the Cauchy-Fantappiè operator
for the Leray map q on D (R12 = 0 since S12 = 0) and

the continuous operator from Lemma 1.5. Then for any f E we

have the representation 
’

Moreover, there exists a continuous (0, r - I)-form g on D with Mr f = ag on
17. Hence, u := T f + g solves the equation au = f in D.

PROOF. Part (i) is included in part (ii). For the proof of part (ii), let

f E Z8r(D). Then it can be proved analogously to [5], Lemma 13.6, that

L 1 f - L2f = L3 f - L 13 f - 0, and hence the piecewise Cauchy-Fantappiè
formula (cf. [5], Theorem 3.12) takes the form

Since L23f = Mr f on D (cf. Lemma 1.5), this implies (1.10). Since, 17 is

completely pseudoconvex, which can be proved analogously to Lemma 13.5(i)
in [5], and by Theorem 5.3 in [5], it follows, for instance from Theorem 12.16
in [5], that Mr f = ag for some continuous (0, r - I)-form g on D.

2. - Uniform estimates for the local solutions of the 6-equation and
finiteness of the Dolbeault cohomology of order r with uniform
estimates on strictly q-concave domains with 1  r  q - 1

EXAMPLE 2.1. The following example shows that the Leray maps used
in the present paper admit only to find solutions of the 6-equation which is
Holder continuous with exponent a.

Let D be the domain of a 2-concave configuration in C 3 [U, o, D]
such that

2

(i) For any z E U and a &#x3E; 0, a a2ae- is not Holder continuous with exponent. Zl Zl
a, 

i

(ii) C112 for (Z*, j) 7’ (1, 1).( ) i &#x3E; ’ ~ ~‘ ’

Furthermore, let f be a continuous (0, 1 )-form such that
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Then

where Ki(f, z) E C112. Hence, we can choose a form f such that KI (f, 0,
and therefore R, f V C’ for any a &#x3E; 0. Since the other operators from the

integral representation admit an 1/2-H61der estimate, it follows that the solution
defined in Theorem 1.6 is in general not Hölder continuous.

LEMMA 2.2. (cf. Lemma 5.2 in [ 10]). If w(z, ~) is of the form (1.4) and
t(z, ~) = Im (w(z, ~), ~ - z), then the following assertions hold true:

(i) = IIde(z)II I for all z E U;
(ii) A d~ t (z, for all z E U;
(iii) If Xj = are the real coordinates of ~ E with

then there is a constant K  oo such that

(iv) If ~ E 9D with = = 0, then there exists a constant K  00 such
that

I t(z, g)) 15 K ~~ - zl + I~ - Z12) for all z, ~ E D2.

PROOF. The proof is analogous to the proof of Lemma 5.2 in [ 10) ..

THEOREM 2.3. (cf. Theorem 14.1 in [5]). Let [U, g, ~p, H, D] be a q-concave
configuration of class c2+a in en, 1  q:5 n - 1, 0  a  1/2, 77 a canonical

Leray map for D, 6 &#x3E; 0, and

Then there exist constants Ca  oo such that: for all continuous differential
forms f on D

Moreover, the operator T is compact as operator from CI(D) into 

( for a &#x3E; 0, this follows by Ascoli’s theorem from (2.1 )).

PROOF. The proof of (2.1 ) is a repetition of the proof of Theorem 5.1 in
[10] with the following exceptions:
(i) The operator T is now of the form
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and we have to add the remark that, since 83 n D g = 813 n D g = 0, estimates
(2.1 ) holds true also with R3, R13, R23 instead of T.

(ii) Instead of Lemma 5.2 in [10], we have to use Lemma 2.2 from this paper.
(iii) Furthermore, wl is only CI+01 with respect to z and therefore Lemma 4.1

in [10] gives the result (2.1) with the exponent a.

We prove that T is compact for a = 0. Let be a C°°-function such

that x = 0 &#x3E; 2e, and X = 1 Set

Then, by standard arguments, the operator Rl - R~ is compact. Therefore it
is sufficient to show -~ 0 for e - 0. Analogously to the proof of
Theorem 5.1 in [10]

The second integral is estimated in [10], (3.3), by Ce (set there y = z). The
first integral can be estimated analogously to (3.17) in [10] with one exception:
since does not necessarily vanish, we get only the following estimate for
lt(y, x)1 I

This implies the estimate ||Re1||  which is sufficient to prove the

compactness of Rl.

3. - Invariance of the Dolbeault cohomology of order 0  r  q - 1 with
respect to the boundary

DEFINITION 3.1. (cf. [5], Def. 14.3). Let D cc X be some domain in
an n-dimensional complex manifold X and q an integer with 1  q  n - 1.
The boundary of D will be called strictly q-concave with respect to X if the
intersection of D with any connected component of X is non-empty, and there
exists a strictly (q + I)-concave function g : U - R in some neighbourhood of
a D such that
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THEOREM 3.2. Let X be an n-dimensional complex manifold and D C C X
a domain with strictly q-concave boundary with respect to X such that the

defining function e E C2+a (0 ~ a  1/2). Furthermore let E be a holomorphic
vector bundle over X. Then

(Here E) is the space of continuous E-valued (0,reforms f on
D such that there exists on D an a-Holder-continuous E-valued (0, r - 
u on D with au = f. E8 reD, E) is the same with D instead of D and a = 0. By
Z8,r(D, E), we denote the space of a-closed continuous E-valued (0, r)-forms
on D).

PROOF. This follows by well-known arguments (see, e.g., the proof of
Theorem 2.3.5 in [4]) from Theorems 1.6 and 2.1 as well as Theorem 15.11 in
[5].

4. - The Andreotti-Vesentini separation theorem

CONSTRUCTION 4.1. Let U be a ball in en and a normalized (q + I )-con-
vex function defined in some neighbourhood of U.

We set

where ajk are some C 
1 functions on U such that

Analogously to (1.5), it follows that

This implies that (w(z, ~), ~ - z) fl 0 for = 0, o(z) &#x3E; 0. Hence w is a Leray
datum for D = U n { o &#x3E; 01. The corresponding Leray map for D is defined by
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As in Section 1.4, we define the operators L, R and B with respect to the
Leray map (4.2) for differential forms which are continuous on D. Since we
consider special differential forms (cf. Lemma 4.2), we need not define other
Leray maps and L and R operators. Set T = B + R. Then we have the following

LEMMA 4.2. Let U, o, D be as above and f a continuous a-closed
(0, q)-form on D such that supp f g U’ for some U’ C C U. Then L f = 0 and,
hence, the Cauchy-Fantappiè-formula takes the form

Moreover, if o E C2+«, with 0  a  1 /2, then there exists a constant C
which depends only on U’ and D such that for all f

PROOF. We can find a C2 function ~ such on U, o = ~ on U’ and
[U,e,rp] (where lp  01 is some ball U" with U’ cc U" c c U) defines some
q-convex configuration (cf. Definition 1.1). Therefore we have the following
Cauchy-Fantappie formula (cf. [10])

for all f such that f and a f are continuous on the closure of D = U" n { o &#x3E; 0},
where Land T are some integral operators with the following properties

and

for all f with supp f C U’.

From Theorem 2.3 we get an estimate

It remains to prove that L f = 0. Since f is of bidegree (0, q), the kernel of the
integral defining L f takes the form

(here w(~) = d~l n ... A The Leray map q depends holomorphically on
gi , ... , and therefore = 0 for (UBD) x D. Moreover, for fixed z c D,
Aq is a-closed in some neighbourhood of (UBD) and, by Theorem 8.1 in [5],
it can be uniformly approximated on S = aD n (g = 0} by a sequence (gp)PEN
with gp E Then
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Since f and gp are a-closed in D, it follows that f A gp is also a-closed in D.

Therefore, by Stokes’ Theorem,

(since aU" n supp f = 0). Hence L f (z) = 0..

DEFINITION 4.3. Let K be a closed subset of the n-dimensional com-

plex manifold X. Then we say that X is a q-convex extension of class 
of K, 0  a  1/2, 1  q  n - 1, if there exist constants c, C,

and a (q+ 1 )-convex function of class C2,,, o : U - (- oo, C], in a neighbourhood
of XBK, such that c } and ~ c  is compact for all t  C.

Now we go to prove the following

THEOREM 4.4. (cf. Theorem 2.1 in [7]). Let E be a holomorphic vector
bundle over the n-dimensional complex manifold X and let S2 C X be an open
(not necessarily relatively compact in X) such that its boundary in X is compact,
and X is a q-convex extension of class C2,a of SZ, 1  q  n - 1. Then for
each f E E) with compact support, there exists u E 1 (XBS2, E)O,q _ _

with compact support such that au = f on X BSZ.
PROOF. The proof is analogous to the proof of Theorem 2.1 in [7]. Instead

of Lemma 2.2 of [7] we have to use the following

LEMMA 4.5. Let E, X, Q, q, a be as in Theorem 4.4 and e some function
which realizes the q-convex extension. Then, for each point ~ E there
exists a neighbourhood 0 o,f’ ~ such that the following holds: For each open
set Qo C X with SZ C SZo such that the defining function oo of S2o is of class
C2,a and sufficiently close to the function Q with respect to the C2-topology
and, for each f E E) with compact support, there exists a form
u E n (XBS2o), E) such that au = f on 0 n (XBQo).

PROOF. By [5] Lemma 7.3, there exist holomorphic coordinates
h : W - in a neighbourhood W of ~ such that p o h-1 is normalized

(q + I)-convex on h(W). Without loss of generality, we can assume that

h(W) = U is a ball. We fix some neighbourhoods VI C C V2 c C V3 C C V4 c c U.
Let Qo C X be a domain defined by a function go sufficiently close to e in
the C2-topology. Then X is a q-convex extension of Qo too, and go o h-1 is
normalized (q + 1 )-convex on U.

Now we can find a function e’ 0 which fulfils the following conditions:

i) o’ 0 is sufficiently close to oo such that o h-1 is normalized (q + 1 )-convex;
ii) Qo = o’ 0 in some neighbourhood of UB(V4BVI);
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Then there exists a neighbourhood Q0 of Qo so small that e’  0 on
-1 - 

0 0

h(W n n (V 3 BY2 ) and therefore ,

Let f E with compact support, be given. Since the manifold X
is a q-convex extension of Szo, by Theorem 16.1 in [5] and the regularity of 8,
we can find a form

with compact support such that f = av on XBQo. 
_

We choose a Coo function x on X, with X = 0 in a neighbourhood of Qo
and x = 1 in a neighbourhood of XBQo, and set f’ = f - a(xv) on Then

supp f’ cc and, in view of (4.3), by

a form y~ E 71 (DO, (h-l)* E) is correctly defined. Since (h-l)* E is trivial over
U (U is a ball), Sp can be viewed as a vector of forms from which

fullfils the condition of Lemma 4.2. Therefore there exists w E such

that ~p = aWe Let us set 8 = and u = Xv + h*w on 8 n (XBK20). Then
u - w E n E) and au = f on 0 rl (XBSZo). ·

Theorem 4.4 implies the following two versions of the Andreotti-Vesentini
separation theorem.

THEOREM 4.6. Let E be a holomorphic vector bundle over the n-di-
mensional complex manifold X and let SZ C C X be a relatively compact open
set. Suppose, for some q, with 1  q  n - 1, the following two conditions are
fulfilled:

i) There exist a neighbourhood of aQ and a strictly (q + I)-convex function
e of class C2+a such that SZ n U = ~ o  01,

ii) X is (n - q)-convex.
Then the space Z3,q(XBQ, E) n E) is closed in E)

with respect to the uniform convergence on compact subsets of XBQ.
PROOF. The proof is the same as the proof of Theorem 2.4 in [7], with

one exception. Instead of Theorem 2.1 of [7], we have to use Theorem 4.3 of
the present paper..

THEOREM 4.7. Let n, q be integers, with 1  q  n - 1, let E be a

holomorphic vector bundle over the n-dimensional (n - q)-convex complex
manifold X and let S2 C C Q’ C C X be two open sets, where S2 is defined


