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The Geometric Optics for a Class of Hyperbolic
Second Order Operators with Hölder Continuous

Coefficients with Respect to Time

MASSIMO CICOGNANI

0. - Introduction

Several authors have considered the Cauchy problem for operators with
hyperbolic principal part and coefficients which are Holder continuous with
respect to time and in a Gevrey class with respect to x 

F. Colombini, E. De Giorgi and S. Spagnolo [4], F. Colombini, E. Jannelli
and S. Spagnolo [5], T. Nishitani [14], E. Jannelli [8], Y. Ohya and S. Tarama
[16] have proved results of well-posedness of the Cauchy problem for operators
of this type in some Gevrey classes of functions and ultradistributions. The
propagation of Gevrey singularities of the solution has not been studied till
now and this paper is devoted to this topic. The results we describe here have
been partially announced in [3]. We consider second order strictly hyperbolic
operators (i.e., with real distinct characteristic roots) to better point out the
influence of the coefficients on the behaviour of the solution.

One can check, by means of simple examples, that refractions of Gevrey
singularities, with respect to x, of the solution appear even if the characteristic
roots are distinct, while it is well known that this does not happen when the
coefficients of a strictly hyperbolic operator are in the same Gevrey class both
with respect to time and x variable .

Let us present one of these examples considering the Cauchy problem

atu(0, x) = 6(z - xo) = the Dirac measure concentrated at xo.

Pervenuto alla Redazione il 4 Gennaio 1990.
1 See [12] and [17].
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If r is the cone {(~); ~ &#x3E; 0, xo - t  x  the solution is given by

Therefore if the instant t 1 is singular for the coefficient b(t) then a singularity
of u(t, ~) branches at the point (ti, xo - ti) and propagates along the half line

If the singular support of b(t) is the time axis t &#x3E; 0 then the solution is

singular with respect to x in the whole cone r.
On the other hand let us replace 6(z - xo) by an initial datum g(x) with

wave front set ~); ~ &#x3E; 0} and choose b(t) to have the wave front set of

exp b(s)ds equal to f(t, T); t &#x3E; 0, T &#x3E; 01. Then the solution u(t, x) is

singular with respect to x only at the points of the boundary of r exactly as in
the case of a regular coefficient even if the singular support of b(t) is the time
axis t&#x3E;0.

Let us consider the Cauchy problem

T &#x3E; 0, for a strictly hyperbolic operator

and assume that ah and bj,k are Holder continuous of exponent x, 0  x  1,
from [0, T] with values in the Gevrey class of functions of type
J G]I, I /(I - x) [ on 2. Lower order terms coefficients are assumed to be
continuous from [o, T] with values in 

It follows from the results of [4], [8] and [14] that the Cauchy prob-
lem (C.P.) is well-posed for initial data gj(x), j = 0,1, in the classes of

Gevrey functions and ultradistributions of type J on and the condition

2 See section 1 for notations.
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1  o  1~(1-X) is optimal. The problem (C.P.) can be reduced to the problem

for a strictly hyperbolic system

where Aj and cj,k are pseudo differential operators of order 1 and 1-x respectively
of the type studied in [6] and [7]. If the characteristic roots and a2 satisfy
one of the following alternatives

where = 1 and ,Q is a real constant;

and the coefficients of P are analytic as functions of x, then we construct a
parametrix for the problem (C.P.)s represented as a matrix of Fourier integral
operators

Phase functions 4JI and 4J2 derive from Ai 1 and A 2 respectively by solving
eikonal equations while Ci 2 and are their products (see section 3). From
the particular form of the characteristic roots we obtain a commutation law
for products of phase-function and this permits us to determine the amplitudes
ei, pk,f, = 1, 2, as asymptotic sums in the classes of symbols of infinite
order defined by L. Zanghirati [20], L. Cattabriga and L. Zanghirati [2], by the
method of transport equations studied in [2].

Fundamental solutions of the form (*) have been obtained in C°°
framework by J.C. Nosmas [15], Y. Morimoto [13], K. Taniguchi [18], for

Cauchy problems related to hyperbolic operators with involutive characteristic
roots and C°° coefficientes with respect to (t, x).

By means of the parametrix E(t, s) we can study the propagation of Gevrey
singularities of the solution U(t, x) of problem (C.P.)s ; in particular the form (*)
of E(t, s) is connected with the fact that refractions may happen. By integrating

t

by parts the terms f (t,tl,s)dt, 1 and using the strict hyperbolicity of L,s
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we can see that refractions of singularities may occur only at instants to
corresponding to Gevrey singularities of the coefficients of P with respect
to time variable, as in the simple example we have presented.

The plan of the first part of the work is as follows: section 1 contains
our main notations and definitions; in section 2 we recall the results of [2] and
[20] on Fourier integral operators with amplitudes of infinite order we shall use
here. Section 3 is devoted to phase functions and their products and there we
obtain the commutation law that will be the key assumption in section 5. In
section 4 we reduce the problem (C.P.) to the system from (C.P.)s. In section
5 we construct the parametrix E(t, x) for the problem (C.P.)s following [2] and
we use it in section 6 to study the propagation of Gevrey singularities of the
solution.

1. - Main notations

For x = (x 1, ~ ~ ~ , xn) E we set Dx = DXn)’ Dxj = -ia/ax j ,
j = 1,...,n, and for a = (a 1, ~ ~ ~ , an) the set of all non negative

n

integers, let D~ = Do’,’ ... a ! = a 1 ! ~ ~ ~ an !. For (x, ç) x 
’~ 

j=l
n

we shall also write (x, ç) X E Xjçj and (Ç-) = (1 ~- lçI2)lj2.
j=l

Let Q eRn be an open set. For a &#x3E; 1, A &#x3E; 0 we denote by A)
the Banach space of all complex valued functions u E C°°(Q) such that:

and set

where 0’ denotes relatively compact open subsets of s2. is the space of
all analytic functions in Q.

For J &#x3E; 1 the dual spaces of and G(’)(Q), called spaces of

ultradistributions of Gevrey type J, will be denoted by G~~ ~~ (S2) and 
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respectively/As is well known the former can be identified with the subspace of
ultradistribution of G~ (~) with compact support. For u E the Fourier
transform u of u is defined by li(£) = We shall also denote by 
the or-wave front set of u E Go°~~~(S2) defined as the complement in Q x 
of the set of all (xo, £o) such that there exist a conic neighbourhood r of ~o in
R"B{0} and a function Q E G0(Q) with such that

for some positive C and h. The projection of on Q is equal to the
a-singular support of u denoted by and defined as the complement
in Q of the set of all xo having a neighbourhood SZ’ such that u c G~~~(S2’).

For a given X subset of the cotangent bundle Xcon
will denote the conic hull of X in T’*(R")B{0}.

If V is a topological vector space, .~ C m E Z+, V) shall denote
the set of all functions defined in A with values in V which are continuous
and bounded together with their derivatives up to order m. We shall also write

and sometimes and 
m&#x3E;0

respectively if z E .~ denotes the independent variable.

2. - Symbols of infinite order and Fourier integral operators in Gevrey
classes

The following classes of infinite order symbols of Gevrey type have been
introduced in [20] and [2]. We refer to these works for the proofs of all results
listed in this section.

DEFINITION 2.1. Let Q &#x3E; 1, J-L E [ 1, ~ ], A &#x3E; 0, Bo &#x3E; 0, B &#x3E; 0 be real
constants and let us set {(~,0 E T* (I1~ n ); ( ~ ~ &#x3E; C}. We denote by

Bo, B) the space of all complex valued functions a(x, ç) E 
such that for every - &#x3E; 0

and set
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The asymptotic sums in are defined by:

DEFINITION 2.2. We say that a(x, 0 C has an asymptotic expansion
a(x, 0-1~ aj(x, Ç") if there exist constant A &#x3E; 0, B &#x3E; 0, Bo &#x3E; 0 such that for
j&#x3E;0

every - &#x3E; 0

and

THEOREM 2.3. ([20]). For every C ,Sb ’~’~‘ satisfying
(2.4) there exists a(x, ç) such that a(x, ç) ~ aj(x, ç) in the sense of

j&#x3E;0
definition 2.2.

We shall also need symbols of finite order (c ,Sb ’~’’~) of the type studied
in [6] and [7].

DEFINITION 2.4. For a &#x3E; 1, J-L E [1,(J], A &#x3E; 0, B &#x3E; 0, Bo &#x3E; 0, mER we
denote by Bo, B) the Banach space of all complex valued functions
a(x, ç) E with the norm

and define

DEFINITION 2.5. Let a E We say that a is an amplitude of infinite
order of type «(1, J-l) if a E for every relatively compact open
set Y c RJ. The set of all amplitudes of infinite order of type «(1, J-l) will be
denoted by .~b ~~~~. In the set same way we define the set .~b e~~‘ and the sets of
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finite order amplitudes ,~b ’~’~‘ replacing S’~ ’~’~ by Sb ’a’~‘, S’b ’~’~, ,S’b ’~’’~
respectively.

DEFINITION 2.6. Let I be an open set in and ~i 1 &#x3E; 1. We say that

a(z, x, ç) belongs to G(61) (I Ab°°,6,u’) if a(z,.,.) E Ab°°,6,u for ever z E ,1 and for
every I’ c I there exist A &#x3E; 0, Bo &#x3E; 0, B &#x3E; 0 such that

for every - &#x3E; 0. Here I’ denotes a relatively compact open subset of 1. In a
similar way we definte the classes

replacing with 

respectively.

DEFINITION 2.7. Let ~(x, g) E .~b ~~ ~"~ be real valued. We say that 4J belongs
to a class of phase-functions 0  r  1, if there exists Bo &#x3E; 0 such that
for J(x, g) = ~(x, g) - (x,ç) the estimate

holds.
The above class of phase-functions has been introduced by K. Taniguchi

in [17]. Next we define the spaces of Fourier integral operators we shall use
here.

DEFINITION 2.8. Let a(x, 0 E A"’," and 4J(x, 0 E We define the
Fourier integral operator on with amplitude a and phase-
function Q by

If ç) = (x, ç) we shall write a(x, Dx) instead of and we shall call

a(x, Dx) a pseudo-differential operator with symbol a.

THEOREM 2.9. ([2]). Let a(x, ç) E and ç) E Then

(2.11) defines a continuous linear map from to which extends

to a continuous linear map from to Go~ ~~ (l~ n ). If T  1/2 and
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O(x, 8~) - 8~(x, ç) for 8 &#x3E; 0 and I çl I &#x3E; Bo, then for every u E 
we have

where To : T*(R n) --+ called the transformation generated by ~, is

defined by

DEFINITION 2.10. Let Q c R n be an open set. A continuous linear map
from to which extends to a continuous linear map from G(17)’(K2)
to G(l)(K2) is said to be a a-regularizing operator on Q. The space of 6 -

regularizing operators on Q will be denoted by 
From the results of Komatsu [ 10] every a -regularizing operator on Q has

a kernel in x Q).

THEOREM 2.11. ([2]). Let a(x, ç) E AC;,u,J-L, a(x, ç) ~ 0 according to

defintion 2.2. Then E for every 0 E P~~~‘(T) and every open
set K2 c R n.

The following result on composition of operators of type (2.11 ) will permit
us to follow the transport equations method in section 5.

THEOREM 2.12. ([2]). Let Dx) be a pseudo differential operator with
symbol pl(x, ç) E .~b ’~’1 and p~(x, Dx) a Fourier integral operator with amplitude
p2(x, ç) and phase-function ç) E Let K2 be open and convex

in h E Go~ ~ (II~ n ), h - 1 in a neighbourhood of Q. Then

for every u E G~~~~(SZ), where R E RU (Q) and the amplitude q(x, ç) E AC;’u,p, has
an asymptotic expansion q(x, ç) r-v L qj(x, ç) given by

j&#x3E;0
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3. - Products of phase functions

During the whole section a~ (t, x, ~), j = l, 2, will denote two real valued
symbols of class Mo([O, T]; n 1§’~’~), I an open set in [0, T]. We
shall assume Aj(t, x, 8~) = x, ç) for 0 &#x3E; 0 and lçl I &#x3E; Bo. Let us consider
the solutions s; x, ç) of the eikonal equations

j = 1, 2. Then we have:

PROPOSITION 3.1. There exists To, 0  To  T such that the solution ~~ of(3.1 ) exists uniquely in [0, TO]2 and oj E M 1 ([0, To)2; ,~b’~’~ ) n G(u)(12; .46 I "i " of ).
Furthermore, the following properties hold:

PROOF. Existence and uniqueness of the solution together with properties
(3.2), (3.3) and (3.4) have been proved in [17] and [19]. Equations (3.1 ) and
(3.2) yield ~~ E G~~~(12; 1§’~~) since Àj E G~~~(.I ; ~).

DEFINITION 3.2. Let j E { 1, 2 } . We say that a curve

is the bicharacteristic curve with respect to Any through (s, y, q) if satisfies
the equation

We denote by Cj(t, s) the transformation

It follows from our assumptions on Aj that
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and are positively homogeneous of degree zero for 1771 &#x3E; Bo;

for a suitable constant co &#x3E; 0 and every (t, s; y, q) E [0, T]~ xT*(R"). Furthermore
we have = if is the solution of (3.1 ) Cj(t, s)
are the transformations defined by (2.13) and (3.6) respectively3.

DEFINITION 3.3. Let 4Jj, j = 1, 2, be the solution of (3.1 ). We define
the product s ) = tl, s), i, k c f 1, 2}, as the solution of the

equation

Equations (3.1 ) and (3.9) can be solved by similar arguments.

THEOREM 3.4. The solution tl, s) of (3.9) exists uniquely in [0, TO]3,
with a smaller To if necessary, and

Furthermore we have:

PROOF. Let = and consider the solution (q, p)
of

q, belong to M’([0,To]~; n are positively
homogeneous of degree zero for large ITJI and satisfy

3 See [ 11 ], [ 17] .
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If we denote by

the inverse function of

then we obtain the solution of (3.9) by

where

Thus all assertions of the theorem except (3.12) follow from Proposition 3.1.
By using equation (3.9) we can represent the solution (q, p)(t, t 1; s; y, of

(3.13) by
y = tl, s; q, 77), p = 

Hence we have 

completing the proof.

DEFINITION 3.5. For fixed (z, q) E set

is called the critical point of 

The following statements hold:

PROPOSITION 3.6.
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PROOF. Statements (i) and (ii) follow directly from definition of 

while (iii), (v) and (vi) are consequences of Theorem 3.4. We get (iv) by the
inequality colt, - that holds for ITJI &#x3E; Bo. To prove (vii) we verify

S;X,?7) is the solution of equation
(3.9) by using Proposition 3.1, the above statements (v), (vi) and the equalities

= x ~ B, X (t 1, tl, s; x, = x . Differentiating the equality (vii) we
obtain (viii) and the proof is complete.

REMARK. Since we need only products of two phase-functions and do not
use compositions between Fourier integral operators, we have given a definition
of (Di,k different from that one of [11] ] and [17]. By means of statement (vii)
in Proposition 3.6 we see that our definition is equivalent indeed to that one of
[11] and [17].

Next we want to prove commutation laws for products of phase-functions.

THEOREM 3.7. Assume that a 1 and A2 satisfy one of the following
alternatives:

(3.14)(i) Aj(t, x, ç) ~), j = 1, 2, with a(t) a continuous and positive

function on [0, T] ] and f A 1, /-t2 I = fl(&#x3E;1 - 
where f til, ~C2} _ ’ çJ-l2 - ~~~2 ~ are the Poisson brackets of til and
J-l2, (3 a real constant;

(3.14)(ii) Aj(t, x, ç) = ~), al (t) and continuous functions on

[0, T ], a 1 (t) fl a2 (t) for every t E [0, T].

Then there exists 0(t, ti, s) E such that s  e  t for every
(t, tl, s), 9(t, t, s) = s, 0(t, s, s) = t, 9  0, 9(t, 0, s) = t, 1 and

PROOF. If (3.14)(i) is satisfied we set
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and

We have to prove (3.15) only. Let (X, 3) be the critical point of 0, s) and
(q, p)(T) the bicharacteristic curve for Ak with value (X, E) at T = 8. Then we

have

and this yelds

Thus by Proposition 3.6 we obtain

and 8, s, s) = proving (3.15).
If (3.14)(ii) is satisfied we change the defintion of the function B(t) in

t

(3.16) to B(t) = and set again 9 = Then
o

we repeat the foregoing arguments to obtain property (3.15) also in this case.
The following corollaries will be used in sections 5 and 6.

COROLLARY 3.8. Assume that property (3.15) is satisfied with

and set b(t) = d/dtB(t). Then for p(t, tl, s; x, ç) E MO([O, TO]3; we have

PROOF. Equality (3.20) easily follows from property (3.15) and equality
t 1 = 0(t, 0, s).

COROLLARY 3.9. Assume the property (3.15) is satisfied with
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B(O) = 0, and for (y, TJ) E T*(Il~n)B~0}, set

with t = to 2: tl 2: ... 2: tv 2:: tv+l = 0, hk E {1,2}, hj =/ hj+l, k = 0, ... ~ v~ ~ -
0, ... , v-I. Then we have

for

PROOF. Property (3.21) is obtained by Ci(t, 7-) 0 
commutation law (3.15) and Ck(t, T) 0 Ck(T, s) = Ck(t, s).

Now we apply integration by parts to operators of the form
t

f tl, s; x, Dx)dtl .
5 

’

THEOREM 3.10. Let p(t, t 1, s; x, ç) be a symbol of class

Assume that

t

If E(t, s) denotes the operator f tl, s; x, Dx)dtl then we have
S 

’

for every u E 

PROOF. Take E Go~ ~ (R) and a - &#x3E; 0 such = 1 on

1-,, = (ti 1 E I ; dist(tl,8I) 2 ê}, supp C I_êj2 and split E(t, s) in
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El (t, s) + E2(t, s) with El (t, s) defined by

and E2 consequently. By Proposition 3.6 and property (3.23) we obtain

(3.25) tl, E MO([O, Z’l2~ n G(" )(,T3; .~b 1’~’~ ).

We can apply integration by parts to as follows:

Repeating inductively this process we obtain sequences of symbols

with

By property (3.25), and satisfy condition (2.4) and, from

Theorem 2.3, there exist E such L qJ,
~’&#x3E;i

~ = z, ~. Furthermore we have 0 - Thus from Theorem 2.11
jzo

and equalities (3.26), (3.27), (3.28), is

a ~ - regularizing operator with kernel in M~([0,r]~; x 
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This yield by Theorem 2.9 that propagates along the

bicharacteristic curves for a 1 and A2- Since by Theorems 2.9 and 3.4 we have

we get estimate (3.24) letting ê -&#x3E; 0.

4. - The Cauchy Problem

LEMMA 4.1. Let p(T) = c-1 c = f ±~ exp(-(r))dr. For À(t, x, 0 E

with A, Bo, C &#x3E; 0, 0  X  1, constants independent on (t, s) E [0, T]2.
Define an approximation of A by

where x, ç) = À(r, x, ç) for r E [0, T], x, ç) = A(O, x, ç) for r  0,
x, ç) = A(T, x, ç) for T &#x3E; T. Then the following properties hold:

(i) x, ç) E Mo([O, n MI([O, T]~ A""’)
(ii) A - Aa E Mo([O, T]; .~b-X’°’1) n 

PROOF. Write

p’(T) = d/dTp(T), and

By using (4.1) and the change of variable t - T - 71 (Ç")-l we can prove
A- E M’([0,T]; A’-x,’,’) and Àa - À e M°([0,T]; To end the



55

proof take 1/; E Go(°) (R) and E &#x3E; 0 such that 0  Y  1, 1/; = 1 on

1-~ = {r E 1; &#x3E; 6’}, supp 1/; c 1-6j2 and split Àa in two parts

It is easy to see that Xa E G~([0,T]; ~Ib’~’~). Since 1 -1/;(7) = 0 for T E if

t E I-2e we have

and we can complete the proof of (i). By similar arguments we can complete
also the proof of (ii).

Let us now consider a differential operator

Hereafter we assume that the characteristic roots ~), j = 1, 2, of P
are real and satisfy

We shall denote by Ai 1 and A2 two real valued functions such that

and assume:

with A, Bo, C &#x3E; 0, 0  x  1, constants independent on (t, s) E [0, T]2;


