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1. - Introduction

In a previous paper [33] we have discussed the problem of the existence
of generalized equilibrium deformations in nonlinear hyperelasticity, i.e. of

mappings u from a bounded domain n of 2, that are one to one
and preserve the orientation, and which minimize physically resonable energies
associated to a perfectly hyperelastic material. The simple key idea, which
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made possible to prove existence theorems by the direct methods of Calculus
of Variations, was the following. We observe that, in the context of nonlinear
eleasticity it is very natural (compare section 6 and [33]) to look at the problem
in the product space x R I and to regard the deformation u as a graph or
more precisely as the n-dimensional current integration of n-forms in R) x Rn
over the graph of u : Gu. We therefore work in the setting of rectifiable currents
of Federer and Fleming, and we consider the weak sequential closure of the class
of graphs associated to diffeomorphisms, for which suitable LP and Lq-norms
respectively of u and u-1 and of the minors of their Jacobian matrices are
equibounded; we denote such a "norm" by 11.IIDifP,q. It turns out that coercivity
of the energy with respect to 11 9 is equivalent to the physical requirement
that the energy become large for large stretchings and large compressions. And
this allows in conclusion to minimize physically reasonable energies in classes
of deformations with various boundary conditions.

This paper is strongly related to [33] and aims to show that the same

simple idea gives a natural way, and in a sense the right way, to approach
variational problems with constraints for vector valued mappings, for instance
for mappings into a non-flat Riemannian manifold such as a sphere.

Consider for example the problem of minimizing the Dirichlet integral

among mappings from the unit ball B 3 of 1ft 3 into the sphere ,5 2 c R~,
with say prescribed value uo on a B3 . The usual approach is the following.
One considers D(u) as defined in the Sobolev space H 1= 2 ( B3  ,S 2 ) , thus by
direct methods one concludes at once with the existence of a minimizer in

H1 ’ 2 (B3, S’2 ) n { u : u = uo on 9B~}. We believe that this is one of the

possible approaches and it is not the most suited for the Dirichlet problem.
Let us explain this claim. The class of smooth mappings is not
dense in ~ 1 · 2 ~ B3 , ,S 2 ) and even empty if we restrict ourselves to functions with
boundary data uo : S2 -+ S2 with non-zero degree; moreover, even for zero
degree boundary values we have, see [37],

Actually if we regard u as the associated rectifiable current in B3 x ,52 which
is roughly the current integration over the graph of u, Tu (compare section 2),
one sees that in general Tu has a boundary in B3 x S2 or, equivalently, the
graph of has holes. Thus, defining D ( u) in 
a ’pointwise way’ is like choosing zero as value of
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for u =sign x and, when we minimize in HI-1, we in fact allow the minimizer
to create new boundaries in the interior of BI, thus decreasing the energy.

We propose to regard smooth functions as graphs or, more precisely, as
cartesian currents and to work on the class of weak limits T of sequences of
smooth currents with equibounded energy. We define the energy on this class
by means of the classical Lebesgue extension formula, very roughly

Actually the class of weak limits of sequences of smooth graphs with

equibounded energy seems a priori not closed in general, thus we consider
the smallest sequentially closed set of currents T which contains all smooth

graphs and we define P (T) as the relaxed functional associated to D.
Since the smallest sequentially closed set containing the family of smooth

graphs can be ,obtained by successive closures (in a transfinite way), we conclude
at once that their elements have no interior boundaries.

The previous proposal can be carried on in a reasonable way if our
functional e, defined on smooth functions, "controls" the graph of u. Since, as
it is well known, a good control of Tu is given by the mass of Tu, i.e. the area
of Gu, this means that E ought to be coercive with respect to the area of the
graph of u. By the isoperimetric inequality for parallelograms, we have

M2 (Du) standing for the second order minors of the jacobian matrix Du; thus
the Dirichlet integral is coercive with respect to the area. In this respect we
are led to distinguish regular functionals, the ones which are coercive with

respect to the area, from the others. For instance, while the Dirichlet integral
is coercive, hence regular, for mappings from B3 into S2, it is not coercive,
hence not regular, for mappings from B 3 into 6~ or R~; actually, in these last
cases, one easily sees that there is lost of control on graphs with equibounded
Dirichlet’s integral.

The aim of this paper is to develop this idea, which in many respects
can be considered as classical, mainly in specific significant examples. We shall
see that the resulting problems will have minimizers which have in general
completely different features from the ones obtained as minimizers in Sobolev
classes. For example, in the case considered above of the Dirichlet integral for
mappings u : B3 -~ S2, which arises as a simplified model in the theory of liquid
crystals, we shall see that our minimizers have in general "line singularities"
instead of point singularities of one degree, and point singularities can occur
only with zero degree, compare [16], [14].
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In our context, minimizing in is in general like a problem with
a free boundary more than a boundary value problem, in the sense already
mentioned that the minimizers are free to produce new boundaries, in that way
lowering their energy. On the other hand, such kind of problems are natural
and important both from the mathematical and the physical point of view. In
the last section we shall briefly discuss some of them and, for instance, we
shall see that they might be useful in order to give a mathematical model for
describing the fractures of an elastic body.

The paper is organized as follows.
In section 2 we shall discuss several classes of cartesian currents and

the problem of the convergence of determinants on the basis of the results
in [33], and we shall make a few relevant remarks. In particular we shall
discuss relationships among boundaries, traces and weak convergence. Results
concerning the weak convergence of determinants in the context of Sobolev

spaces have been obtained by Reshetnyak [54], [55], and Ball [4]; recently
Muller [50] has given a simpler proof of the convergence result in [33]. Here
we shall show that actually this proof fits into a more general context and in
fact gives a more general result.

In section 3 the notion of degree for cartesian currents is discussed. As
in [30], the definition of degree is based on the constancy theorem; we shall
prove that all classical properties of the degree remain valid. This will allow us
to describe easily weak diffeomorphisms in terms of degree, extending in this
way some results in [5], [53], [61].

In section 4 we define the polyconvex extension of a general integrand,
roughly, as the largest polyconvex integrand which lies below the given one
and the parametric integrand associated to such an extension; then we shall

compute these extensions in many specific cases. In fact we shall not work with
the Lebesgue extension of a given functional, but actually with its parametric
extension, which has an explicit integral representation, and in some specific
cases we shall prove that it coincides with the Lebesgue extension. But, in

general, we can only conjecture that for regular functionals the two extensions
coincide. This will be used in order to discuss the problem of the existence
of energy minimizing maps with prescribed degree from an n-dimensional
Riemannian manifold into sin. In fact we prove existence of a minimizer for

regular functionals, for instance we prove existence of a minimizer of the
Dirichlet integral among maps from the sphere S2 or the torus T2 into S2 with
prescribed degree.

In section 5 we discuss several problems in which one looks for minimizers
of the Dirichlet integral, or of the more general functional of liquid crystals,
among mappings from a domain of R 3 into S2 satisfying suitable "boundary
conditions", and we shall prove existence.

Finally, in section 6 we formulate a few variational problems for graphs
with holes, giving conditions under which they can be solved; in particular we
formulate a setting which can be useful for a possible static model of fractures
in the nonlinear theory of hyperelastic materials.
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2. - Cartesian currents, boundaries and weak convergence of determinants

In this section we shall discuss relationships among mappings, their graphs
and the associated current integration of forms over graphs. As a result we shall
introduce a few classes of cartesian currents and of weak diffeomorphisms,
already considered in [33], and we shall make some relevant remarks on them.
In particular we shall clarify in which sense these classes have to be considered
as the natural extension of the class of smooth mappings and of the class of
smooth diffeomorphisms.

NOTATIONS. We denote the standard basis of x

RN by EN ) and the coordinates relative to this
basis by (~~)- The dual basis is denoted by
(dXl’...,dxn,dYl,...,dYN). We use the standard notations for multiindices

and for convenience we set

and for If a’e I(p, n) , p = 0,1,..., ~, then dE I(n-p,n)
denotes the complement of a in { 1, 2, ..., n} in the natural order; we have
a = a, 0 = (1,..., n). Moreover, for a E I ( p, n) and Q E 7(g, n) with p -f- q  n,
a and Q disjoint, o, (a, P) denotes the sign of the permutation which reorders
naturally (a, Q) . We set

in particular

if a ~ - n - 1, 1, we shall often write i instead of a, i = 1 1... , n, and
j instead of Q, j = 1, ...,,n and z for ( 1, ..., i - 1, i + 1,..., n) ; we shall also
use the standard notation dxz for dxz and ai for With the previous notations
every r-form in r  n + N, can be written as

Finally, we use in the space of r-forms the inner product induced by the
Euclidean inner product in IR n+N.
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MINORS; TANGENT n-VECTOR AND AREA OF A GRAPH. Let be a

smooth mapping from a bounded domain 0 of into R 1. For a, Q n),
1  p  min(n, N), we denote by the determinant of the

minor of the Jacobian matrix Du ( x) with rows Q = ( ~01, ..., (3p) and columns
a = ( a 1, ... , a p ) , and for convenience we set Moo (Du (x)) = 1. From now on
we shall refer to = 1  min(n, N), as to the minors of
the Jacobian matrix D u ( x ) .

The minors are related to the Grassmanian coordinates of

the tangent plane to the graph,

of u. In fact the vectors ej + = 1,..., n,

yield a basis of the tangent plane to Gu at ( x, u ( x) ) , thus, if we set

or by a simple computation

the tangent n-vector to Gu at ( x, u(x)) is given by

and its components relatively to the basis are given by

Observe that we have

and
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so

This last relation in fact, characterizes the simple n-vectors g e with
non-zero first component, ~oo &#x3E; 0. This is easily seen since, being ~ simple
and ~oo &#x3E; 0, the plane associated to ~ is the graph of a linear map L, so

Finally we notice that the area of the graph is given by

CURRENTS AND INTEGRATION OF FORMS OVER A GRAPH. We recall here
some basic facts from the theory of integral currents of Federer and Fleming
[31] and we refer for more information to [59] and [30], [38], [48].

We denote the space of all infinitely differentiable n-forms
with compact support in an open set U of Members of the dual space
Pn(U), in the sense of distributions, are called n-dimensional currents in U.
If and V c U is an open set, the mass of T in V is defined by

where Iw(x)1 I denotes the Euclidean norm of the n-form w.
A current T with finite mass, Mu (T) extends naturally, as a linear

and continuous functional, to the space of all compactly supported continuous
n-forms with the sup norm. Consequently from the Riesz representation theorem
we deduce the existence of a Radon measure IITII on U, of a. 11 TIJ -measurable
function T : C/ -~ /BnJR n+N satisfying = 1, IITII - a.e, such that

that is T is representable by integration. Finally, Lebesgue’s theorem allows us
to extend T to all n-forms with ||T||-summable coefficients (in particular, with
Borel bounded coefficients) and to define the restriction of T to a Borel subset
A of U by I-

We have
V open.

. For any T E Pn (U) the support of T, sptT, is defined in the standard

way, the boundary of T is defined by means of Stokes theorem as the (n - 1)-
dimensional current given by
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A sequence of currents {Tk } c Ðn (U) is said to converge weakly in U to T if
it converges in the sense of distributions, i.e.

We shall denote the weak convergence in U by Tk -T in U.
It is easy to prove that the mass is lower semicontinuous with respect to

the weak convergence and that from a sequence of currents with equibounded
masses we can extract a subsequence converging to a current with finite mass.
Conversely Banach-Steinhaus theorem yields that currents with finite masses,

weakly converging to a current with finite mass, necessarily have equibounded
masses. If we fix the standard basis in so that n-forms in are

written as

we can define the components of the current T, by considering the Schwartz
distribution given by

then

and clearly T is representable by integration if and only if each is a Radon
measure.

An important example of current in is given by integration of n-
forms over an n-dimensional oriented smooth submanifold J~( of with

locally finite area. This current is denoted by and it is given by

where ~(z) = is the n-vector orienting the tangent plane Tz.M to M at z
and 11M II is given by the restriction of the n-dimensional Hausdorff measure
Mn to M. In this case, by Stokes formula,

and the mass of [[M] is the area of M.
In case .M is the graph of a smooth mapping

current is given by
the
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where ~ is the tangent n-vector to Gu in (2.2) or equivalently by

where U is the map - U(x) = (x, u(x)) and U#w is the pullback
of the n-form w by U. In other words [Gu] is the image of the current ||Q|| D
under U

A simple computation yields then

and

for its components. So we see that the minors of Du define the components of

[Gu] and actually ~Gu~.
For a generic current T with finite mass there is no way of defining a

’tangent space’ and, even if spt T is a smooth n-manifold, the n-vector T
associated to T has not to be related in any way to the tangent space to spt
T. For this reason, Federer-Fleming [31] introduced the subclass of integer
multiplicity rectifiable currents This class has good closure properties,
and its elements enjoy, in a weak sense, the differential properties of smooth
manifolds. Since rectifiable currents are relevant in the sequel, we shall now
describe them very briefly.

A subset M c is said to be n-rectifiable if, except for a ).In-zero
set No, it is the countable union of Hn-measurable sets kj which are subsets
of smooth n-dimensional manifolds Mi

For z in a n-rectifiable set M, the approximate tangent space Tanz M
of JvI at z is defined as the tangent space to Mj at z. Apparently Tanz.M seems
to depend on the decomposition (2.9), but one can shows that this is not the

case. In fact, assuming is a Hn-measurable set with  +00 for

all compact K, one can show (see e.g. [59], pag 60-66)) that M is rectifiable
if and only if for a.e. point zo cz .M there exists an n-dimensional plane
P such that
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or equivalently

A current T E is said to be an integer multiplicity rectifiable current,
briefly a rectifiable current, if it can be expressed as

where M is an n-rectifiable subset, 0 is an Hn -locally summable positive integer
valued function, called multiplicity of T at z, and ~ an orientation on .M, that
is ~ is an J(n-measurable n-vector field on J~t which for E M is
associated with Tanz M (i.e. ~(z) can be expressed in the form T1 A ... A 1 n,

where Tl , ..., Tn form an orthonormal basis for Tanz N). A rectifiable current T
is denoted by 1 (M, 8, ç). The important closure property of Rn (U) is described

by the following theorem due to Federer and Fleming for which we refer to
[31], [59], [30] and for a simpler proof to [62].

FEDERER-FLEMING CLOSURE THEOREM. Let

then T E Rn(U).. :
Consequently, from any sequence of rectifiable currents satisfying the previous
sup bound we can extract a subsequence converging weakly to a rectifiable
current.

We notice that in general the boundary of a rectifiable current is not

rectifiable, and not even of finite mass, but one can show:

BOUNDARY RECTIFIABILITY THEOREM. If T E Rn(U) andmu (aT)  +00,
then aT E R,,- 1 (U).

Finally we mention the following:

RECTIFICABILITY THEOREM. Suppose that

is such that Mw (T) + Mw (aT)  +oo for every W cc U, and that the measure
IITII has positive upper density for IITII - a.e. x in U, i.e.

Then T is rectifiable.
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BOUNDARIES: THE CLASSES Carton, AND cartp (n,RN) We begin
by discussing relationships among mappings, their graphs and the associated
current integration over graphs for some subclasses of non-smooth functions of
the Sobolev spaces H1.P(n,1ftN).

We consider for p &#x3E; 1 the family of functions in whose
minors are p-summable and we denote this family by 

In ,~ we define

and we say that converges weakly in
only if

if and

weakly in LP. Notice that AP is not a linear space and 11 - IJAP is not a norm.
To ’u E we associate the n-dimensional current Tu E 

with components defined for all

by

of course if u is smooth: 

PROPOSITION 1. We have

then Tu is a rectifiable current with bounded

(ii) suppose p &#x3E; 1. A sequence c converges weakly in AP to
some u E AP if and only if the currents TUk converge weakly to the cur-
rent Tu and we have  +cxJ.

k

PROOF. From [44], theor. 3 and 2, there exists a sequence of closed sets
Fk c fl with  1 and a sequence of functions Uk E with

k
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Set and by induction define

where 7r : -&#x3E; R, is the linear projection (x, y) - x. Clearly 
is covered by a countable family of measurable subsets of

C 1-submanifolds, and by the area formula

Using (2.11) we then easily conclude that Tu is rectifiable

moreover

and (i) is proved. Notice that the previous argument gives a way of regarding
T~ as the current "integration over the graph of u".
Let us prove (ii), compare [33] theor 3 of sec. 3. If converges weakly
in to u E AP, then uk - u strongly in LP --~ ~ (x, u) strongly
in all Lq and for all 0 E x Writing (2.10) for uk and passing to
the limit, one sees at once that TUk ---" Tu. Conversely, suppose that 
and  +00. Passing to a subsequence, uk converge strongly in LP

k 
.

’ 

(actually in L q , q  p*, p* being the Sobolev exponent of p) to some v and
JUk(x)1 &#x3E; t} --; 0, as t -~ uniformly in k. From

we then deduce that v = u and that uk --~ u in Analogously,
from one deduces, since p &#x3E; 1, that in

Lp(n)

q.e.d.

Let u be a smooth mapping from n into say u E 

Clearly the submanifold Gu has no topological boundary in n x 1ft N, in fact
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its topological boundary lies in afi x 1ft N. The same is true also for the
measure theoretic boundary of the current [Gu], = 0; in fact, by Stokes
theorem, for every (n - 1)-fornl q with compact support in n x we have

0. Now, if u cz p &#x3E; 1, and N = 1, i.e. u is a scalar

function, using the standard Gauss-Green formula, one easily sees that also

aTu = 0 in (1 x 1ft. The situation changes in the vector valued case, in fact the
elements of AP(n, 1ft N), N &#x3E; 1, in general have boundary in nxRN. A simple
example, compare [33] section 3, is given by the mapping uo(x) = from

the unit ball B(0,1) c JR 2 into R~, which belongs to ~(.6(0,1),R~) for all

p  2, but for which we have

In other words the graph of uo has a hole like the function x/I x I from R

in R but, while in dimension 1 the summability of the gradient prevents the
formation of such holes, if n, ~V &#x3E; 2, even the summability of all minors does
not exclude holes.

EXAMPLE 1. In general, consider any smooth mapping (in fact it suffices
a Lipschitz mapping) and its homogeneous extension
u : $~0, 1~ 

~ ..

It is easily seen that u ( x ) E for all p  ~~~. . Proceeding as
in [33] example 1 sec. 3, it is not difficult to see that lies in {0} x ~N
and is given by

This means that a Tu is the integration over the manifold with its

multiplicity in {0} x 
However, one can find functions u which have essentially the same singularity
of x at zero, but with aTu = 0 : for example the homogeneous extension of

KE

But aTu = 0 if u E and p &#x3E; min ( n, N) ; in fact we have

PROPOSITION 2. If u E where n = min ( n, N ) , then
and aTu=0

PROOF. Obviously u E Let uk E C 1 ( ~, ~ ~ ) 
be a sequence converging strongly in to u. It suffices to show that

= in fact Tu has then no boundary in 11 x as weak limit
of the boundaryless currents As in the proof of proposition 1, we get


