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The Existence of Nonminimal Regular
Harmonic Maps from B3 to S2

DONG ZHANG

1. - Introduction

There has been a great deal of interest in the harmonic map problem for maps
from domains in R3 to ,52, the two-dimensional sphere (see [BCL], [HLI,2],
[ABL], [AL]). The large solutions for harmonic maps in two dimensions have
been studied by H. Brezis and J. Coron [BC]. In addition to the geometric
significance of these maps, they also arise as an important special case in the
theory of nematic liquid crystals (see [deG], [E], [HKL1,2], [HLI,2]). A general
existence and regularity theorem was proven by R. Schoen and K. Uhlenbeck
(see [SU1,2,3]) for energy minimizing maps. In the case of three dimensional
domains, their result asserts that minimizers are regular except for isolated

points in the interior. There are several important earlier works which require
some restriction on the target manifold. These include the works of J. Eells and
J. H. Sampson [ES] for targets of nonpositive curvature, and the works of S.
Hildebrandt, H. Kaul, and K. O. Widman [HKW1,2] for maps whose images
lie in a convex coordinate neighbourhood.

If one considers a map p : aB3 --~ ,52 which has nonzero degree, then
any minimizer which agrees with p on aB3 necessarily possesses at least one
interior singular point. A natural question arises as to whether the singular points
are determined by the boundary data, or one can specify singular behavior as
well as boundary data. This question is unresolved.

The first special case of the problem of prescribing singularities is the

question of whether a boundary map p of zero degree has a regular harmonic
extension to B3. On the positive side, the theorem of S. Hildebrandt, H. Kaul
and K. O. Widman [HKW2] asserts that a map p, whose image lies in an open
hemisphere of S2, has a regular harmonic extension (also having an image
in this hemisphere). On the other hand, R. Hardt and F. H. Lin [HL2] have
constructed zero degree boundary maps p for which any minimizer must possess
interior singular points. Thus, any regular harmonic extension, in such a case,

Pervenuto alla Redazione il 4 Ottobre 1988.
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would have larger energy than the infimum over all W1.2 extensions of p.
In this paper, we show that, for a general class of axially symmetric maps p

of zero degree, there is a regular axially symmetric harmonic extension of p to
B3. . In particular, in many cases these harmonic maps have larger energy than
a minimizer. In the last section of this paper, we will present some examples
of axially symmetric boundary maps p whose smooth harmonic extensions are
not energy minimizers.

Our proof reduces to the analysis of a scalar partial differential equation in
two variables. This equation is degenerate on the boundary corresponding to
the axis of symmetry. Our main theorem can now be stated. 

’

THEOREM. Let p : --+ 82 be a regular non-surjective axially symmetric
map. There exists a regular axially symmetric harmonic extension of cp to B3.

To make precise the symmetry condition we require: let B3 c R 3 be the
unit ball and S2 c R3 be the unit sphere; i.e.

and

We are going to use the following coordinates in B3,

where

The Euclidean metric is then given by

Choose coordinates (0, ~) in S2 as follows,

The metric on S’2 then takes the form

The axially symmetric harmonic maps we consider have the form

Using these coordinates, our problem is now to solve the following equation:
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with the boundary condition 0 = Q on a D, where Q satisfies

where e is a positive number.

We will solve the above equation by finding a smooth critical point of the
energy functional:

which is defined in the Hilbert space

2. - Several Lemmas

LEMMA 1. Any critical point 0 of E is a local minimum in the sense that

provided 0 E Co (D) and

where C is a fixed constant.

PROOF. Suppose 0 E H is a critical point of E and 0 is a map in Co (D).
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Using integration by parts, equation (1), and Taylor’s theorem, we have

Since the first eigenvalue of -0 on a bounded domain n c Rn is bounded

from below by {diameter (n)} - 2, as long as the required condition is satisfied
by supp (0), inequality (4) holds. D

The next lemma is a consequence of Lemma 1 and standard elliptic regularity
theory (see [M]).

LEMMA 2. The critical points of the equation (1) in H are regular in the
interior of D.

Using Lemma 1, we now derive the following existence result.

LEMMA 3. Suppose ¢1 and are critical points of E and 0   on

D. Let cp; be the boundary values of Oi, = 1, 2. Suppose p is a function on 8D
lying between ~pl and y~2, i.e. VI :5 V:5 (P2- Then

is a critical value of E and is achieved by a critical point 0, i.e. there exists

~ E H such that

Moreover, ~1 :5 0:5 tP2 on D and = cp. 
’ 

°

PROOF. Consider a minimizing sequence (§n ) which has a weak limit 0. It
is easy to see that E(¢) = c; in fact, 0 is the strong limit of Therefore,
we may assume
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In order to show that 0 is a critical point of E, we need to prove that (5) holds
for all 0 E Co . But it is enough to show that (5) holds for those 0 E Co
satisfying

Let 0 be such a Co function and consider

We define

Since 01 :5 0  tP2, St and Mt satisfy the following conditions:

Define

By the definition of 0, we know that jE*(~)  Using Lemma 1, we
have

Combining these two inequalities, we get

Therefore (4) holds for every 0. The lemma is proved. D

We are going to use Lemma 3 to prove our theorem. We will take the trivial
solution, the zero function, as our Q 1. The rest of the proof is to show that
there exists a ~2, for any given boundary data p, satisfying the condition of
Lemma 3. Our ~2 will be a z-independent solution, i.e. a function of r which
is a solution of the following ordinary differential equation
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3. - The construction Of 02

Let r = et , t E ( - oo, 0~ . The equation (6) then becomes

~ We are going to use a variational method to solve the above equation. The
corresponding functional is

We are going to solve equation (7) with the following boundary condition:

This can be done by minimizing the functional Ei . It is easy to see that

Since

the problem (7), (8) has a monotone increasing positive solution.
Let 0, be such a solution. Multiply the equation (7) by 0’ and integrate to

get

Since §r E WI, 2 (_ 00, 0), the constant is zero.

Because

we have

Thus we have solved the following first order ordinary differential equation

Since 0 -= 7r is the solution of (11) with the initial value T = we see that
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uniformly in any finite interval ~-T, 0~. Furthermore,

Take a v E (0, and let tv ( 1") be the root of (t) = v, then

Moreover, since sin 0 (t)  0 (t), we have

Now let us go back to the equation (6). Define ~T (r) by

The function 0’ is then a solution of (6) and will be our l/J2 with proper choice
of T.

The inequality (15), in terms of r, is

Suppose the function on 8D satisfies the following conditions:

(a) ~ == 0, for r = 0;

(b) Lipschitz’s condition at both (0, 1) and (0, -1);
(c) p  maxaD (p)  7r.

From (b), we have two positive constants k and d such that

First, from (14), there is a T° such that

For this TO, we have

when r  60 = min {8, By (13), we know that (19) holds for all T  TO,
with the same 60.

Secondly, from (12), there is a T 1  TO such that
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Therefore, 4;2 == 4;1’1 will serve as our upper barrier. Using Lemma 3, we know
that the problem (1), (2) has a regular solution 0 whenever the boundary value
p is regular and non-surjective.

4. - The proof of the Theorem

Let p be a regular boundary function satisfying the conditions of the theorem
and 0 be the corresponding regular solution of the problem (1), (2). Define the
map 4) : B 3 -~ S 2 by

~ is an axially symmetric map with the boundary values

We are going to show that (D is harmonic and smooth on B3.

We know that -0 is harmonic away from the axis, i.e. ~ satisfies the equation

or, equivalently,

We will prove that (D is harmonic in B3 by showing that (22) holds for all
_ ft - ft ...

Let T be a Co (B3, R3) map, and consider the following cut-off function
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The first integral on the right side is zero. The second and the third integrals
tend to zero as l~ ---~ oo, because the measure of supp goes to zero and

is bounded. Hence 4D is harmonic on B3 .

We know that (D is smooth away from the axis. Since by construction

O is continuous on the axis. Therefore (D is smooth everywhere in B3 (see [HI).
Our main theorem has been proved.

5. - An example

In this section we will show that the regular harmonic extension we get is
not a energy minimizer among the Wl,2 extensions. As a matter of fact it is
not even a energy minimizer among the axially symmetric W l2 extensions. We
are going to show this by constructing a sequence of axially symmetric maps
1,Dk) c WI, 2 (B3 , 82) all of them have boundary values, say IV/,}, satisfying
the conditions of our theorem. Therefore, pk have regular axially symmetric
harmonic extensions on B3 which will be denoted as The difference between

(0k) and 145k) is

but has a positive lower bound. Since are axially symmetric,
using the previous coordinates, we can write

For this reason, we only need to give the definition of

otherwise

where k = 4, 5, 6,.... Its boundary value is

where S1 1/ 2 = ({r, z ) E I r 2 + z 2 = 1}. Since Qk only takes 7r and zero on
the axis, ~k is well defined. Recognize that, in the coordinates we are using,
the famous harmonic map from B~ to S 2 namely x 1-+ xl Ixl can be written as
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Therefore, Furthermore, it is easy to see that

It is obvious that pk is C1 on SI/2 except two points (*,±(1 - 2/k)) and
CPk  Hence, by our theorem, pk has a smooth axially symmetric harmonic
extension ~k = (B, ~k).

Now, we are going to estimate 

For any is a smooth function of

From Section 3, we know that

is positive. Therefore, is positive.

REMARK. The same result holds for those axially symmetric bounded R3
domains diffeomorphic to B3 and also for axially symmetric boundary maps
which have the form of

where n is an integer; in fact the Euler-Lagrange equation then becomes
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