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Uniqueness Results and Monotonicity Properties for Strongly
Nonlinear Elliptic Variational Inequalities

M. CHIPOT - G. MICHAILLE

1. - Introduction

Let n be a bounded open set of ~n with a Lipschitz boundary r. For.

p &#x3E; 1, let us denote by W 1 IP (fl) the usual Sobolev space of functions in LP (0)
whose derivatives in the distributional sense are in LP(O). LP(n) is the space
of functions of pth power integrable. We will denote by I. Ip the usual LP norm.
We refer the reader to [1] or [15] for details and notation on Sobolev spaces.

If K is a closed convex set in let V be the closed subspace in
spanned by

For f c V *, the dual of V endowed with the we would
like to study variational inequalities of the type

for all

Here A denotes a nonlinear operator from K into V* and  ~, ~ &#x3E; the

duality bracket between V* and V.
Our main interest will be in proving uniqueness results or more generally

monotonicity properties for a large class of such variational inequalities. We
refer the reader to section 3 of the paper for some applications.

First, we will assume that A is given (with the summation convention) by

for all

Pervenuto alla Redazione il 2 Ottobre 1987.
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stands for where the summation in i
.........., - -Z

has to be taken from 1 to n. This standard convention will be used throughout
the paper. Note that, in the last integral, dcr denotes the superficial measure on
r and u and v stand for their traces on r (see [ 1 ], [16], [20])). In order for
(1.3) to make sense, we will assume that for i = 1,..., n

for all

is the conjugate exponent of p. Note that (1.4) also guarantees
....

that the operator A defined by (1.3) is in V*
A simple way to insure that (1.4) hods is, for instance, to assume that

are Caratheodory functions

(i.e. measurable in x and continuous in the other variables) and that

there exist a constant C and functions

such that

for all

for all

(Note also that by the Sobolev embedding theorem and the trace theorem, (see
[ 1 ], [20]), one could make the exponent of lullarger in the above inequalities).

We will suppose that

(1.7) 
u -&#x3E; a ( x, u) is nondecreasing for a.e. x E Q.

(1.7)(1.7
u --; -Y(x, u) is nondecreasing for a.e. x E F.

The fundamental assumptions on A are the following.
First, the operator will be assumed to be elliptic, that is to say, for some

strictly positive constant v, we have:

for all

denotes the Euclidean norm of
is the usual scalar product).
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Moreover, we will assume that there exist a positive, nondecreasing,
continuous function w, a constant C and a function g E such that:

for all

(Here A stands for the vector of components A~ I its Euclidean norm).
For W we will be led to consider the two hypotheses

and

REMARK 1.1. Clearly (1.10) implies (1.11) since

Now, when p  2, taking into account (1.9), (1.10) holds for ‘A~’s which are
Holder continuous in u with a Holder exponent greater or equal to p - 1 (the
Holder modulus being controlled in ~ - see the section 3 for some convincing
applications), and similarly ( 1.11 ) holds for A$’s which are Holder continuous
in u with a Holder exponent greater or equal to 1/pl, w being nothing but the
modulus of continuity of Ai in u. For p &#x3E; 2 the assumption (1.10) does not
hold unless the A$’s do not depend on u.

Note that, most of the time, we will not make any assumption on
differentiability on the A~’s but rely only on the structure assumptions (1.8),
(1.9) (as in [15], [23] for the Lipschitz continuous case).

The results introduced below generalize and unify preceding results, among
which those of M. Artola [2], L. Boccardo [3], H. Br6zis [5], H. Br6zis - D.
Kinderlehrer - G. Stampacchia [7], J. Carrillo - M. Chipot [8], J. Douglas Jr. -
T. Dupont - J. Serrin [12], G. Gagneux [13], N.S. Trudinger [15], [23].

The paper is divided as follows. In section 2 we give a general and abstract
result about uniqueness and monotonicity with respect to the data. In section 3
we develop some applications. Section 4 is devoted to a counter-example which
shows that our results are optimal as far as certain hypotheses are concerned.
In section 5 we investigate some cases of uniqueness which were out of the
scope of the preceding sections and finally in section 6 we give an existence
result for (1.2).
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2. - A general monotonicity property

Let KI, K2 be two closed convex sets in We will say that Kl, K2
satisfy the hypothesis (H) iff

for all

for any nonnegative Lipschitz function F having a Lipschitz modulus less than
1 and such that F(x) = 0 for x  0.

REMARK 2.1. This property implies in particular that

for every ul E Kl, u2 E K2. (See [5] where this was considered). Such a
property appears to be a feature of convex sets defined by pointwise constraints.

For i = 1, 2, denote by Vi the space spanned by Ki - Ki (see ( 1.1 )) and
by Vi* its dual space. Then our main result is the following.

THEOREM 2.1. Let Ki (i = 1, 2) be two closed convex sets in W11P(n)
satisfying (H). Let fi E V¿* be such that

for every

Assume that (1.3), (1.4), (1.7), (1.8), (1.9) hold for Kl and K2 and let
ul (i = 1, 2~ be a solutiorz of

for all

Then if:

(i) ( 1.11 ) holds and

is increasing a.e.

or

(ii) (1.10) holds and:

is increasing on a set of positive measure of {]

or
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is increasing on a set of positive measure of r

or

there exists a constant C such that

for all

we have:

REMARK 2.2. Note the simplicity and the generality of the case (i) (see
also below Theorem 3.1). The case (ii) is more involved, but we will see in
section 4 that the result is somehow optimal as far as the assumption on w is
concerned.

PROOF. Set (e &#x3E; 0)

taking w sufficiently large in (1.9), we can assume w.l.o.g. that

Then, consider F6 defined by

for

for

Clearly F6 is a nonnegative Lipschitz function which vanishes for x  0. Thus
by (H), for 6 small enough, we have:

Substituting these two functions in (2.2) we get:

Hence, by addition,
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From (2.1 ) we obtain:

(note that, by or

Taking into account (1.3), we deduce (for convenience we drop the measures
of integration):

Noting that

and using (1.8), (1.9), we obtain after replacing

Using the Young inequality
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with we get:

Combining this with (2.9) and (2.11), we obtain:

C is a positive constant and &#x3E; e] denotes the set of points of 11 where
U2 - ul is greater than e.

Let us first consider the case (i).
By (2.12) and since (F6)’ is nonnegative and u ---~ nondecreasing,

we get:

(Note that, to use the monotonicity of 1, we need to prove that,. if

T : Wl,P(n) -4 LP(F) is the trace operator, then r(F"(U2 - Ul)) = 
T ( u1 ) ) . This is easy to establish using approximation by C 1 functions. We will
use the fact again in what follows).
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Now, when and

if

if

Thus, from (2.13) we derive, letting e go to 0:

which by (2.3) gives (2.7).
Assume now that we are in case (ii).
Recalling (2.12), we get by letting e - 0 (recall that ( 1.10) implies ( 1.11 )

and thus I(e) - 

and so, in the two first cases of (ii), u2 - Ul is nonpositive on a part of positive
measure of n or r.

Now, by (2.12) we have, also due to (1.7), and after cancellation of I(e) :

where C’ is independent of e. (Note that If we set

for

for

we have:

But, since se is a Lipschitz function which vanishes for

(see (H)) and Poincar6 Inequality holds. In cases (2.4),
(2.5), this results from the fact that se (U2 - u1 ) is equal to 0 on a set of positive
measure of 11 or r, in case (2.6) this is part of the assumption. Thus we obtain:
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and (2.7) follows by letting e --~ 0 due to ( 1.10).
This completes the proof.

REMARK 2.3. Note that (2.1 ) holds, for instance, when Ii E and

f 2 a.e. in n.

Under the assumption (1.11), it is known that, in general, it is impossible
to assume that u --+ a (x, u) is only nondecreasing (see [8] example 2.2.1 and
section 4 below); however, some results are preserved in this case (see section
5).

We do not know, if w (t) is only assumed to tend to 0 as t goes to 0,
whether the part (i) of the above result holds. Some progress in this direction
are made in [9], [10].

We could have taken different operators for K, and K2. If Ai denotes the
operator corresponding to ~$ then the same comparison result holds, provided

for all for all

with the assumptions on A transferred to A2. For instance, the above inequality
holds for a2 &#x3E; a 1, 12 ~ where are the functions a, 7 corresponding
to A$, the A$’s being the same in both A1 and A2.

3. - Some applications

We would like to show that Theorem 2.1 leads in particular to uniqueness
of a solution to any equation or, more generally, to any variational inequality
associated to the standard convex sets K with pointwise constraints when the
operator is, for instance, quasilinear. So, let us introduce some closed convex
sets.

For i = 1, 2, let us consider functions

Set

where for a.e. x E fl, C(x) is a closed convex set and the restriction
of v to r is taken in the trace sense. (It is easy to show that = 1, 2, are
closed convex sets of 
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PROPOSITION 3.1. Assume that then

satisfy (H).

means that each component of the
first vector is less or equal a.e. on r, or a.e. on n, to each component of the
second one).

PROOF. We assume that F is a nonnegative Lipschitz function shaving
a Lipschitz modulus less than 1 and such that for

’-"

Let

, then (see [15]):

and

a.e. x E r and a.e. x E 0 respectively.
Next,

since F’ E ~0,1~ and C(x) is convex a.e. x E 11. This proves (H).
So, as an obvious consequence of Theorem 2.1, we have:

THEOREM 3.1. Let uni, i = 1, 2, be a solution of

for all

where Ki is given by (3.3) and fi E Assume that (1.3), (1.4), (1.7), (1.8),
(1.9) hold for .K1 and K2 and

(i): ( 1.11 ) holds and

is increasing a.e.

or

(ii) : (I. 10) holds and
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is increasing on a set of positive measure of fi

or

is increasing on a set of positive measure of r

or

there exists a constant C such that

for all

Then if we have

REMARK 3.1. Here f 2  fi in the sense of (2.1 ). Note that the above
result is very natural. Forget for a minute the constraints on the gradient and
interpret u as the vertical displacement of a thin elastic membrane under the
action of a vertical force of intensity f, (~p, ~, ~, ~ being obstacles preventing
the membrane to go up or down). Clearly, the less the force is and the lower
the obstacles are, the less the membrane will go up.

COROLLARY 3.1. Set

where

are functions from 17, fl into R, and C (x) a closed convex set of R 1. Assume
(1.3), (1.4), (1.7), (1.8), (1.9) and:

(i): (1.11) holds and

is increasing a.e. ~

or

(ii): ( 1.10) holds and
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is increasing on a set of positive measure of fi

or

is increasing on a set of positive measure of r

or

there exists a constant C such that for all

Then, for f E V* (see ( 1.1 )), there exists at most one u such that:

for all

PROOF. It is enough to apply Theorem 3.1 with
The above result gives us uniqueness or, more generally, monotonicity

properties for many problems. Let us list a few of them.

1) Nonlinear elliptic boundary value problems.

Indeed, choose here Select
some function 0 in and choose p = Ç = § on a subset r o of

r, (p elsewhere. Then one where V is defined
as the space

So, for f E V * defined by

(3.16) is equivalent to

for all

and u is the solution of the nonlinear problem

in

on
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So, in case (i) or (ii), by the previous result, and if a solution is known to exist,
then this solution is unique and depends monotonically on the data ¢~, f 1, f 2 .
In case (ii) and when (3.9), (3.10) do not hold, we need to check (3.11). If

ro has a positive measure, it is well known that the Poincar6 inequality holds
and we also obtain uniqueness and monotone dependence on the data. In the
particular case where rio - r, we have a nonlinear Dirichlet problem. In the
case where Fo = Q (0 denotes the empty set), the problem is a problem of
the Neumann type for which we have uniqueness in case (i), (ii). Now, in case
(ii) and when (3.9), (3.10), (3.11) fail, then uniqueness can fail as well as it
is well known even in the linear case. For instance, the solution of the linear
Neumann problem:

in

on

(in this case a - 0) is defined only up to a constant.

2) Obstacle problems.

As above take here cp - ~ - ~ on r o , where Fro is a subset of

F, p m - aa, 1§ == +00 elsewhere, C(x) = R 1, ’dx E fi.
Then if E, F are two measurable sets in fl, take

on on

on on

Then K becomes

on

and for such a convex set one gets uniqueness of the solution to (3.16) as well
as monotone dependence with respect to the data f , 0, (D, T. Note that when
E = ~, F = 0 we have the usual one obstacle problem and when E = F = 11
the double obstacle problem.

3) Signorini’s problems or thin obstacle problems.

Take for all and if E, F are two
measurable sets included in r

on . on

on on
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Then K becomes

and for such a convex set, and provided that we are in case (i) or (ii), one has
uniqueness and monotonicity in f , ~~, ~ for the solution of (3.16).

Note that we choose our thin obstacles on r but they could have been
chosen on any other thin part of ff for which we can define a trace.

4) Problems with constraints on the derivatives.

Take for instance on hen K becomes

on

In the case p = 2, q; = 0, C(x) = Bi, where Bi is the unit ball of 

we get the convex of the elastic-plastic torsion problem:

on

If now linear map and C a closed convex set of
is a closed convex set of R". So, if A ( x) is any

matrix defined on fl, uniqueness holds for convex sets of the type

on

Taking for instance and
, , 

where ci,;, $ are functions from n into R, K
becomes:

on

For these convex sets, in case (i) and (ii), we have uniqueness and
monotone dependence in terms of the data. Thus, roughly speaking, uniqueness
holds for every convex set defined by pointwise constraints on lower operators.

Let us now examine what kind of operator satisfies the assumptions which
are useful to us - i.e. the hypotheses (1.4), (1.8), (1.9). For simplicity, and to
illustrate the purpose of the next section, let us restrict ourselves to the important
case p = 2. Let us denote by aij (x, u), (3i(X, u) Caratheodory functions, where
there exist a positive constant C and a positive function C’ E such that

for all
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Assume that for some positive constant v

for every

Then, if we set

and if the assumptions on a ( x, u ) , -1 (x, u) are those of the preceding section
(i.e. if (1.5), (1.6) hold), the quasilinear operator A

is well defined for every v E V and the Ai’s satisfy (1.8). Now, if there exists
a positive, increasing continuous function w such that:

for ally

for all

for some g E L 2 (fl), we have (1.9). So, such an operator satisfies all the

assumptions of the preceding sections and Theorem 3.1 and Corollary 3.1

apply.
Now in the case p = 2, ( 1.10) and ( 1.11 ) read

and

So, in particular, if the Ai (x, u, ~)’s are Lipschitz continuous in u (with a
Lipschitz modulus controlled in ~), (1.10) holds. (This case, with no transport
term, was studied by Artola [2] in the particular case of the one obstacle
problem and with different test functions than ours).

If the A; (x, u, ç)’s are Holder continuous in u with exponent greater
or equal to 1/2, (1.11) holds. Under the assumption (3.22), the two cases
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correspond to when the aii, (3i are respectively Lipschitz continuous in u and
Holder continous in u with exponent greater or equal to 1/2. As we mentioned
it earlier, when (3.23) fails, uniqueness can fail as well, even if (3.9), (3.10),
(3.11) hold. Let us now give an example of this.

4. - A counter-example

Consider a function = Q(r) which satisfies for 0  a  1:

if or if

for r for

Then, define U(r) by

if

if

if

Let n be the ball of center 0 and radius 2 in and denote by 
the polar coordinates of a point x = (X 1, X2) in nB(O,O), (r = I x 1). Let A be a
smooth nonnegative function defined on fi and which satisfies:

if if

Set

(If one wishes to have Bi smooth in x, it is enough to replace coso and sino by
smooth functions which agree with them for r &#x3E; 1/2). Then, for 1 / 2  ro  1,
set
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We claim that u satisfies:

for all

Indeed,
on on

and by (4.1)

So, since ro can take any value between 1/2 and 1, the problem (4.2) has
infinitely many solutions although

is increasing on a set of positive measure of

is increasing on a set of positive measure of

and, if we consider

then

there exists a constant C such that for all v ~ V

and u is an element in K satisfying (4.2) for every v in V!
Note also that u is the solution of the nonlinear Neumann problem

in

on
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This shows that, in the nonlinear case, two solutions do not necessarily
differ by a constant.

Now, we would like to show that the lack of uniqueness is due to the

presence of the transport term (i.e. the f3i’ s).

5. - Some extensions

In this section, we restrict ourselves to the case p = 2 and to operators A
where Ai is given by

As we saw in the preceding section, when a ( x, u) fails to be increasing
a.e. on 11, then uniqueness can fail even if ( 1.11 ), (3.9), (3.10), (3.11) hold. We
would like to show now, that, in the case of obstacle problems, and thus also
in the particular case of equations (see section 3 paragraph 1 )) when a(x, u) is
assumed to be only nondecreasing, one can have uniqueness and monotonicity
with respect to the data in the same condition that case (i), i.e. when (1.11)
holds, but at the expense of further assumptions on the coefficients f3¡ ( x, u).
More precisely, if there exist constants ai, i = 1,..., n, not all of them equal
to 0, such that 

’

is nondecreasing or nonincreasing, then uniqueness can be restored under a
weaker assumption than (1.10), namely (1.11), (i.e.

satisfies (1.9) with w satisfying ( 1.11 )).
This case has some applications, since for (5.2) to hold, it is enough that

one of the does not depend on u or is monotone in u. Indeed if {3l (x, u)
is monotone in u, then for a 1 = 1, ai = 0 if 1, (5.2) is monotone in u.

For i = 1,2, let W 1. 2 ( ~ ) , and ~p$ , ~$ , ~$ , ~a be functions as in (3.1),
(3.2). For i = 1, 2 set

where Fo is a subset of r.

Then one has:
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THEOREM 5.1. Let u; (i = 1, 2) be a solution of

for all

where Ki is given by (5.3) and fi E V¿*. Assume that:

A is defined by (1.3), (5.1 ), and

(1.4), (1.7), (1.8), (1.9) hold with p = 2 for and K2.

There exist constants aa , i = 1,..., n, not all of them equal to 0, such
that: 

,

is monotone (nondecreasing or nonincreasing).
For every u in R, aij ( x, u) belong to W 1= °° (n) and there exists a constant

C such that

for all

is increasing a.e. on

Then if ( 1.11 ) holds and if one

has

(02 !~ ¢i means ¢z  ~1 a.e. on ro).

COROLLARY 5.1. Under the assumption of Theorem 5.1, there exists at
most one solution of

for all

where K is a convex of type Ki.
Since the corollary is an immediate consequence of the theorem, let us

prove Theorem 5.1.

PROOF OF THEOREM 5.1. One uses a technique of [8].


