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Nonhomogeneous Quasilinear Hyperbolic System
Arising in Chemical Engineering

L. HSIAO(*) - P. MARCATI(**)

1. - Introduction

We consider the following system

Under the initial conditions

and the boundary conditions

vi is a constant value

and f(e, v) is defined on a bounded domain A in the plane (e, v), such that

where M depends on the domain A and the parameters on f only. Moreover

defines a curve v = v(e) in the domain and v, is chosen so that v = v1 intersects
with v = v(,e), in A, once and only once.

Pervenuto alla Redazione il 29 Aprile 1986 e in forma definitiva il 21 Dicembre 1987.
(*) CNR-Visiting Professor at the University of Rome 2 "Tor Vergata".
(**) Partially supported by CNR-GNAFA.
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The system ( 1.1 ) was developed in chemical engineering [FG] to describe
the onset of bubbling in a uniformly fluidized bed, under the assumptions that
the idealized bed consists of interlocking horizontal layers of particles arranged
into an expanded close packet array, with the voidage essentially constants for all
horizontal planes. Here x denotes the distance of the x-layer from the bottom of
the bed, v ( x, t ) denotes the velocity of the x-layer at time t and the void
fraction in the x-layer, co is constant positive number depending on assigned
physical parameters, while f (E, v) denotes the external force acting on a single
particle. The explicit expression used in [FG] was given by

Where p is a positive constant depending on the same parameters as

co and a,,8, ’1 are positive constants depending on Reynold’s number and
1  a  2, 3  ,8  4. It is easy to see that the function f in (1.7)
satisfies the assumption (1.4), (1.5), (1.6) in the bounded domain A, defined by
0  d  e  1, 0  v  b  where b and d are arbitrary positive numbers
and d  1, 0  vl  b.

The mathematical model presented here is in excellent agreement with the
experimental observations reported in the literature ([FG] and [RFHY]), when
the initial situation is close to an equilibrium value.

This system, in addition, seems to exhibit some interesting new features
worth of an accurate mathematical investigation.

The system (1.1) is a nonhomogeneous quasilinear hyperbolic system for
which, as is well known, due to the breaking of waves and formation of
shocks, the initial value problem does not generally possess globally defined
smooth solutions, even when the initial data are very smooth, and the natural
function class in which solutions should be sought is the space BV of functions
of bounded variation. The standard method for constructing BV solutions to
the initial value problem for a general homogeneous hyperbolic system of
conservation laws is the difference scheme of Glimm [G].

For systems with inhomogeneities and/or source terms, there were different
efforts ([DH], [LI], [YM]). The algorithm introduced in [DH] is very simple;
it combines the fractional steps method with Glimm’s sheme and only involves
the resolution of discontinuities for homogeneous systems of conservation laws.

Using the same ideas of [DH], we introduce a particular simple algorithm
for system (1.1) in section 3 and establish its consistency by showing that,
when it converges, the limit is a solution to (1.1), (1.6), (1.7) satisfying the
usual entropy admissibility criterion. Then section 4 is devoted to investigating
the problem of convergence. We have to deal with new difficulties in this

paper (different from the nonhomogeneous system discussed in the literature)
caused by the degeneracy of hyperbolicity at e = 1 and the boundary condition.
Moreover, the global existence theorem is not local in the phase space.
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2. - Preliminary remarks

Let us consider the corresponding homogeneous system

It is easy to show that (2.1 ) is a. hyperbolic system, since the Jacobian
matrix has two real distinct eigenvalues, when e  1.

Denote by G the
domain e  1 in the (v, e) plane.

The Riemann problem for (2.1 ) is the initial value problem with data of
the form

where (ee, ve), (er, vr) are constants.
It has been shown, for more general systems, that (2.1), (2.2) can be

solved in the class of functions consisting of constant states, separated by either
shock waves or centered rarefaction wave, provided that the system is genuine
nonlinear [LA].

There are two distinct types of shock waves for (2.1), 1-shock and 2-shock,
which satisfy the Rankine-Hugoniot condition and the entropy criterion. Namely,
for a given state (ee, ve), the possible states (s, v) which can be connected to
(ee, ve) on the right by a 1-shock {2-shock} satisfy

and

where
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(Figure 2.1’)

This singles out the half-branch curve, as shown in fig. (2.1 ), which is
called 1-shock curve {2-shock curve}, denoted by ve) 

Now we turn to centered rarefaction waves which are continuous solutions
to (2.1) of the form v = = e(xlt).

Substituting v = ~(~)? ~ = ~(~)~ ~ = xlt into (2.1 ), one obtains

which possesses three kinds of solutions:

1 ° ) e =- const., v =- const.

3°) £ = where ri is the right eigenvector
corresponding to = 1, 2. The solution 1 ° ) is called "constant state", the
solution 3 ° ) is an "i-rarefaction wave". We call the solution 2°) a "degenerate
simple wave" since in this case the characteristic speeds a 1 and a2 are equal.

Let us look now at the solution 3 ° ). There are two families of rarefaction
waves, corresponding to either characteristic family of a1 or a2. Let us choose

as the right eigenvectors corresponding to Ai and a2, respectively. It is known
that for any given state ve) the possible states which can be connected to
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(eg, ve) on the right by a 1-rarefaction wave {2-rarefaction wave} satisfy

and

Namely,

It can be easily seen that az is an increasing function of v along the
integral curves of (2.5)~ . This shows that (2.1) is genuine nonlinear and singles
out the upper half branch curve, as shown in figure (2.2), where Ri denotes the
i - t h rarefaction curve.

(Figure 2.2)

By means of the Riemann invariants

the rarefaction wave curve can be expressed as



70

If we set G = { (r, s) : 0  s - r}, then the mapping (2.7) from G onto 6 is
1-1. Therefore we may use either (r, s) or (e, v) according to our convenience.

It can be shown that the shock curves can be expressed in the (r, s) plane
in the following way. Set a = (1 - e)/(l - et)

Obviously

which means that (2.1 ) belongs to the K class [DI], for which the interaction of
elementary waves exhibit different patterns than 2 x 2 systems of gas-dynamics
type.

For instance, the result of overtaking of two 1-shock waves is a transmitted
1-shock and a reflected 2-shock wave instead of a transmitted I-shock and a
reflected 2-rarefraction wave as in the case of gas-dynamics [S]. Furthermore,
we obtain more precise properties to the shock curves.

PROPOSITION (2.1 ). S’1 is monotone and convex in the (r, s ) plane (cf.
figure 2.3). Moreover

where and satisfy
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(Figure 2.3)

PROOF. Set

Due to 0’ (a) &#x3E; 0, the inverse function can be determined as

That, combined with the expression (2.9)2, implies

It is easily seen that

where y = (a + 3) + 1) 3 /2. Since y tends to 1 as a tends to 1, one
has that hl (a) tends to 0 as a tends to 1.

However, as a tends to oo, y tends to l I V2- and tends to

Thus -1  hl (a)  0, and (2.14)1 follows with

Similarly, set
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Due to - 0’ 2 (a)  0, the inverse function can be determined as

which, combined with the expression (2.10)1, implies

Letting along ,52, it easily seen that

where

One has that, as a tends to 1, y tends to 1 and h2 (Q) tends to 0, while as
a tends to 0, y tends to 0, and h2 (a~ tends to -1. Thus (2.14)2 follows with

Moreover

which shows (2.15).

REMARK 1. The shock curves from different points having the same et
coincide with each other by shifting the starting point along E = e e. (cf. figure
2.4).

(Figure 2.4)
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REMARK 2. For any given state the possible state (e, v) which can
be connected to on the left by a i-shock {2-shock} satisfy

and

In this way, we single out two half branch curves denoted by Si and S’
respectively (cf. figure 2.5)

(Figure 2.5)

Similarly, it can be shown that

where

For any given state (Er, Vr ), the possible states (e, v) which can be
connected to on the left by a 1-rarefraction wave {2-rarefraction wave}
satisfy , ~

and
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In this way, we single out two half branch curves denoted by Ri and R2
respectively. Using the Riemann invariants, one has (cf. figure 2.6)

(Figure 2.6)

In addition to the Riemann problem, we have to discuss certain special
initial-boundary value problems, because of the boundary condition (1.3), namely
(2.1) under the conditions

is a constant state with eo  1.

PROPOSITION (2.2). Assume ( v _ , E _ ) , ( v+ , e+ )eG; then the R iemann
Problem (2.1) (2.2) has a unique solution (v(£), e ( ç)), ç = x/t such that

(v (~), e (~)) - (v=F, e=f) as ~ tends respectively.
. 

PROOF. For any given ( r _ , s -) E G, draw the first wave curve W, (r-, s -)
which is Sl ( r_ , s _ ) for r  r- and s _ ) for r &#x3E; r-. Draw the second
wave curve W2 (r_ , s -), which is S2 (r_ , s _ ) for s  s _ and R2 (s _ , r_ ) for s &#x3E;

s -. Wi ( r _ , s -) divide the domain G into four regions I ( r _ , s _ ) ~ ~ ~ IV ( r _ , s -)
as shown in figure 2.7(l).
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(Figure 2.7(1))

(Figure 2.7(2))
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By virtue of the basic properties of the shock curves 8i, 8[ and the
rarefaction wave curves given by the proposition (2.1 ), formula (2.8)
and the remarks, it can be proved that for any given state (r=f,8=f) E G, the
problem (2.1), (2.2) is solvable.

When ( r+ , s + ) E II ( r - , 8 - ) , S2 ( r+ , s + ) intersects with R, (r-, s -), while
it does not intersect with S2(s-,r-) for 8 + ~ 8 ~ s _ , unless (r~,B+) C
S~ ( r- , 8 - ) , (in this case intersects with S2 ( r_ , s _ ) at ( r- , 8 - ) only,
for s+  s  s _ ). This shows that the solution of (2.1), (2.2) consists of a 1-

rarefaction wave and a 2-shock wave. When (r+, 5+) E III(r- , 8 - ) , 1~2 ( r+ , s + )
intersects with ,51 (s _ , r_ ) while the corresponding solution consists of a 1-

shock wave and a 2 rarefaction wave. When (r+,5+) e IV(r-, s-), S2 ( r+ , s + )
intersects with S’i(5-,r-) at (r*, s*) and the corresponding solution consists
of a 1-shock wave and a 2-shock wave. When (r+,8+) E 1(r_,8_), the curve
~(r-t-,5~) either intersects with Ri (r- , 8- ) for e  1 or intersects with e = 1,
first. (cf. figure 2.7(2)). In the former case, the corresponding solution consists
of a 1-rarefaction wave a 2-rarefaction wave; in the latter case the corresponding
solution consists of a 1-rarefaction wave, a degenerate simple wave e = 1, v = £
and a 2-rarefaction wave (figure (2.7)(2)). More precisely

Next, let us consider the initial-boundary value problem (2.1), (2.16),
(2.17).

In order to guarantee existence and uniqueness we need to restrict the
domain G. Define

where e* is defined by v, = V/c-o(1 --e*). Obviously one has, H c G.
PROPOSITION (2.3). Assume that (eo, vo)e H, then the problem (2.1), (2.16),

(2.17) has a unique solution (v(ç), e(ç)), ç + xlt, such that (v(ç), e(ç)) E G
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PROOF. For any given (vo, eo) with vo  we draw which
intersects with v = v, at ~v, ~). Then the corresponding solution consists of a
2-shock, when vo  vl. If vo &#x3E; vi, we draw B2 (vo, eo) which intersects with
v = vl, then the corresponding solutions consist of a 2-rarefaction wave (figure
2.8). In order to discuss the interaction of waves we also have to restrict the
domain G. Denote by B (or B in the ( r, s ) plane) the domain confined by the
curve and e  1. (cf. figure 2.9)

(Figure 2.8)
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(Figure 2.9)

the control of the wave interaction, which is essential for proving the global
existence theorem, requires the following additional results.

PROPOSITION (2.4). For any two given points P, : ( ro, 81) and Po : (ro, so )
with sl &#x3E; so and Pi E f3 the i-shock curve Sl (P1 ) is "flatter" than S1 (Po)
namely 

- -

where z= (i = 0,1) is shown in figure (2.10)( 1 ).

(Figure 2.10( 1 ))
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Similarly for any two given points P, : (ri, so) and Po : (ro, so) with

rl  ro and Pi E f3 (i = 0,1), the 2-shock curve S2(Pi) is "more straight"
than S2 ( Po ) , namely

where wi (i = 0, 1) is shown in figure (2.10)(2).

(Figure 2.10(2))

PROOF.

where
Then z,  zo, since the integrand is negative. In a similar way we prove

tvl  WO.

Let us measure the strength of the waves by the difference in the v

direction.
Due to the propositions (2.1) and (2.3), we get the following result

concerning the interaction of elementary waves.

PROPOSITION (2.5). Assume that all the elementary waves before interaction
are contained in f3. Then the sum of the strength of waves after the interaction
is less than or equal to the sum of the strength before the interaction.
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PROOF. The proposition will be proved by discussing each kind of
interaction of elementary waves. Let us denote a rarefaction wave by a...
and its strength by I a 1, a shock wave by ,8... and its strength by I fi 1. In order
to distinguish the waves after the interaction we shall denote them a’ and fit.
We denote by ai and a2 (respectively fil and fi2) the I-rarefaction wave and
the 2-rarefaction wave (respectively I-shock and 2-shock); by ad the degenerate
simple wave. Now we go on to study all the possible cases.

or

It is obvious that )a( ) I = i = 1, 2 for the first case and + lad I
+|a2| = la1| + la21 for the second case

(Figure 2.11)

It is clear that 1,8~1 + 1,8~1 = + ~2!. because of the proposition (2.1),
which that v is changing monotonically along the shock wave curves.
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(Figure 2.12)

From proposition (2.4), it follows

(Figure 2.13)
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Similarly to (iii) one has

(cf. figure 2.14).
The same argument as in the case (ii) yields

(Figure 2.14)
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For the second possibility it is clear that

For the first possibility we may consider an auxiliary interaction
as shown in figure (2.15), and compare Ø2 + ,~1 with a 1 + (3~ and
respectively. It is obvious that

hence

(Figure 2.15)

It is clear for the second case that
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For the first case, noting that vQ  vp because of the proposition (2.1 )
and the remark 2, it follows

(Figure 2.16)

Similarly it is possible to discuss the interaction fil + a 1 or a 1 + /9i.

(Figure 2.17)
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where ad is defined for ~ &#x3E; 0 i.e. v  0. It is clear for the first case that

 lad I and a~ is still defined for $ &#x3E; 0, + c lad + 

(Figure 2.18)

By using a similar argument we obtain the following result for the
interaction of waves with the boundary = 0.

(Figure 2.19)
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PROPOSITION (2.6). The reflected wave to a 1-shock wave ,81 will be a

2-shock wave (cf. figure (2.19)), while the reflected wave to a I-rarefaction
wave al will be a 2-rarefaction wave a2 (cf. figure (2.20)). Furthermore

(Figure 2.20)

3. - The scheme and its consistency

We describe, here, an algorithm to construct a family 
of approximate solutions to (1.1), (1.6), (1.7).

A pair of bounded measurable functions { ~ ( x, t) , v ( x, t) } is called a weak

solution of ( 1.1 ), (1.6), (1.7) if
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and

for all smooth functions § and 0 with compact support in t &#x3E; 0, x &#x3E; 0, such

= ~(0,) = 0, for all t &#x3E; 0.

Let us introduce the scheme. We begin, as in the Glimm scheme, by
generating a sequence ao, a1, ... , cm - - - of random equidistributed numbers in
the interval ( -1,1 ) . We fix a value h &#x3E; 0 of the space mesh-length and
we determine the corresponding time mesh-length as s = A -1 h, were A is a
fixed upper bound of the supremum of the moduli of the characteristic speeds
Ai (i *= 1, 2) on a suitable bounded domain D c B, in the (e, v) plane. We
need that the ranges of all the approximate solutions be included in D. Such a
domain will be determined later. Hence, since the (CFL) condition is fulfilled,
the waves emanating simultaneously at a distance 2h apart, will not interact on
a time interval of length s.

We partition the upper quarterplane of the (x, t) plane into strips 
{ ( ~, t ) : 0  x, t  (n + = 0, 1 ...} and we identify the mesh
points x = kh, t = ns, with k + n even, k = 0, 1 ~ ~ ~ (cf. figure 3.1)

(Figure 3.1)
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M-l

Assuming that has already been determined in U S’i ,
i=o

we describe below its construction in the strip Sn. For every m, with l=0 m+ n
odd, we identify, following Glimm, the random mesh points x = = nS,

where ym n = (m + an) h, m &#x3E; 1, and we define

For n odd, we define vo,n = vh (0+, ns- ), 60.,, = 

To initiate the algorithm at n = 0, we set, for all x &#x3E; 0,

Employing we compute

where

and, if m &#x3E; 1

Assuming that k + n is even, we let vh ( ~, t ) ~, on the rectangle
{ (~, t) : ns  t  1}, be the restriction
of the solution to the Riemann problem (2.1 ) with

When n is even, we let on { ( x, t) : 0  x  h, ns 
t  ( n + 1 ) s } be the restriction on the above rectangle of the solution to the
following initial-boundary value problem for (2.1 ) with the conditions
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The solvability of (2.1), (3.3) follows from the proposition (2.2) in section
2 and the solvability of (2.1), (3.4), (3.5) follows from the proposition (2.3)
in section 2. The above procedure determines in the strip
,Sn. We note that 16h (X, t), Vh (x, t) } experiences jump discontinuities across
shocks emanating from the mesh points x = kh, t = ns, but also across the line

segments {x = (k- I)h, n s  t  ( n + 1 ) s } , since vh ( ( k - 1)h-,t) = 
while 1)h+, t) = wk-l.n. 

’

The computation may proceed for as long as the range of
remains in D. The consistency of the scheme is demonstrated

by the following.

PROPOSITION (3.1). Assume that each selection of the random sequence
{a~ }, yields a family t), vh (x, t) }, 0  h  ho, of approximate solutions
which are defined and have uniformly (in h) locally bounded variation on
[0, oo) x [0, T). Then there is a sequence (he), ht 10 as i T oo, such that, for
almost every sequence { aa }

where le, v) is a function of locally bounded variation on [0, 00) x [0, T) which
is a (weak) solution to the initial boundary value problem ( 1.1 ), (1.6), (1.7).

The proof follows from the more general framework in [DH] and so we
omit it.

For a general nonhomogeneous hyperbolic system

where u is an N-vector field and F(u), G(u) are smooth functions from a
bounded domain D c into a (smooth) function p (u) is called an entropy
for (3.7) with (smooth) entropy flux q(u) and (smooth) entropy production p(u)
if

A "BV solution" u(x, t) of (3.7) is said to satisfy the entropy admissibility
criterion if 

- -

in the sense of measures.

It can be shown in the same way as in [DH] that the limit function in
(3.6) satisfies the above entropy condition, namely

PROPOSITION (3.2). Under the assumptions of proposition (3.1 ), the limit
function I e (x, t), v(x, t) ) in (3.6) satisfies the entropy admissibility criterion.


