PAOLO DE BARTOLOMEIS

Holomorphic generators of some ideals in $C^\infty(D)$

<http://www.numdam.org/item?id=ASNSP_1987_4_14_2_199_0>
Holomorphic Generators of Some Ideals in $C^\infty(\overline{D})$

PAOLO DE BARTOLOMEIS

dedicated to B.V. Shabat

0. Introduction, notations and statement of the main results

Let $D \subset \mathbb{C}^{n+1}$ be a bounded domain with C^∞-smooth boundary, V a complex submanifold of a neighbourhood of \overline{D} such that $\overline{D} \cap V = \overline{D} \cap V \neq \emptyset$, \mathcal{F}_V the sheaf of ideals of V and set:

$$\mathcal{S}^\infty(V) = \{ f \in C^\infty(\overline{D}) \mid f|_V = 0 \},$$

$$I^\infty(V) = \{ f \in A^\infty(D) = \mathcal{O}(D) \cap C^\infty(\overline{D}) \mid f|_V = 0 \}.$$

It is well known (see e.g. [7]) that if $g_1, \ldots, g_k \in \mathcal{O}(\overline{D})$ $g_j|_D \in I^\infty(V)$, $1 \leq j \leq k$, represent a complete defining system for V (i.e. for every $x \in \overline{D}$, $g_{1,x}, \ldots, g_{k,x}$ generates $\mathcal{F}_{V,x}$ over \mathcal{O}_x), then $g_1, \ldots, g_k, \overline{g}_1, \ldots, \overline{g}_k$ generate $\mathcal{S}^\infty(V)$ over $C^\infty(\overline{D})$ if and only if \overline{D} and V are regularly separated in the sense of -Lojasiewicz, i.e. there exist $h \in \mathbb{Z}^+$ and $C > 0$ such that for every $x \in \overline{D}$ we

![Fig. 1](image-url)
have:

$$\text{dist}^h(x, V \cap \overline{D}) \leq C \text{dist}(x, V)$$

It is a natural question to ask under which assumptions, more in general, $I^\infty(V) \cup \overline{I^\infty(V)}$ generates $\mathcal{G}^\infty(V)$ over $C^\infty(\overline{D})$.

It is clear that is not always the case:

take e.g.: $V = L = \{ z_{n+1} = 0 \}$, Ω any bounded domain with C^∞-smooth boundary such that $\Omega \cap L = \emptyset$ and $\overline{\Omega}$ and L are not regularly separated somewhere; let B a ball containing $\overline{\Omega}$ and let finally $D = B \setminus \overline{\Omega}$. Obviously we have $A^\infty(D) = A^\infty(B)$, so $I^\infty(V)$ is generated by z_{n+1} (cf. [1] [4]), while $(z_{n+1}, \overline{z}_{n+1})C^\infty(\overline{D}) \subset \mathcal{G}^\infty(V)$.

Of course, pseudoconcavity of D plays an essential role in this example.

The main result of this paper is the following:

THEOREM. Let $D \subset C^{n+1}$ be a bounded strictly pseudoconvex domain with C^∞-smooth boundary, let V be a complex submanifold of a neighbourhood of \overline{D} such that $D \cap V = \overline{D} \cap V \neq \emptyset$, and let g_1, \ldots, g_k be a complete defining system for V.

Then there exists $m \in \mathbb{Z}^+$ such that for every $f \in \mathcal{G}^\infty(V)$ one can find $\lambda_1, \ldots, \lambda_m \in I^\infty(V)$, a_1, \ldots, a_k, b_1, \ldots, b_k, c_1, \ldots, c_m, $d_1, \ldots, d_m \in C^\infty(\overline{D})$ in such a way that:

$$f = \sum_{j=1}^k (a_j g_j + b_j \overline{g}_j) + \sum_{h=1}^m (c_h \lambda_h + \overline{d}_h \overline{\lambda}_h).$$

Note that no requirement other than $\overline{D} \cap V = \overline{D} \cap V \neq \emptyset$ is made about the mutual position of D and V.

The general ideas of the proof are the following:

1. Investigating the geometry of $D \cap V$ (Lemmas 1.1 and 1.2) we prove that, in the strictly pseudoconvex case, the area of bad contact (i.e. non regular separation) between D and V, can be locally included in a totally real submanifold Σ of bD.

2. Since Σ is totally real, functions in $I^\infty(V)$ are (relatively) flabby on Σ and so, in some sense, they can be deformed on Σ (Proposition 2.1) in order to reproduce locally any (possibly bad) behaviour of functions in $\mathcal{G}^\infty(V)$.

3. Using some arguments from [4], we pass from the local result to the Theorem (Lemma 3.1 and proposition 3.2).

As a corollary of the main Theorem, we obtain (Corollary 3.3) that regular separation is necessary and sufficient condition for $I^\infty(V)$ to be generated over $A^\infty(D)$ by g_1, \ldots, g_k.

The result of Corollary 3.3 can be found in the paper by E. Amar [2], which represented one of the starting points of the present investigation.

Some of the results presented in this paper where announced in [3].
1. - The geometrical situation.

The first step of the proof of the Theorem is to investigate the local geometry of \(D \cap V \), especially at those points where \(V \) and \(bD \) meet non-transversally.

In order to perform this investigation, let \(D \subset C^{n+1} \) be a strictly pseudoconvex domain with \(C^\infty \)-smooth boundary and let \(L \) be a complex hyperplane such that \(L \cap D = L \cap \overline{D} \neq \emptyset \) and \(L \) and \(bD \) are not transversal at \(x \in L \cap bD \); then it is possible to choose local complex coordinates \((z, z_{n+1})\), \(z = (z_1, \ldots, z_n) \) in a neighbourhood \(N \) of \(x \) in such a way that

\[
\begin{align*}
&i) \quad T^\mathbb{C}_{x} bD = \{z_{n+1} = 0\} = L, \quad T^\mathbb{R}_{x} bD = \{\text{Re } z_{n+1} = 0\} \\
&ii) \quad D \cap N = \{\text{Re } z_{n+1} > r(z, \text{Im } z_{n+1})\}
\end{align*}
\]

where:

\[
r(z, \text{Im } z_{n+1}) = p(z) + \varphi(z) + \psi(z, \text{Im } z_{n+1}),
\]

with

a) \(p(z) = \overline{z} A' z + \text{Re } z B' z \) with \(A, B \in M_{n,n}(\mathbb{C}), \quad A = A^* > 0, \quad B = B^* \)

b) \(\varphi(z) = o(|z|^2) \) for \(z \to 0 \)

c) \(\psi(z, \text{Im } z_{n+1}) = O(\text{Im } z_{n+1}^2) \) for \(\text{Im } z_{n+1} \to 0 \).

Let \(h(z) = p(z) + \varphi(z) \).

Lemma 1.1. Up to complex linear changes of coordinates, we can assume there exist \(k, r \in \mathbb{Z}^+ \), \(0 \leq k \leq n \), \(0 \leq r \leq n - k \), such that setting \(z_j = x_j + i y_j \) and \(T = (x_{k+1}, \ldots, x_n, y_{k+1}, \ldots, y_n) \) we have

\[
p(z) = p(x_1, \ldots, x_n, y_1, \ldots, y_n) = 2 \sum_{j=1}^{k} y_j^2 + TP^* T,
\]

where \(P \) is a non-singular symmetric element of \(M_{2(n-k),2(n-k)}(\mathbb{R}) \) such that:

- \(P \) is positive definite on

\[
V^+ = \{x_j = 0, \quad k + 1 \leq j \leq k + r\}
\]

and negative definite on

\[
V^- = \{z_j = 0, \quad y_i = 0, \quad k + r + 1 \leq j \leq n, \quad k + 1 \leq i \leq k + r\}.
\]

Proof.

1. Up to an obvious complex linear change of coordinates (c.l.c.c.) we can assume \(p(z) = \overline{z}' z + \text{Re } z B' z \).

2. The space of degeneracy of \(p \) is given by \(W = \{dp = 0\} = \{t \overline{z} + B' z = 0\} \) and thus it is totally real: up to another c.l.c.c. we can assume there exists \(k \in \mathbb{Z}^+, \quad 0 \leq k \leq n \) such that

\[
W = \{z_{k+1} = \ldots = z_n = 0, \quad y_1 = \ldots = y_k = 0\}.
\]
This is equivalent to say

\[B = \begin{pmatrix} -I_k & 0 \\ 0 & A \end{pmatrix}, \quad A = R + iS \]

and so we obtain the description of \(p \) we are looking for, setting:

\[P = \begin{pmatrix} I + R & -S \\ -S & I - R \end{pmatrix}. \]

3. By means of the ordinary spectral theorem, we can find an Euclidean-orthonormal, \(P \)-orthogonal basis \(B = \{v_1, \ldots, v_{2(n-k)}\} \) of \(\mathbb{C}^{n-k} \); assume the index of negativity of \(P \) is \(r \) and \(v_j P v_j < 0 \), \(1 \leq j \leq r \); thus \(P \) is positive definite on \(V^+ = [v_{r+1}, \ldots, v_{2(n-k)}] \), which is the Euclidean-orthogonal complement of \(V^- = [v_1, \ldots, v_r] \); since \(p \) is strictly subharmonic when restricted to any complex direction in \(\mathbb{C}^{n-k} \), then \(V^- \) is totally real and so with a final orthogonal c.l.c.c., we can assume

\[V^- = \{ z_j = 0 \; y_t = 0 \; k + r + 1 \leq j \leq n, \; k + 1 \leq i \leq k + r \} \]

and consequently:

\[V^+ = \{ z_j = 0 \; k + 1 \leq j \leq k + r \}. \]

Lemma 1.2. Assume complex coordinates are chosen in such a way that \(p \) appears in the normalized form given by Lemma 1.1; thus:

a) if \(k = 0 \), then there exist a neighbourhood \(U \) of \(0 \) and \(K > 0 \) such that if \(x \in U \cap \overline{D} \) then

\[\text{dist}^2(x, L \cap \overline{D}) \leq K \text{dist}(x, L) \]

and so, in particular \(L \) and \(\overline{D} \) are regularly separated at 0;

b) if \(k > 0 \), then there exists a totally real \((k + r) \)-dimensional \(C^\infty \)-submanifold \(S \) of \(L \), passing through 0 for which there exist a neighbourhood \(U \) of \(0 \) and \(K > 0 \) such that if \(\Sigma = (S \times \text{Re} \mathbb{C}_{z_{n+1}}) \cap bD \) and \(Z = L \cup \Sigma \) then for every \(x \in U \cap \overline{D} \) we have

\[\text{dist}^2(x, Z \cap \overline{D}) \leq K \text{dist}(x, Z) \]

and so, in particular \(Z \) and \(\overline{D} \) are regularly separated at 0.

Proof. First of all note that if \(x = (z, z_{n+1}) \in \overline{D} \) then we have

\[\text{Re} \; z_{n+1} \geq r(z, \text{Im} \; z_{n+1}) = h(z) + O(|\text{Im} \; z_{n+1}|^2) \]
and so

\[h(z) \leq \text{Re} \, z_{n+1} + O(1) \frac{1}{| \text{Im} \, z_{n+1} |^2) \leq c' \{ | \text{Re} \, z_{n+1} | + | \text{Im} \, z_{n+1} | \} \leq c |z_{n+1}|. \]

a) Assume \(k = 0 \).

1. Since we are interested only in those points \(x = (z, z_{n+1}) \in \overline{D} \) where \(h(z) > 0 \), in order to get (\#a), it is enough to prove

\[
\text{dist}^2(x, \overline{D} \cap L) \leq c |h(z)| \quad \text{for } z \in L \text{ near } 0
\]

and this condition, of course has nothing to do with the complex structure.

2. Up to a real linear change of coordinates, we can assume

\[
p(z) = p(u, v) = |u|^2 - |v|^2
\]

where \(u = (u_1, \ldots, u_p), v = (v_1, \ldots, v_q), p + q = 2n \).

Recall that \(h(u, v) = p(u, v) + \varphi(u, v) \) and \(\varphi(u, v) = o(|u|^2 + |v|^2) \) and so, given \(\lambda > 0 \), let \(\rho > 0 \) such that, if \(|u|^2 + |v|^2 \leq \rho^2 \) then \(|\varphi(u, v)| < \frac{1}{2} (|u|^2 + |v|^2) \); setting

\[
p_\lambda = p + \lambda(|u|^2 + |v|^2) \quad H_\lambda = \{ p_\lambda < 0 \} \quad A_\lambda = \mathcal{C} H_{-\lambda},
\]

in the ball \(B(0, \rho) \) we have:

\[
p_{-\lambda} < h < p_\lambda
\]

and therefore

i) if \(x \in H_\lambda \), then \(x \in L \cap \overline{D} \) i.e. \(H_\lambda \subset \overline{D} \cap L \)

ii) if \(x = (u, v) \in A_\lambda \) then \(p(u, v) \geq \lambda(|u|^2 + |v|^2) \) and

\[
h(x) > p(u, v) - \frac{\lambda}{2} (|u|^2 + |v|^2) \geq \frac{\lambda}{2} (|u|^2 + |v|^2) \geq c \text{ dist}^2(x, L \cap \overline{D}),
\]

so we have to consider only

\[
x \in C_\lambda = \mathcal{C} (H_\lambda \cup A_\lambda) = \left\{ (u, v) \in \mathbb{R}^p \times \mathbb{R}^q; \frac{1 - \lambda}{1 + \lambda} |v|^2 \leq |u|^2 \leq \frac{1 + \lambda}{1 - \lambda} |v|^2 \right\}.
\]

Let \(C = \{ p = 0 \} \) and let \(\nu \) be the outward pointing normal unit vector field to \(C - \{ 0 \} \), extended to \(C_\lambda - \{ 0 \} \); for a fixed small \(\lambda \), \(\nu \) defines a projection \(\pi: C_\lambda - \{ 0 \} \to C - \{ 0 \} \) thus, for \(x = (u, v) \in C_\lambda \), we have

\[
\frac{\partial h}{\partial \nu}(x) = \frac{\partial p}{\partial \nu} + o(|x|) \geq c |\pi(x)|;
\]

so if \(\hat{x} \in C_\lambda \cap L \cap bD \) is a point on the line from \(x \) parallel to \(\nu(\pi(x)) \), we have
and since $|\pi(x)| \geq |x - \hat{x}|$, we obtain

$$|h(x)| \geq c|x - \hat{x}| \geq c \text{ dist}^2(x, L \cap \overline{D}).$$

b) Assume $k > 0$.
1. Let

$$S = \left\{ (x_1, \ldots, x_n, y_1, \ldots, y_n) \in L \left| \frac{\partial h}{\partial x_l} = 0, \frac{\partial h}{\partial y_m} = 0, k + r + 1 \leq l \leq n, 1 \leq m \leq n \right. \right\}$$

we have $0 \in S$ and so, in virtue of the implicit functions theorem, there exists a neighbourhood U of 0 such that in $L \cap U$:

$$S = \left\{ (x_1, \ldots, x_n, y_1, \ldots, y_n) \in L \left| x_l = \eta_l(x_1, \ldots, x_{k+r}), y_m = \alpha_m(x_1, \ldots, x_{k+r}), k + r + 1 \leq l \leq n, 1 \leq m \leq n \right. \right\}$$

for C^∞-smooth functions η_l, α_m; so S is totally real (cf. e.g. [5]); set $\Sigma = (S \times \text{Re} C_{x^k}) \cap bD$ and $Z = L \cup \Sigma$.
2. Write $D \cap U = \hat{M}_K \cup \hat{N}_K$ where:

$$\hat{M}_K = \{ x \in D \cap \overline{U} \mid \text{dist}^2(x, \Sigma) \leq K \text{ dist} (x, L) \}$$

and $\hat{N}_K = \overline{D \cap U} - \hat{M}_K$
if \(x \in \mathcal{M}_K \) then

\[
\text{dist}^2(x, Z \cap \overline{D}) = \min\{\text{dist}^2(x, \Sigma), \text{dist}^2(x, L \cap \overline{D})\} \leq \text{dist}^2(x, \Sigma)
\]

\[
\leq \begin{cases}
C \text{dist}(x, \Sigma) \\
K \text{dist}(x, L)
\end{cases}
\]

\[
\leq c' \min\{\text{dist}(x, \Sigma), \text{dist}(x, L)\} = c' \text{dist}(x, Z).
\]

3. We have the following

CLAIM 1. Let

\[Q = \{(x_1, \ldots, x_n, y_1, \ldots, y_n) \in L \cap U : \quad |h(x_1, \ldots, x_{k+r}, \eta_{k+r+1}, \ldots, \eta_n, \alpha_1, \ldots, \alpha_n) | \geq 0\};\]

if \(\pi: \mathbb{C}^{n+1} \rightarrow L \) is the natural projection, then there exists \(K > 0 \) such that if \(x \in \overline{D} \cap U \) and \(\pi(x) \in Q \), then \(x \in \mathcal{M}_K \).

PROOF OF CLAIM 1. Let \(x \in \overline{D} \), \(x = (z, z_{n+1}) \) with

\[z = (x_1, \ldots, x_n, y_1, \ldots, y_n) \in Q\]

let \(x' = (z, 0) \), \(x'' = (\hat{z}, 0) \) where \(\hat{z} = (x_1, \ldots, x_{k+r}, \eta_{k+r+1}, \ldots, \eta_n, \alpha_1, \ldots, \alpha_n) \); of course \(\hat{z} \in Q \cap \overline{S} \); then

\[h(x) = h(\hat{z}) + \frac{1}{2} \text{Hess}(h)(\hat{z})(z - \hat{z}) + O(|z - \hat{z}|^3)\]

where \(\text{Hess}(h)(\hat{z}) \) is the Hessian quadratic form of \(h \) at \(\hat{z} \); we have \(\text{Hess}(h) = \text{Hess}(p) + \text{Hess}(\varphi) \) and, since \(p \) is positive definite on \(L^+ = \{z \in L | x_j = 0, \quad 1 \leq j \leq k + r\}, \ z - \hat{z} \in L \) and \(\varphi(z) = o(|z|^3) \), we obtain

\[h(z) \geq h(\hat{z}) + c|z - \hat{z}|^2 \geq h(\hat{z}) + c' \text{dist}(z, S);\]

so

\[\text{dist}(x, \Sigma) \leq \text{dist}(x, x') + \text{dist}(x', \Sigma) = |z_{n+1}| + \text{dist}(x', \Sigma) \leq |z_{n+1}| + \text{dist}(x', x'') + \text{dist}(x'', \Sigma).\]

Now we have:

i) \(\text{dist}(x', x'') \leq c_2 \text{dist}(x', S) \)

ii) since \((\hat{z}, h(\hat{z})) \in \Sigma: \)

\[\text{dist}(x'', \Sigma) \leq \text{dist}(x'', (\hat{z}, h(\hat{z}))) = h(\hat{z}) < h(z);\]

so:

\[\text{dist}^2(x, \Sigma) \leq c_3(|z_{n+1}|^2 + \text{dist}^2(x, S) + h^2(z)) \leq c_4(|z_{n+1}|^2 + h(z)) \leq K|z_{n+1}| = K \text{dist}(x, L)\]
and the proof of claim 1 is complete.

4. Next step is the following:

CLAIM 2. If \(x \in \overline{D \cap U} \) and \(\pi(x) \not\in Q \), then there exists \(K > 0 \) such that

\[
\text{dist}^2(x, L \cap \overline{D}) \leq K \text{dist}(x, L).
\]

PROOF OF CLAIM 2. It is enough to show that if \(x = (z, z_{n+1}) \in \overline{D \cap U} \) and \(z \not\in Q \cup (L \cap D) \) then \(h(z) \geq c \text{dist}^2(z, L \cap D) \); now for such an \(x \) we have \(h(z) > 0 \) while \(h(\tilde{z}) = h(x_1, \ldots, x_{k+1}, \eta_{k+1}, \ldots, \eta_n, \alpha_1, \ldots, \alpha_n) < 0 \); in the segment \([\tilde{z}, z]\), consider the last point \(\tilde{z} \) such that \(h(\tilde{z}) = 0 \) and let \(f(t) = h((1-t)\tilde{z} + tz) \) since \(f''(t) = \text{Hess}(h)((1-t)\tilde{z} + tz)(z - \tilde{z}) \geq c|z - \tilde{z}|^2 \), then \(f(t) \) is a convex increasing function in \([0,1]\); moreover we have:

\[
h(z) = f(1) = f(0) + f'(0) + \frac{1}{2}f''(\hat{t}) \quad \text{for} \quad \hat{t} \in [0,1];
\]

since \(f(0) = h(\tilde{z}) = 0 \), \(f'(0) \geq 0 \), we obtain precisely

\[
h(z) \geq c \text{dist}^2(x, L \cap \overline{D}).
\]

5. **Summing up:**

Given \(x \in \overline{D \cap U} \), if \(\pi(x) \in Q \), then by claim 1, \(x \in M_K \) and so \(\text{dist}^2(x, Z \cap \overline{D}) \leq c_1 \text{dist}(x, Z) \); if \(\pi(x) \not\in Q \), then by claim 2, \(\text{dist}^2(x, L \cap \overline{D}) \leq c_2 \text{dist}(x, L) \) and so

\[
\text{dist}^2(x, Z \cap \overline{D}) = \min\{\text{dist}^2(x, \Sigma), \text{dist}^2(x, L \cap \overline{D})\}
\leq c_2 \min\{\text{dist}(x, \Sigma), \text{dist}(x, L)\}
= c_2 \text{dist}(x, Z)
\]

and the proof of Lemma 1.2 is complete.

REMARK 1.3. a) Lemma 1.2 asserts essentially that if \(D \) is strictly pseudoconvex, then \(\overline{D} \) and \(L \) are not regularly separated at most “along” a totally real submanifold \(\Sigma \) of \(bD \) (see [2] for some partial results in this direction);

b) it follows from Lemma 1.2 and Whitney extension theorems (cf. e.g. [7]) that if \(f \in \mathfrak{D}^\infty(L) \) and \(f \) is infinitely flat on \(\Sigma \) then it is possible to find a \(C^\infty \)-smooth extension \(F \) of \(f \) around \(\overline{D \cap U} \), vanishing on \(L \cap U \).

2. - The semi-local case.

Lemma 1.2 enables us to prove the following semi-local version of the main Theorem:

PROPOSITION 2.1. Let \(D \subset C^{n+1} \) be a bounded strictly pseudoconvex domain with \(C^\infty \)-smooth boundary and let \(g \in \mathcal{O}(D') \), where \(D \subset \subset D' \), such that, if
V = \{ g = 0 \}, then \(V \cap D = V \cap \overline{D} \neq \emptyset \); let \(x \in \overline{D} \) such that \(\partial g(x) \neq 0 \); then for every neighbourhood \(U \) of \(x \), there exists another neighbourhood \(W \) of \(x \) such that if \(f \in C^\infty(U) \) and \(f|_{U \cap D \cap V} \equiv 0 \) then for every pseudoconvex domain \(\hat{D} \) with \(C^\infty \)-smooth boundary such that \(D \subset \hat{D} \subset \subset \hat{D}' \) and \(D \cap W = \hat{D} \cap W \), we can find \(\lambda \in A^\infty(\hat{D}) \) such that \(\lambda|_D \in I^\infty(V) \), and \(a_1, \ldots, a_4 \in C^\infty(\hat{D}) \), in such a way that on \(\overline{W} \cap \overline{D} \) we have

\[
f = a_1 g + a_2 \overline{g} + a_3 \lambda + a_4 \overline{\lambda}.
\]

Proof.

1. We can assume \(x \in bD \cap V \) otherwise there is almost nothing to prove.

2. If \(V \) and \(bD \) are transversal at \(x \), we obtain the result with \(\lambda \equiv 0 \), using the well-known techniques for the regularly separated case.

3. If \(V \) and \(bD \) are not transversal at \(x \), then we can choose complex coordinates near \(x \) in such a way that \(z_{n+1} = g \) (and so we can identify near \(x, V \) with \(L = \{ z_{n+1} = 0 \} = T_z \overline{bD} \); performing the c.i.c.c. as in Lemma 1.1, again we can assume \(k > 0 \) and construct \(S, \Sigma, Z \) as in Lemma 1.2 b), in a neighbourhood \(W' \subset U \) of \(O \).

4. Let \(f \in C^\infty(U) \) such that \(f|_{U \cap D \cap V} \equiv 0 \); choose \(j \in \mathbb{Z}^+ \) in such a way that if \(\tilde{f} = f + jg \) then

\[
\frac{\partial \tilde{f}}{\partial z_{n+1}} - \frac{\partial \tilde{f}}{\partial \overline{z}_{n+1}} \neq 0
\]

in \(W' \); let \(M = \{ x \in W' | \tilde{f} = 0 \} \); then it is possible to find \(\varphi \in C^\infty(L, \mathbb{C}) \) such that \(\varphi|_{L \cap \overline{D}} \equiv 0 \) and

\[
M = \{ \varphi(z_1, \ldots, z_n) = z_{n+1} \} \cap W'
\]

then (cf. e.g. [7]) in \(W' \cap D \) we have

\[
\tilde{f} = a(\varphi - z_{n+1}) + b(\overline{\varphi - z_{n+1}}) \quad \text{for } a, b \in C^\infty(\hat{D});
\]

we want to factorize \(\varphi \).

We need two preliminary lemmas; first of all let

\[
\mathcal{E} = \{ \sigma \in C^\infty(\mathbb{R}^+, \mathbb{R}^+) | \text{ for every } k \in \mathbb{Z}^+, \sigma^{(k)}(x) = 0, \sigma'(x) > 0 \text{ if } x > 0 \}
\]

then we have:

Lemma 2.2 Given \(\varphi \in C^\infty(L, \mathbb{C}) \) such that \(\varphi|_{L \cap \overline{D}} \equiv 0 \), it is possible to find \(\tilde{\varphi} \in C^\infty(L, \mathbb{R}) \) such that \(\{ \tilde{\varphi} = 0 \} = L \cap \overline{D} \) and \(\sigma \in \mathcal{E} \) in such a way that

\[
\sigma(\tilde{\varphi}(x)) \geq |\varphi(x)|
\]
PROOF. For any $\varepsilon > 0$, let $K_\varepsilon = \{ z \in L : \operatorname{dist}(z, L \cap D) \leq \varepsilon \}$ and let $\lambda(\varepsilon) = \sup |\varphi(z)|$ thus we have: $\lambda(\varepsilon) \searrow 0$ if $\varepsilon \searrow 0$ and $\lambda(\varepsilon) = o(\varepsilon^k)$ for every $k \in \mathbb{Z}^+$; so it is possible to find $\hat{\lambda}, \hat{\mu} \in \mathcal{E}$ such that:

i) $\hat{\lambda} > \lambda$,

ii) $\hat{\lambda} = o(\hat{\mu}^k)$ for every $k \in \mathbb{Z}^+$ and so $\hat{\lambda} = \sigma \circ \hat{\mu}$ for $\sigma \in \mathcal{E}$.

Let now $\rho \in C^\infty(L \setminus \overline{D})$ such that for $z \in L \setminus \overline{D}$

$$\operatorname{dist}(z, L \cap \overline{D}) \leq \rho(z) \leq 2 \operatorname{dist}(z, L \cap \overline{D})$$

and set

$$\hat{\varphi}(z) = \begin{cases}
\hat{\mu}(\rho(z)) & \text{on } L \setminus \overline{D} \\
0 & \text{on } L \cap \overline{D}
\end{cases}$$

thus $\hat{\varphi} \in C^\infty(L, \mathbb{R})$, $\{ \hat{\varphi} = 0 \} = L \cap \overline{D}$ and

$$\sigma(\hat{\varphi}(z)) = \sigma \circ \hat{\mu}(\rho(z)) \geq \sigma \circ \hat{\mu}(\operatorname{dist}(z, L \cap \overline{D}))$$

$$= \hat{\lambda}(\operatorname{dist}(z, L \cap \overline{D})) \geq \lambda(\operatorname{dist}(z, L \cap \overline{D})) \geq |\varphi(z)|.$$

Lemma 2.3. Let $a \in C^\infty(L, \mathbb{C})$ such that $a|_{L \cap D} \equiv 0$; set $A(z_1, \ldots, z_n, z_{n+1}) = a(z_1, \ldots, z_n)$; then the following facts are equivalent:

i) $a(z) = o(|\lambda(z)|^k)$ for $z \rightarrow L \cap \overline{D} \cap W'$ and every $k \in \mathbb{Z}^+$

ii) $A|_{\overline{D} \cap W'}$ admits a C^∞-smooth extension around $\overline{D} \cap W'$ vanishing on $L \cap W'$.

Proof. i) \Rightarrow ii) we claim that, if $\alpha = (\alpha_1, \ldots, \alpha_n, 1, \ldots, 1) \in (\mathbb{Z}^+)^{2n+2}$, setting

$$f_\alpha(x) = \begin{cases}
0 & \text{if } \alpha_{n+1} + \alpha_n > 0 \\
D^\alpha A(x) & \text{if } x \in \overline{D} \cap W' \\
0 & \text{if } L \setminus \overline{D} \cap W'
\end{cases}$$

then the $(f_\alpha)_{\alpha \in (\mathbb{Z}^+)^{2n+2}}$ are, under assumption i), Whitney data on $(\overline{D} \cap L) \cap W'$ i.e. for any $\alpha \in (\mathbb{Z}^+)^{2n+2}$, any $m \in \mathbb{Z}^+$

$$f_\alpha(x) = \sum_{|\beta| \leq m} \frac{1}{\beta!} f_{\alpha + \beta}(y)(x - y)^\beta + o(|x - y|^m)$$

uniformly for $|x - y| \rightarrow 0$; in fact:

1) if $x, y \in \overline{D} \cap W'$ or $x, y \in L \cap W'$, we have nothing to prove;

2) if $x \in \overline{D} \cap W' \setminus L$, $y \in L \cap W'$, from i) it follows that, for any $\alpha \in (\mathbb{Z}^+)^{2n+2}$ such that $\alpha_{n+1} + \alpha_n = 0$ and any $m \in \mathbb{Z}^+$, setting $x = (z, z_{n+1})$, we have:

$$f_\alpha(x) = D^\alpha a(z) = o(|\lambda(z)|^m)$$
and \(|h(z)| \leq c(|z_{n+1}| + |z - y|) \leq c'|x - y|;\)

3) if \(x \in L \cap W', y \in D \cap W' \setminus L, y = (z, z_{n+1})\) then for any \(\alpha \in (\mathbb{Z}^+)^{2n+2}, m \in \mathbb{Z}^+\)

\[f_\alpha(x) - \sum_{|\beta| \leq m} \frac{1}{\beta!} D_{\alpha+\beta} A(y)(x - y)^\beta = -D^\alpha a(x) + o(|x - y|^m) = o(|x - y|^m) \]

and so ii) follows from Whitney extension theorems (cf. e.g. [7]).

ii)\(\Rightarrow\)i) let \(F\) be the extension in assumption ii); if \(z \in L \cap W'\), let \(x = (z, h(z)), y = (z, 0)\); if \(\alpha = (\alpha_1, \ldots, \alpha_n, 0, \alpha_{n+1}, \ldots, \alpha_{2n+2}, 0) \in (\mathbb{Z}^+)^{2n+2}\) then we have:

\[D^\alpha a(x) = D^\alpha F(z) = \sum_{|\beta| \leq m} \frac{1}{\beta!} D_{\alpha+\beta} F(y)(x - y)^\beta + o(|x - y|^m) = o(|x - y|^m), \]

Going back to the proof of Proposition 2.1, using Lemma 2.2, we can find \(\phi \in C^\infty(L, \mathbb{R})\) and \(\sigma \in \mathcal{E}\) such that \(\{\phi = 0\} = L \cap D\) and \(\sigma(\phi(z)) \geq |\phi(z)|\).

We can find also \(\omega, q, \alpha \in \mathcal{E}\) such that

\[\omega \circ q \circ \alpha = \sigma \]

and so setting \(s = \alpha \circ \phi\) we obtain

\[\varphi(z) = o(|q(s)(z)|^k) \]

for \(z \to L \cap \overline{D} \cap W'\) and every \(k \in \mathbb{Z}^+\); since \(\varphi \equiv 0\) when \(h(z) \leq 0\), we have also

\[\varphi(z) = o(|h(z) + q(s)(z)|^k) \]

for \(z \to L \cap \overline{D} \cap W'\) and every \(k \in \mathbb{Z}^+\).

Let now \(F: \mathbb{C}^n_+ \to \mathbb{C}^n_+\) defined by

\[\begin{cases} w_j = z_j & 1 \leq j \leq n \\ w_{n+1} = q(s)(z_1, \ldots, z_n) + z_{n+1} \end{cases} \]

and \(G = F^{-1}: \mathbb{C}^n_+ \to \mathbb{C}^n_+\)

\[\begin{cases} z_j = w_j & 1 \leq j \leq n \\ z_{n+1} = w_{n+1} - q(s)(w_1, \ldots, w_n) \end{cases} \]

be \(C^\infty\)-smooth changes of coordinates: then

\[F(D \cap W') = \{ \text{Re } w_{n+1} > r'(w_1, \ldots, w_n, \text{Im } w_{n+1}) \} \]
where
\[r'(w_1, \ldots, w_n, \text{Im } w_{n+1}) = r(w_1, \ldots, w_n, \text{Im } w_{n+1}) + q(s)(w_1, \ldots, w_n) \]
and so
\[h'(w_1, \ldots, w_n) = h(w_1, \ldots, w_n) + q(s)(w_1, \ldots, w_n). \]

Setting
\[\Phi(w_1, \ldots, w_n, w_{n+1}) = \varphi(w_1, \ldots, w_n), \]
using (#) and Lemma 2.3, we obtain that \(\Phi|_{\overline{D \cap \overline{W}^\prime}} \) admits an extension which is \(C^\infty \)-smooth around \(\overline{D \cap \overline{W}^\prime} \) and vanishes on \(M = \{w_{n+1} = 0\} \) and so \(\Phi|_{D \cap \overline{W}^\prime} \) admits an extension which is \(C^\infty \)-smooth around \(D \cap \overline{W}^\prime \) and vanishes on
\[(G(M) = \{q(s)(z_1, \ldots, z_n) + z_{n+1} = 0\}) \cap W^\prime; \]

since \(\Phi \) is \(n + 1 \)-flat on \(L \cap D \cap W' \), this implies (cf. [4]) that it is possible to find \(c \in C^\infty(D) \) such that on \(D \cap \overline{W}^\prime \) we have
\[\varphi(z) = c(z, z_{n+1})(q(s)(z_1, \ldots, z_n) + z_{n+1}). \]

We want to factorize \(q(s) \).

5. Let \(W \subset B_{n+1}(0, \varepsilon/2) \subset B_{n+1}(0, \varepsilon) \subset \overline{W}^\prime \) be a neighbourhood of \(O \) and let \(\chi \in C^\infty_0(W' \cap L), \chi \equiv 1 \) on \(W \cap L \); set \(\tilde{s} = \chi \cdot s. \) Since \(S \) is totally real we can find (cf. [5]) \(\tilde{s} \in C^\infty(L, \mathbb{C}) \) such that

1) \(\tilde{s}|_{S \cap \overline{W}^\prime} = \tilde{s}|_{S \cap \overline{W}^\prime} \)
2) \(\overline{\partial s}|_{S \cap \overline{W}^\prime} = 0 \) up to infinite order
3) \(\text{supp} \tilde{s} \subset \text{supp} \tilde{s} \)

let \(\beta \in C^\infty_0(\mathbb{C}) \) such that \(\text{supp} \beta \subset B(0, \varepsilon), \beta \equiv 1 \) on \(B(0, \varepsilon/2) \): thus setting
\[\tilde{s}(z_1, \ldots, z_{n+1}) = \beta(z_{n+1})\tilde{s}(z_1, \ldots, z_n) \]
we have that \(\overline{\partial \tilde{s}} \), as element of \(C^\infty_{(0,1)}(\overline{D \cap \overline{W}}) \), is infinitely flat on \(\Sigma \) and since \(Z = L \cup \Sigma \) and \(D \), are, by Lemma 1.2 b), regularly separated at \(O \), then the data
\[\{ D^a \overline{\partial \tilde{s}} \text{ on } \overline{D \cap \overline{W}}, 0 \text{ on } \overline{Z \cap \overline{W}} \] as Whitney data coinciding on the intersection, are Whitney data on \((\overline{D \cup Z}) \cap \overline{W} \) (cf. e.g. [7]) i.e. \(\overline{\partial \tilde{s}}|_{D \cap \overline{W}^\prime} \) admits an extension \(C^\infty \)-smooth around \(\overline{D \cap \overline{W}} \) vanishing on \(L \cap W \), and so
\[\alpha = \frac{\partial \tilde{s}}{z_{n+1}} \in C^\infty_{(0,1)}(\overline{D \cap \overline{W}}); \]
since, for a suitable ϵ, $\operatorname{supp} \tilde{s} \subset W'$, we have
\[\alpha = \frac{\tilde{\partial} s}{g} \in C_{(0,1)}(\tilde{D}) \]
for any domain \tilde{D} as in the statement of Proposition 2.1; thus, following [6], it is possible to find $u \in C^\infty(\tilde{D})$ such that $\tilde{\partial} u = \alpha$ on \tilde{D} and
\[\lambda = gu - \tilde{s} \in A^\infty(\tilde{D}), \quad \lambda|_{\tilde{D}} \in I^\infty(V). \]

6. Extend now q to C_ς in the obvious way: $q(\varsigma) = q(|\varsigma|)$; then we have
\[q(\varsigma + \eta) = q(\varsigma) + \hat{a} \eta + \tilde{b} \eta \quad \text{for} \quad \hat{a}, \tilde{b} \in C^\infty(\varsigma); \]
we obtain on $W \cap D$
\[s = s - \tilde{s} + \hat{s} = s - \tilde{s} + gu - \lambda \]
and
\[q(s) = q(s - \tilde{s}) + \hat{a} \cdot (gu - \lambda) + \tilde{b} (gu - \lambda) \]
where $q(s - \tilde{s})$ as element of $C^\infty(\tilde{D} \cap \tilde{W})$ is infinitely flat on Σ and, by the same argument as before,
\[q(s - \tilde{s}) = d \cdot g \quad \text{for} \quad d \in C^\infty(\tilde{D}); \]
thus we have on $W \cap D$
\[q(s) = d \cdot g + \hat{a} \cdot (gu - \lambda) + \tilde{b} \cdot (gu - \lambda) \]
\[\varphi = c \cdot [(d + \hat{a} u + 1) \cdot g + \tilde{b} \tilde{g} - \hat{a} \lambda - \tilde{b} \lambda] \]
and, putting everything together, we obtain finally:
\[f = a_1 g + a_2 \tilde{g} + a_3 \lambda + a_4 \lambda \]
with $a_1, a_2, a_3, a_4 \in C^\infty(\tilde{D})$.

REMARK 2.4. In general it is not possible to simplify the representation of a C^∞-smooth function by means of holomorphic functions, given in Proposition 2.1, i.e., given $f \in \mathcal{S}^\infty(V)$, in general it is not possible to find a single $\lambda \in I^\infty(V)$ such that, at least locally
\[f = a\lambda + b \lambda \quad \text{for} \quad a, b \in C^\infty(\tilde{D}). \]
In fact, let $V = L = \{z_{n+1} = 0\}$ and $f \in \mathcal{S}^\infty(L)$ such that:
\[\begin{align*}
\text{i) } & \left| \frac{\partial f}{\partial z_{n+1}} \right| - \left| \frac{\partial f}{\partial \overline{z}_{n+1}} \right| \neq 0 \\
\text{ii) } & \{f = 0\} \cap D \supset L \cap D \end{align*} \]
(and this is possible whenever \(L \) has an infinite order of contact with \(bD \) along some real direction); if \(f = a\lambda + b\bar{\lambda} \) with \(\lambda \in I^\infty(L) \) and \(a, b \in C^\infty(\overline{D}) \), from i) we obtain
\[
(|a|^2 - |b|^2) \left| \frac{\partial \lambda}{\partial z_{n+1}} \right|^2 \neq 0
\]
and
\[
\lambda = (\bar{a}f - b\bar{f})(|a|^2 - |b|^2)^{-1};
\]
thus \(\{ \lambda = 0 \} \) is a complex submanifold of \(D \) containing \(\{ f = 0 \} \); contradiction.

3. - The general case.

Our next step is to extend Proposition 2.1 to the case of arbitrary codimension.
Consider first the case \(V \) is a linear submanifold; in this direction, we have the following

Lemma 3.1. Let \(D \subset \mathbb{C}^{n+1} \) be a bounded strictly pseudoconvex domain with \(C^\infty \)-smooth boundary and let \(V = \{ z_{k+1} = \ldots = z_{n+1} = 0 \} \); assume
\[
\overline{D} \cap V = D \cap V \neq \emptyset;
\]
let \(x \in \overline{D} \); then for every neighbourhood \(U \) of \(x \), there exists another neighbourhood \(W \) of \(x \) such that, if \(f \in C^\infty(U) \) and \(f|_{\overline{D} \cap V} = 0 \), then it is possible to find \(\lambda \in I^\infty(V) \) and \(a, b, a_{k+1}, \ldots, a_{n+1}, b_{k+1}, \ldots, b_{n+1} \in C^\infty(\overline{D}) \) in such a way that on \(W \cap \overline{D} \) we have
\[
f = \sum_{j=k+1}^{n+1} (a_j z_j + b_j \bar{z}_j) + a\lambda + b\bar{\lambda}.
\]

Proof. 1. We can assume \(x \in bD \cap V \), \(V \) and \(bD \) are not transversal at \(x \) and therefore, e.g. \(T^x_x bD = L = \{ z_{n+1} = 0 \} \).

2. Let \(M = \{ z_{k+1} = \ldots = z_n = 0 \} \); thus \(bD \) and \(M \) are transversal at \(x \) and therefore in a neighbourhood \(W \subset U \) of \(x \); thus we can find another strictly pseudoconvex domain \(\tilde{D} \supset D \) such that \(D \cap W = \tilde{D} \cap W \) and \(M \) and \(b\tilde{D} \) are transversal everywhere, so \(\tilde{D}^{(1)} = M \cap \tilde{D} \) is a strictly pseudoconvex \((k + 1)\)-dimensional domain with \(C^\infty \)-smooth boundary.

Let \(f \in C^\infty(\overline{U}) \) such that \(f|_{\overline{D} \cup \overline{V}} = 0 \); since \(V \) is 1-codimensional in \(\tilde{D}^{(1)} \), applying proposition 2.1. to \(\tilde{D}^{(1)} \) and \(f|_{\overline{U} \cap M} \), we can find \(a_{n+1}, b_{n+1}, a, b \in C^\infty(\overline{D}), \mu \in A^\infty(\overline{D}^{(1)}), \mu|_{\overline{D} \cup \overline{V}} \equiv 0 \) such that, on \(\overline{D}^{(1)} \cap W \)
\[
f = a_{n+1} z_{n+1} + b_{n+1} \bar{z}_{n+1} + a\mu + b\bar{\mu}.
\]
Now, since M and $b\overline{D}$ are transversal, by [4] (Lemma 2 ii)), it is possible to find $\lambda \in A^\infty(\overline{D})$ such that $\lambda|_{\partial D} = \mu$, so if

$$F = a_{n+1}z_{n+1} + b_{n+1}\overline{z}_{n+1} + a\lambda + b\overline{\lambda}$$

we have $(F - f)_{|\overline{D} \cap W') = 0$ and again on $\overline{D} \cap W$$$
F - f = \sum_{j=1}^{n} (a_jz_j + b_j\overline{z}_j)
$$
for $a_j, b_j \in C^\infty(\overline{D}), 1 \leq j \leq n$, so the proof of Lemma 3.1 is complete.

We have now the following

Proposition 3.2. Let D, V, g_1, \ldots, g_k as in the main Theorem and assume $g_j \in \mathcal{O}(D')$ $1 \leq j \leq k$, where $D' \supset \overline{D}$; then, for every neighbourhood U of x there exists another neighbourhood W of x such that for every function $f \in C^\infty(U)$ such that $f|_{D \cap U} = 0$, it is possible to find $\lambda \in I^\infty(V)$ and $a, b, a_1, \ldots, a_k, b_1, \ldots, b_k \in C^\infty(D)$ in such a way that in $\overline{W} \cap D$ we have

$$f = \sum_{j=1}^{k} (a_jg_j + b_j\overline{g}_j) + a\lambda + b\overline{\lambda}.
$$

Proof. 1. As usual, we can assume $x \in V \cap bD$; let $G : D' \rightarrow \mathbb{C}^k$ be the holomorphic map given by $G(z) = (g_1(z), \ldots, g_k(z))$ and let Γ be its graph.

2. Let $f \in C^\infty(\overline{U})$ such that $f|_{D \cap U} = 0$; since (g_1, \ldots, g_k) is a complete defining system for V, we can find (cf. [4], Lemma 5) a neighbourhood A of x complex coordinates v_1, \ldots, v_q, $q = n + 1 + k$, in such a way that

$$A \cap C^{n+1} = \{v_{n+2} = \cdots = v_q = 0\}
$$

$$A \cap \Gamma = \{v_{n+2-d} = \cdots = v_{n+1-d+k} = 0\}
$$

where $d = n + 1 - \dim_{\mathbb{C}} V \leq k$, thus, since $\Gamma \cap D' = V$,

$$V \cap A = \{v_{n+2-d} = \cdots = v_q = 0\}.
$$

3. Let now $W \subset W' \subset U$ be two neighbourhoods of x in \mathbb{C}^{n+1} such that $A \cap C^{n+1} \supset W'$ and let $\rho = C^\infty(W')$ such that $\rho \equiv 1$ on W; set $\tilde{f} = \rho f$; setting

$$\tilde{F}(v_1, \ldots, v_q) = \tilde{f}(v_1, \ldots, v_{n+1}) \text{ for } (v_1, \ldots, v_q) \in [(W' \cap D) \times \mathbb{C}^k] \cap A
$$

we obtain $\tilde{F}|_{\Gamma \cap [(W' \cap D) \times \mathbb{C}^k] \cap A} = 0$ so we can construct in $D' \times \mathbb{C}^k$ a strictly pseudoconvex domain B with C^∞-smooth boundary such that

i) $B \cap (D' \times \{0\}) = D$

ii) $B \cap A \subset [(W' \cap D) \times \mathbb{C}^k] \cap A$
and we can extend \tilde{F} to an element F of $C^\infty(\mathbb{B})$ in such a way that $F |_{\Gamma \cap B} \equiv 0$ and $F |_{D \cap W} = f$.

4. Now $\Gamma \cap B$ is holomorphically equivalent to a plane section, thus, using Lemma 3.1., we can find a neighbourhood \tilde{W} of x in $\mathbb{C}^{n+1} \times \mathbb{C}^k$, $\Lambda \in \mathcal{A}^\infty(\mathbb{B})$ such that $\Lambda |_{\Gamma \cap B} \equiv 0$, $\tilde{a}, \tilde{b}, \tilde{a}_1, \ldots, \tilde{a}_k, \tilde{b}_1, \ldots, \tilde{b}_k \in C^\infty(\mathbb{B})$ in such a way that on $\mathbb{B} \cap \tilde{W}$

$$F = \sum_{j=1}^{k} [a_j \cdot (g_j - w_j) + b_j \cdot (\overline{g_j} - \overline{w_j})] + \tilde{a}\Lambda + \tilde{b}\overline{\Lambda}$$

and therefore, setting

$$a_j = \tilde{a}_j |_{\mathbb{B}}, \quad b_j = \tilde{b}_j |_{\mathbb{B}}, \quad 1 \leq j \leq k,$$

$$a = \tilde{a} |_{\mathbb{B}}, \quad b = \tilde{b} |_{\mathbb{B}}, \quad \lambda = \Lambda |_{\mathbb{B}} \in \mathcal{I}^\infty(V),$$

we obtain precisely

$$f = \sum_{j=1}^{k} (a_j g_j + b_j \overline{g_j}) + a\lambda + b\overline{\lambda}.$$

We are now in the position to prove our main Theorem: using Proposition 3.2, we can construct an open cover $\mathcal{U} = (W^{(h)})_{1 \leq h \leq m}$ of \mathbb{D} in such a way that, for every $f \in \mathcal{C}^\infty(V)$ one can find $\lambda_1, \ldots, \lambda_m \in \mathcal{I}^\infty(V)$, $a_1^{(h)}, \ldots, a_k^{(h)}, b_1^{(h)}, \ldots, b_k^{(h)}$, $c^{(h)}, d^{(h)} \in C^\infty(D)$ $1 \leq h \leq m$ such that on $D \cap W^{(h)}$

$$f = \sum_{j=1}^{k} (a_j^{(h)} g_j + b_j^{(h)} \overline{g_j}) + c^{(h)}\lambda_h + d^{(h)}\overline{\lambda_h}.$$

Let \mathcal{A} be the sheaf on \mathbb{D} of germs of functions C^∞-smooth up to bD and let

$$\mathcal{B} = (g_1, \ldots, g_k, \overline{g}_1, \ldots, \overline{g}_k, \lambda_1, \ldots, \lambda_m, \overline{\lambda}_1, \ldots, \overline{\lambda}_m) \mathcal{A}$$

thus $f \in H^0(\mathbb{D}, \mathcal{B})$.

Consider the exact sequence of sheaves

$$O \rightarrow \mathcal{R} \rightarrow \mathcal{A}^{\otimes(2k+m)} \rightarrow \mathcal{B} \rightarrow O$$

where:

$$\mu(a_1, \ldots, a_k, b_1, \ldots, b_k, c_1, \ldots, c_m, d_1, \ldots, d_m) = \sum_{j=1}^{k} (a_j g_j + b_j \overline{g_j}) + \sum_{h=1}^{m} (c_h \lambda_h + d_h \overline{\lambda_h})$$

and \mathcal{R} is the sheaf of relations C^∞-smooth up to bD between g_1, \ldots, g_k, $\overline{g}_1, \ldots, \overline{g}_k, \lambda_1, \ldots, \lambda_m, \overline{\lambda}_1, \ldots, \overline{\lambda}_m$; since \mathcal{R} is a fine sheaf, passing to the
cohomology sequence, we obtain:

\[O \rightarrow H^\alpha(\mathcal{D}, \mathbb{R}) \rightarrow [H^\alpha(\mathcal{D}, \mathcal{A})]^{\otimes (k+m)} \rightarrow H^\alpha(\mathcal{D}, \mathcal{B}) \rightarrow O \]

is exact and this concludes the proof of the main Theorem.

From the main Theorem we can deduce the following (cf. also [2]).

COROLLARY 3.3. Let \(D, V, g_1, \ldots, g_k \) as in the main Theorem; then the following statements are equivalent:

i) \(D \) and \(V \) are regularly separated;

ii) \(g_1, \ldots, g_k \) generate \(\mathcal{I}^\infty(V) \) over \(\mathcal{A}^\infty(D) \).

Proof. i)\(\Rightarrow \)ii): see [1] and [4].

ii)\(\Rightarrow \)i) if \(g_1, \ldots, g_k \) generate \(\mathcal{I}^\infty(V) \) over \(\mathcal{A}^\infty(D) \), from the main Theorem it follows that \(g_1, \ldots, g_k, \overline{g}_1, \ldots, \overline{g}_k \) generate \(\mathcal{S}^\infty(V) \) over \(\mathcal{C}^\infty(D) \), so (see introduction) \(D \) and \(V \) are regularly separated.

REFERENCES

